# Physical, Chemical, and Biological Data for Selected Streams in Chester County, Pennsylvania, 1981-94 by Andrew G. Reif **Open-File Report 99-216** prepared in cooperation with the **CHESTER COUNTY WATER RESOURCES AUTHORITY** # U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director Copies of this report may be purchased from: U.S. Geological Survey Branch of Information Services Box 25286, Building 810 Denver, Colorado 80225-0286 Copies are also available from: Chester County Water Resources Authority 601 Westtown Road Suite 270 P.O. Box 2747 Government Services Center West Chester, Pennnsylvania 19380-0990 # **CONTENTS** | | Page | |-------------------------------------------------------------------------------------------------------|------| | Abstract | 1 | | Introduction | 1 | | Study objectives and history | 4 | | Methods | 4 | | Acknowledgments | 6 | | References cited | 6 | | | | | ILLUSTRATION | | | Figure 1. Map showing location of sampling sites in Chester County, Pa | 2 | | | | | TABLES | | | Table 1. Sampling sites, station numbers, names, drainage areas, and period of record | 3 | | 2. List of taxonomic references used to identify macroinvertebrate samples | 5 | | 3. Water-quality data from surface-water sites | 8 | | 4. Results of stream-bottom sediment sampling | 240 | | 5. Benthic-macroinvertebrate data | 246 | | 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site | 544 | | 7. Median, mean, standard deviation, and standard error values of Brillouin's diversity index by site | 595 | | 8. Alphabetic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94 | 597 | | 9. Systematic checklist of taxa reported from Chester County Biological Monitoring Network 1981-94 | 602 | #### **CONVERSION FACTORS AND ABBREVIATED WATER-QUALITY UNITS** | Multiply | <u>By</u> | <u>To obtain</u> | |--------------------------------------------|----------------|------------------------| | inch (in.) | 2.54 | centimeter | | square mile (mi <sup>2</sup> ) | 2.590 | square kilometer | | cubic foot per second (ft <sup>3</sup> /s) | 0.02832 | cubic meter per second | | degree Fahrenheit (°F) | °C=5/9 (°F-32) | degree Celsius | # Abbreviated water-quality units used in this report: micrograms per kilogram ( $\mu g/kg$ ) micrograms per liter ( $\mu g/L$ ) microsiemens per centimeter ( $\mu S/cm$ ) milligram per liter (mg/L) millimeter (mm) grams per kilogram (g/kg) # PHYSICAL, CHEMICAL, AND BIOLOGICAL DATA FOR SELECTED STREAMS IN CHESTER COUNTY, PENNSYLVANIA, 1981-94 By Andrew G. Reif #### **ABSTRACT** Physical, chemical, and biological data were collected at 51 sampling sites in Chester County, Fa., from 1970 through 1994 as part of the Stream Conditions of Chester County Program. This report presents data collected from 1981 through 1994. Physical data include water temperature, instantaneous stream discharge, pH, alkalinity, specific conductance, and dissolved oxygen. Chemical data include laboratory determinations of nutrients, major ions, and selected metals in whole water samples and selected metals, pesticides, gross polychlorinated biphenyls (PCB's), gross polychlorinated napthalenes (PCN's), and total carbon in stream-bottom sediment samples. The biological data consists of benthic macroinvertebrate population analyses and diversity indices. Chester County is undergoing rapid urbanization as agricultural lands are converted to residential, commercial, and industrial areas. The purpose of the Stream Conditions of Chester County Program is to further the understanding of stream habitat and chemical changes in response to this urbanization. #### INTRODUCTION Chester County, in the southeast corner of Pennsylvania near Philadelphia (fig. 1), is undergoing rapid urbanization as agricultural lands are converted to residential, commercial, and industrial areas. The Stream Conditions of Chester County Program was developed by the U.S. Geological Survey (USGS) and the Chester County Water Resources Authority (CCWRA) to evaluate stream-water quality and to further the understanding of stream changes in response to urbanization (Lium, 1977, p. 6). This report presents physical, chemical, and biological data collected at 51 sites from 1981 through 1994 as part of the Smeam Conditions of Chester County Program (table 1). The physical, chemical, and biological data from the Stream Conditions of Chester County Program from 1969 through 1980 are presented in a report by Moore (1989). The streams included in the Stream Conditions of Chester County Program drain nearly 95 percent of the county (fig. 1). Valley Creek, Pickering Creek, Stony Run, Pigeon Creek, and French Creek are tributaries to the Schuylkill River. Darby, Crum, Ridley, and Chester Creeks are tributaries to the Delaware River. Buck Run, Doe Run, Indian Run, and Valley Creek are tributaries to the Brandywine Creek. The Red Clay Creek, White Clay Creek, and the Brandywine Creek are tributaries to the Christina River, which is a tributary to the Delaware River. Big Elk Creek flows into the Chesapeake Bay. Octoraro Creek is a tributary to the Susquehanna River. All streams sampled originate within the boundaries of Chester County, except for the headwaters of the West Branch Brandywine, French, and Octoraro Creeks. Figure 1. Location of sampling sites in Chester County, Pa. **Table 1.** Sampling sites, station numbers, names, drainage areas, and period of record [—, no data] | Station | Site | | Drain- | Period of record | | | | |-----------|----------------------|------------------------------------------------------------------|-------------|--------------------|----------|------------------------|--| | number | number | Name | age<br>area | Biological | Chemical | Bottom sediment | | | 01472054 | 8 | Pigeon Creek near Bucktown | 4.20 | 1970-82 | 1969-82 | | | | 01472065 | 9 | Pigeon Creek at Porters Mill | 6.97 | 1970-82 | 1969-82 | _ | | | 01472080 | 10 | Pigeon Creek near Parker Ford | 12.0 | 1970-94 | 1969-94 | 1985 | | | 01472109 | 6 | Stony Run near Spring City | 2.00 | 1970-94 | 1969-94 | 1985 | | | 01472110 | 7 | Stony Run at Spring City | 4.07 | 1970-82 | 1969-82 | _ | | | 01472126 | 41 | French Creek at Trythall | 5.06 | 1982 | 1970-82 | _ | | | 01472129 | 11 | French Creek near Knauertown | 11.7 | 1972-82 | 1969-82 | _ | | | 01472138 | 13 | French Creek near Coventryville | 19.9 | 1970-94 | 1969-94 | 1986 | | | 01472140 | 12 | South Branch French Creek at Coventryville | 12.4 | 1970-94 | 1969-94 | 1985 | | | 01472154 | 14 | French Creek near Pughtown | 46.1 | 1970-94 | 1969-94 | 1985 | | | 01472157 | 15 | French Creek near Phoenixville | 59.1 | 1970-94 | 1969-94 | 1994 | | | 014721612 | 16 | French Creek at Railroad Bridge at Phoenixville | 70.7 | 1980-94 | 1970-94 | 1985, 1994 | | | 01472170 | 1 | Pickering Creek near Eagle | 3.09 | 1970-94 | 1969-94 | 1987 | | | 01472174 | 2 | Pickering Creek near Chester Springs | 5.98 | 1970-94 | 1969-94 | 1986 | | | 014721854 | 3 | Pickering Creek at Merlin | 21.2 | 1970-94 | 1969-94 | 1986 | | | 014721884 | 4 | Pickering Creek at Charlestown Road at Charlestown | 27.5 | 1972-94 | 1969-94 | 1985 | | | 01472190 | 5 | Pickering Creek near Phoenixville | 31.4 | 1970-94 | 1969-94 | 1986, 1994 | | | 01473167 | 49 | Little Valley Creek at Howellville | 6.45 | 1973-94 | 1970-94 | 1986, 87, 9 | | | 01473168 | 50 | Valley Creek near Valley Forge | 12.7 | 1973-94 | 1970-94 | 1985, 199 | | | 01475300 | 17 | Darby Creek at Waterloo Mills near Devon | 5.15 | 1970-94 | 1969-94 | | | | 01475830 | 18 | Crum Creek near Paoli | 6.16 | 1970-82 | 1969-82 | _ | | | 01475840 | 19 | Crum Creek at Whitehorse | 10.1 | 1970-94 | 1969-94 | 1986 | | | 01476430 | 20 | Ridley Creek at Goshenville | 4.22 | 1970-94 | 1969-94 | 1985 | | | 01476435 | 21 | Ridley Creek at Outton Mill near West Chester | 9.71 | 1970-94 | 1969-94 | 1986 | | | 01476790 | 22 | East Branch Chester Creek at Green Hill | .63 | 1970-94<br>1970-94 | 1969-94 | 1986 | | | 01476750 | 23 | East Branch Chester Creek at Milltown | .03<br>5.77 | 1970-94<br>1970-94 | 1969-94 | 1986 | | | 01476835 | 23<br>24 | East Branch Chester Creek at Westtown | 10.4 | 1970-94<br>1970-94 | 1969-94 | 1985, 199 | | | 01476835 | 2 <del>4</del><br>25 | Goose Creek Tributary to East Branch Chester Creek near | 4.28 | 1970-94<br>1975-82 | 1909-94 | 1988, 199 | | | 01470040 | 25 | West Chester | 4.20 | 1988-94 | 1988-94 | 1300, 133 | | | 01476848 | 51 | East Branch Chester Creek below Goose Creek near<br>West Chester | 19.2 | 1983-94 | 1970-94 | 1986, 199 <sub>4</sub> | | | 01478120 | 28 | East Branch White Clay Creek near Avondale | 11.3 | 1970-94 | 1970-94 | 1985, 1993 | | | 01478190 | 29 | Middle Branch White Clay Creek near Wickerton | 9.94 | 1970-94 | 1970-94 | 1986, 199 | | | 01478220 | 30 | West Branch White Clay Creek near Chesterville | 9.92 | 1970-94 | 1970-94 | 1985, 199 | | | 01479680 | 27 | West Branch Red Clay Creek at Kennett Square | 9.79 | 1970-94 | 1970-94 | 1983, 86, 9 | | | 01479800 | 26 | East Branch Red Clay Creek near Five Point | 10.2 | 1970-94 | 1970-94 | 1985, 199 | | | 01480434 | 37 | West Branch Brandywine Creek at Rock Run | 37.3 | 1970-94 | 1970-94 | _ | | | 01480629 | 46 | Buck Run at Doe Run | 22.6 | 1973-94 | 1971-94 | 1985 | | | 01480632 | 45 | Doe Run at Springdell | 11.8 | 1973-94 | 1971-94 | 1986 | | | 01480640 | 38 | West Branch Brandywine Creek at Wawaset | 134 | 1970-94 | 1970-94 | 1985, 1993 | | | 01480647 | 43 | East Branch Brandywine Creek near Struble Dam | 4.36 | 1973-82 | 1971-82 | _ | | | 01480648 | 48 | East Branch Brandywine Creek near Cupola | 5.98 | 1973-94 | 1971-94 | 1986 | | | 01480653 | 42 | East Branch Brandywine Creek at Glenmoore | 16.5 | 1973-94 | 1971-94 | 1985 | | | 01480656 | 47 | Indian Run near Springton | 4.26 | 1974-94 | 1971-94 | 1986 | | | 01480700 | 36 | East Branch Brandywine Creek near Downingtown | 60.6 | 1970-94 | 1970-94 | 1985 | | | 01480903 | 44 | Valley Creek at Mullsteins Meadows near Downingtown | 16.1 | 1973-94 | 1971-94 | 1985 | | | 01480950 | 39 | East Branch Brandywine Creek at Wawaset | 123 | 1979-94 | 1970-94 | 1986, 199 | | | 01481030 | 40 | Brandywine Creek near Chadds Ford | 291 | 1972-94 | 1970-94 | 1985 | | | 01494900 | 31 | East Branch Big Elk Creek at Elkview | 11.1 | 1970-94 | 1970-94 | 1986, 199 | | | 01494950 | 32 | West Branch Big Elk Creek near Oxford | 10.0 | 1970-94 | 1970-94 | 1985, 199 | | | 01578340 | 33 | East Branch Octoraro Creek at Christiana | 11.8 | 1970-94 | 1970-94 | 1994 | | | 01578343 | 34 | Valley Creek at Atglen | 10.5 | 1970-94 | 1970-94 | 1985 | | | 01578345 | 35 | East Branch Octoraro Creek at Steelville | 32.9 | 1970-82 | 1970-82 | 1500 | | #### **Study Objectives and History** The major goal of the Stream Conditions of Chester County Program is to assess the water quality of streams in the county and to further the understanding of stream changes in response to urbanization. The physical, chemical, and biological data presented in this report were collected in support of this goal. The investigation began in the fall of 1969 with a reconnaissance of the county to determine the general conditions of streams and land-use patterns. In 1970, the reconnaissance served as a guide to establish a chemical and biological water-quality network of 40 sites in 13 stream basins. The sites were established on the basis of equal cumulative square miles of drainage area within the basin (Lium, 1977). The sites were established away from any known source of pollution so that the water quality of the overall stream could be assessed. During 1970-72, samples were collected in the spring and fall. In 1971, 10 new stations were added to the chemical sampling program. In 1973, these 10 stations were added to the biological sampling program and sampling was reduced to once a year in the fall. In 1979, qualitative sampling was replaced by quantitative sampling at sites 16 and 39. In 1982, nine stations (sites 7, 8, 9, 11, 18, 25, 35, 41, and 43) were dropped from the network, and in 1983, one station (site 51) was added. In 1988, site 25 was reestablished, bringing the current number of active stations to 43. #### **Methods** Biological samples consisted of benthic macroinvertebrates collected from a riffle area. During each visit, benthic macroinvertebrates were sampled by collecting 10 rocks (45-90 mm in diameter) at random (Lium, 1974). All invertebrates from the rocks were composited in a container and stored in 70 percent isopropyl alcohol for later identification. A complete description of the sampling technique is described in a report by Moore (1987, p. 7). Benthic-macroinvertebrate samples were analyzed at the U.S. Geological Survey office in Malvern, Pa. Benthic-macroinvertebrates were identified to the lowest taxonomic level possible. A voucher collection of identified organisms is located at the USGS, Water Resources Division, Malvern, Pa. A list of taxonomic references that the identifications were based on is given in table 2. Brillouin's diversity index, maximum diversity, minimum diversity, and evenness were calculated for each benthic macroinvertebrate sample (table 6). Mean and median Brillouin's diversity index along with the standard deviation and standard error of the mean were calculated for each site (table 7). Brillouin's diversity index can be calculated by the following formula: $$H = (C/N) \log_{10}(N!/N_1!N_2!...N_s!)$$ (1) where H is diversity, C is 3.3219. N is total number of individuals. s is number of taxa, and $N_i$ (i = 1, 2, ...., s) is number of individuals in the $i^{th}$ taxa. Table 2. List of taxonomic references used to identify macroinvertebrate samples | Taxonomic Group | Reference | |-----------------|-----------------------------------------------------| | Turbellaria | Pennak, 1989 | | Nematoda | Pennak, 1989 | | Nemertea | Pennak, 1989 | | Gastropoda | Harman and Berg, 1971 | | Bivalvia | Harman and Berg, 1971 | | Annelida | Pennak, 1989 | | Acariformes | Pennak, 1989 | | Crustacea | Pennak, 1989 | | Ephemeroptera | Edmunds and others, 1976 | | Odonata | Brigham, and others, 1982; Merritt and Cummins, 199 | | Plecoptera | Brigham, and others, 1982; Merritt and Cummins, 199 | | Megaloptera | Brigham, and others, 1982; Merritt and Cummins, 199 | | Neuroptera | Brigham, and others, 1982; Merritt and Cummins, 199 | | Trichoptera | Brigham, and others, 1982; Wiggins, 1996 | | Lepidoptera | Brigham, 1982; Merritt and Cummins, 1996 | | Coleoptera | Brown, 1976 | | Hymenoptera | Brigham, 1982; Merritt and Cummins, 1996 | | Diptera | Brigham, 1982; Merritt and Cummins, 1996 | Brillouin's diversity index is based on the different kinds of organisms (taxa) present in a community and their relative abundance. In general, diversity is high if a community has many taxa and their abundance are evenly distributed; diversity is low if the taxa are few and their abundance are unevenly distributed (Moore, 1987). Brillouin's diversity can range from zero to infinity but usually is below 5.0. Brillouin's diversity values below 1.0 are associated with waters receiving heavy levels of organic wastes. Brillouin's diversity values between 1.0 and 3.0 are associated with waters receiving moderate levels of organic wastes, and Brillouin's diversity values between 3.0 and 5.0 are associated with waters receiving little or no organic wastes (Wilhm and Dorris, 1968; Wilhm, 1970). Brillouin's diversity measures the effect of community stress and not pollution directly. Community stress may be the result of many factors, including organic or toxic pollution, physical stress, or lack of habitat. Other information can be obtained from the number of taxa present in a community and their relative abundance. The maximum diversity (H<sub>max</sub>) exists when all individuals are distributed as evenly as possible among the taxa. The minimum diversity (H<sub>min</sub>) exists when all individuals are distributed as unevenly as possible among the taxe Evenness (e) describes the observed degree of uniformity of the distribution of individuals among the taxa in the collection. Evenness values between 0.5 and 1.0 generally indicate a balanced community (Moore, 1987). The maximum diversity ( $H_{max}$ ), minimum diversity ( $H_{min}$ ), and evenness (e) can be calculated by use of the following formulas: $$\begin{split} &H_{max} = C/N \; \{log_{10}(N!) - s \; (log_{10}) \; [(N/s)!] \} \\ &H_{min} = C/N \; \left(log_{10} \; (N!) - log_{10} \; \{ \; [N - ( \, s - 1 \, ) \; ] \; ! \; \} \right) \\ &e = H - H_{min} \; / \; H_{max} - H_{min} \end{split}$$ Surface-water samples for chemical analysis were collected in conjunction with the biological samples by use of techniques described by Brown and others (1970, p. 5). Chemical samples collected from 1981 through 1984 were analyzed at the USGS National Water Quality Laboratory in Atlanta, Ga. Surface-water samples collected from 1985 through 1994 were analyzed at the USGS National Water Quality Laboratory in Arvada, Colo. Whole water samples were analyzed for nutrients, major ions, and selected metals. Selected metals analyzed and reported from whole water samples are arsenic, barium, beryllium, cadmium, chromium, cobalt, iron, copper, lead, lithium, manganese, mercury, nickel, silver, strontium, vanadium, and zinc. Stream-bottom sediment samples were collected from 1985 through 1987 and from 1993 through 1934. Samples were collected by hand from the top 6 to 12 in. of sediment with a polyethylene scoop and sieved through a 2-mm polyethylene sieve to remove gravel. The sediment was washed through the sieve with native water and collected in a polyethylene collection basin. The samples were homogenized and then transferred to clean glass or polyethylene containers and placed on ice for shipment to the USGS National Water Quality Laboratory. Stream-bottom sediment samples were analyzed for selected metals, pesticicles, gross polychlorinated biphenyls (PCB's), gross polychlorinated napthalenes (PCN's), and total carbon. Selected metals analyzed and reported from stream-bottom sediment samples are arsenic, cadmium, chromium, iron, copper, lead, manganese, mercury, and zinc. #### **ACKNOWLEDGMENTS** The cooperation of the Chester County Board of Commissioners and the Chester County Water Resources Authority is gratefully acknowledged. Special thanks are extended to David C. Yaeck and Irene B. Brooks, former Executive Directors of the Chester County Water Resources Authority, for their interest and support throughout the program's history. The author also would like to thank Dr. Richard McLean for his assistance throughout the years. The author also recognizes Michael D. Bilger and J. Kent Crawford (U.S. Geological Survey) for their review of this report. Technical support was provided by Kim Otto and Terriann Preston (U.S. Geological Survey). #### **REFERENCES CITED** - Brigham, A.R., Brigham, W.U., and Gnilka, A., eds., 1982, Aquatic insects and oligochaetes of North and South Carolina: Mahomet, Ill., Midwest Aquatic Enterprises, 837 p. - Brown, Eugene, Skougstad, M.W., and Fishman, M.J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 160 p. - Brown, H.P., 1976, Aquatic dryopoid beetles (Coleoptera) of the United States: U.S. Environmental Protection Agency, Water Pollution Control Research Series 18050 ELD04/72, 82 p. - Edmunds, G.F., Jensen, S.L., and Berner, L., 1976, Mayflies of North and Central America: Minneapolis, Minn., University of Minnesota Press, 330 p. - Harman, W.N., and Berg, C.O., 1971, The freshwater snails of central New York with illustrated keys to the genera and species: Search Agriculture, v. 1, no. 4, 68 p. - Lium, B.W., 1974, Some biological aspects of pools and riffles in gravel bed streams in Western United States: U.S. Geological Journal of Research, v. 2, no. 3, p. 379-384. - \_\_\_\_\_1977, Limnological studies of the major streams in Chester County, Pennsylvania: U.S. Geological Survey Open-File Report 77-462, 37 p. - Merritt, R.W., and Cummins, K.W., eds., 1996, An introduction to the aquatic insects of North America (3d ed): Dubuque, Iowa, Kendall Hunt Publishing Company, 722 p. - Moore, C.R., 1987, Determination of benthic-invertebrate indices and water-quality trends of selected streams in Chester County, Pennsylvania, 1969-80: U.S. Geological Survey Water-Resources Investigations Report 85-4177, 62 p. - 1989, Physical, chemical, and biological data for selected streams in Chester County, Pennsyl ania, 1969-80: U.S. Geological Survey Open-File Report 85-686, 289 p. - Pennak, R.W., 1989, Fresh-water invertebrates of the United States (2d ed.): New York, John Wiley and Sons, 803 p. - Wiggins, G.B., 1996, Larvae of the North American caddisfly genera (Trichoptera): Toronto, University of Toronto, 401 p. - Wilhm, J.L, 1970, Range of Diversity index in benthic macro-invertebrate populations: Water Pollution Control Federation Journal, v. 42, no. 5, p. R221-R251. - Wilhm, J.L. and Dorris, T.C., 1968, Biological parameters for water quality criteria: Bioscience, v. 18, p. 477-481. # Table 3. Water-quality data from surface-water sites $\mu\text{S/CM}\text{,}$ microsiemens per centimeter at 25 degrees Celsius DEG C, degrees Celsius NTU, nephelometric turbidity units MG/L, milligrams per liter AC-FT, acre foot $\mu G/L$ , micrograms per liter ND, compound not detected <, less than -, no data Table 3. Water-quality data from surface-water sites 01472054 - Pigeon Creek near Bucktown, Pa. (Site 8) | DATE OCT 1981 21 OCT 1982 29 | TIME<br>1645<br>1030 | DIS-CHARGE, INST. (CUBIC FEET PER SECOND) (00061) 1.5 | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND-ARD UNITS) (00400) 7.6 7.4 ALKA- | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010)<br>10.5<br>7.5 | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300)<br>10.4<br>9.6 | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900)<br>41 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915)<br>11 | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>3.3<br>3.3 | SODIUM, DIS- SOLVED (MG/L AS NA (00930) 6.9 5.8 SOLIDS, | |-------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | | | SODIUM<br>AD-<br>SORP- | POTAS-<br>SIUM,<br>DIS-<br>SOLVED | LINITY,<br>WAT WH<br>TOT FET<br>FIELD | SULFATE,<br>DIS-<br>SOLVED | DIS-<br>SOLVED | FLUO-<br>RIDE,<br>DIS-<br>SOLVED | SILICA,<br>DIS-<br>SOLVED<br>(MG/L | RESIDUE<br>AT 180<br>DEG. C<br>DIS- | SUM OF<br>CONSTI-<br>TUENTS,<br>DIS- | | DATE | SODIUM<br>PERCENT<br>(00932) | | (MG/L<br>AS K)<br>(00935) | (MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | AS SO <sub>4</sub> ) | | (MG/L<br>AS F)<br>(00950) | AS<br>SIO <sub>2</sub> )<br>(00955) | SOLVED<br>(MG/L)<br>(70300) | SOLVED<br>(MG/L)<br>(70301) | | OCT 1981<br>21 | 26 | 0.5 | 1.2 | _ | 22 | 5.3 | <0.10 | 14 | 81 | _ | | OCT 1982<br>29 | 23 | . 4 | .80 | 26 | 17 | 4.8 | <.10 | 14 | 74 | 75 | | DATE | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | | OCT 1981<br>21<br>OCT 1982 | 0.11 | | 0.620 | <0.010 | 0.680 | 0.150 | 0.19 | 0.33 | 0.44 | 0.46 | | 29 | .10 | 0.30 | .580 | <.010 | .580 | <.010 | .01 | | _ | _ | | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CE)<br>(01025) | | OCT 1981<br>21<br>OCT 1982 | 0.59 | 1.1 | 1.3 | 0.080 | 0.25 | 0.030 | 0.030 | 0.09 | 1 | 4.0 | | 29 | . 60 | _ | 1.2 | _ | _ | .020 | .020 | .06 | 1 | <1.0 | | DATE | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | , ZINC, DIS- SOLVED (μG/L AS ZN) (01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCF<br>(MG/L)<br>(38260) | | OCT 1981<br>21 | <1 | <1 | 1 | 86 | <1 | 34 | 0.1 | 1 | 4 | _ | | OCT 1982<br>29 | <1 | 1 | 2 | 86 | <1 | 32 | <.1 | 1 | <4 | 0.02 | Table 3. Water-quality data from surface-water sites—Continued # 01472065 - Pigeon Creek at Porters Mill, Pa. (Site 9) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | (MG/L<br>AS<br>CACO <sub>3</sub> ) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | |----------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | OCT 1981<br>20 | 1530 | _ | 138 | 7.8 | 8.5 | 12.1 | 48 | 13 | 3.8 | 7.2 | | OCT 1982<br>29 | 1300 | 2.4 | 123 | 7.4 | 8.5 | 11.5 | 45 | 12 | 3.7 | 6.2 | | DATE | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L<br>AS CACO <sub>3</sub> )<br>(00410) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG.C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | | OCT 1981<br>20 | 24 | 0.5 | 1.5 | _ | 17 | 6.2 | <0.10 | 17 | 85 | _ | | OCT 1982<br>29 | 22 | . 4 | 1.2 | 30 | 17 | 6.0 | <.10 | 16 | 86 | 85 | | DATE | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | | OCT 1981 | | | | | | | | | | | | 20<br>OCT 1982 | 0.12 | 0.57 | 1.00 | <0.010 | 0.980 | 0.100 | 0.13 | 0.19 | 0.71 | 0.25 | | 29 | .12 | 0.57 | 1.10 | <.010 | 1.10 | .010 | .01 | _ | . 69 | _ | | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | CADMIUI, DIS- SOLVED (µG/L AS CD) (01025) | | OCT 1981 | 0.01 | | | 0.040 | 0.10 | 0.000 | 0.000 | 0.06 | | -1.0 | | 20<br>OCT 1982<br>29 | 0.81 | 1.2 | 1.8 | 0.040 | 0.12 | .020 | 0.020 | .06 | 2 | <1.0<br><1.0 | | DATE | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN) | | , NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | | METHY-<br>LENE<br>BLUE<br>ACTIVT<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | | OCT 1981<br>20 | <1 | <1 | 3 | 64 | 1 | 15 | 0.1 | 1 | <4 | | | OCT 1982 | | | | | | | | | | | | 29 | <1 | 1 | 2 | 35 | <1 | 9 | <.1 | <1 | <4 | 0.02 | Table 3. Water-quality data from surface-water sites—Continued 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | FIGNE-<br>FIUM,<br>FIS-<br>SCLVED<br>(MG/L<br>AS MG)<br>(C0925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 20 | 1400 | _ | 162 | 7.9 | 7.5 | | 11.8 | 54 | _ | 14 | 4.7 | | OCT 1982 | | | | | | | | | | | | | 29 | 1430 | 25 | 140 | 7.5 | 9.0 | | 11.1 | 53 | <del></del> | 14 | 4.3 | | OCT 1983 | | | | | | | | | | | | | 21 | 1400 | 25 | 159 | 6.7 | 10.0 | <1.0 | 9.9 | 61 | <del></del> | 16 | 5.2 | | OCT 1984 | | | | | | | | | | | | | 22 | 1500 | 16 | 141 | 7.4 | 16.0 | .70 | 8.0 | 53 | _ | 14 | 4.5 | | OCT 1985<br>11 | 1500 | 6.6 | 165 | 7.4 | 11.5 | 1.0 | 9.9 | 55 | _ | 14 | 4.8 | | OCT 1986 | 1300 | 0.0 | 163 | 7.4 | 11.5 | 1.0 | 9.9 | 55 | _ | 14 | 4.0 | | 10 | 1430 | 3.4 | 160 | 7.7 | 12.5 | . 90 | 9.5 | 58 | | 15 | 4.9 | | NOV 1987 | 2.00 | | | | 12.0 | | 3.0 | | | | | | 13 | 1330 | 29 | 167 | 7.2 | 9.5 | 1.3 | 12.0 | 59 | | 15 | 5.2 | | NOV 1988 | | | | | | | | | | | | | 09 | 1330 | 5.4 | 172 | 7.5 | 10.5 | 1.7 | 12.2 | 63 | | 16 | 5.5 | | OCT 1989 | | | | | | | | | | | | | 11 | 1430 | 10 | 167 | 7.7 | 12.5 | . 50 | 11.8 | 55 | 23 | 14 | 4.9 | | OCT 1990 | | | | | | | | | | | | | 04 | 0815 | 3.9 | 170 | 6.1 | 14.0 | 1.5 | 9.9 | 55 | 15 | 14 | 4.9 | | OCT 1991 | | | | | | | | | | | | | 08 | 0830 | 3.6 | 171 | 7.2 | 10.0 | 1.2 | 10.8 | 58 | 32 | 15 | 5.0 | | OCT 1992<br>13 | 0920 | 5.5 | 182 | 6.8 | 12.0 | 1.2 | 9.9 | 58 | | 15 | 5.1 | | OCT 1993 | 0920 | 3.3 | 102 | 0.6 | 12.0 | 1.2 | 9.9 | 96 | · <del></del> | 1.0 | J.1 | | 08 | 1140 | 4.2 | 186 | 7.4 | 13.5 | | 10.0 | | _ | | | | OCT 1994 | | | | | | | | | | | | | 31 | 0945 | 4.3 | 185 | 7.4 | 9.5 | | 10.7 | _ | _ | | _ | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued # 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 20 | 8.4 | 24 | 0.5 | 2.1 | _ | _ | 19 | 8.7 | <0.10 | 18 | 101 | | OCT 1982 | | | | | | | | | | | | | 29 | 6.8 | 21 | . 4 | 1.5 | 32 | _ | 18 | 6.9 | <.10 | 17 | 103 | | OCT 1983<br>21 | 8.8 | 23 | . 5 | 1.8 | 38 | | 22 | 8.1 | _ | 17 | 112 | | OCT 1984 | 0.6 | 23 | .5 | 1.0 | 36 | | 22 | 0.1 | | 1, | 112 | | 22 | 6.8 | 21 | . 4 | 1.7 | 36 | _ | 18 | 7.6 | _ | 15 | 91 | | OCT 1985 | | | | | | | | | | | | | 11 | 7.6 | 23 | . 4 | 1.7 | 40 | _ | 22 | 8.8 | _ | 17 | 101 | | OCT 1986 | | | _ | | | | | | | | | | 10<br>NOV 1987 | 7.8 | 22 | . 4 | 1.8 | 44 | _ | 23 | 8.2 | _ | 18 | 114 | | 13 | 8.7 | 23 | .5 | 2.5 | 37 | _ | 22 | 15 | _ | 15 | 126 | | NOV 1988 | ••• | | | | • | | | | | | | | 09 | 8.3 | 22 | . 5 | 1.8 | 54 | _ | 24 | 9.3 | _ | 16 | _ | | OCT 1989 | | | | | | | | | | | | | 11 | 8.5 | 24 | .5 | 1.8 | 32 | _ | 18 | 9.1 | _ | 17 | _ | | OCT 1990<br>04 | 8.0 | 23 | .5 | 1.5 | 40 | | 18 | 9.8 | <.10 | 18 | | | OCT 1991 | | 23 | .5 | 1.5 | 40 | _ | 10 | 9.0 | V.10 | 10 | | | 08 | 7.7 | 22 | . 4 | 1.8 | 26 | | 17 | 9.9 | .10 | 17 | _ | | OCT 1992 | | | | | | | | | | | | | 13 | 8.4 | 23 | . 5 | 2.3 | _ | 29 | 21 | 11 | <.10 | 16 | _ | | OCT 1993 | | | | | | | | | | | | | 08<br>OCT 1994 | _ | _ | _ | | | 39 | _ | | | | _ | | 31 | | _ | _ | | | 58 | | 11 | | | _ | | 01 | | | | | | 55 | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 20 | _ | 0.14 | | 1.40 | | _ | <0.010 | 1.50 | 0.010 | 0.01 | 0.45 | | OCT 1982 | | | | | | | | | | | | | 29 | 95 | .14 | 6.95 | 1.70 | _ | | <.010 | 1.70 | .010 | .01 | | | OCT 1983 | | | | | | | | | | | | | 21 | 109 | .15 | 7.56 | 1.56 | 1.56 | 6.9 | .040 | 1.60 | <.010 | | | | OCT 1984 | | | | | | | | | | | | | 22 | 97 | .12 | 3.93 | 1.56 | 1.56 | 6.9 | .040 | 1.60 | .060 | .08 | <del></del> | | OCT 1985 | | | | | | | | | | | | | 11 | 109 | .14 | 1.80 | 2.10 | | _ | <.010 | 2.10 | .010 | .01 | _ | | OCT 1986 | 110 | 1.0 | 1 00 | 1 60 | | | - 010 | 1 60 | - 010 | | 40 | | 10<br>NOV 1987 | 112 | .16 | 1.03 | 1.60 | | | <.010 | 1.60 | <.010 | | . 40 | | 13 | 116 | .17 | 9.87 | 2.20 | | | <.010 | 2.20 | <.010 | | .50 | | NOV 1988 | 110 | .17 | 9.67 | 2.20 | - <del></del> | | <.010 | 2.20 | V.010 | | .50 | | 09 | 122 | .17 | 1.78 | 2.00 | | | <.010 | 2.00 | .020 | .03 | . 28 | | OCT 1989 | 122 | | 1 | 2.00 | | | 1.010 | 2.00 | .020 | .05 | .20 | | 11 | 105 | .14 | 2.84 | 2.79 | 2.79 | 12 | .010 | 2.80 | .010 | .01 | .39 | | ОСТ 1990 | | | | | | | | | | | | | 04 | 109 | .15 | 1.15 | 2.40 | | | <.010 | 2.40 | .020 | .03 | .28 | | OCT 1991 | | | | | | | | | | | | | 08 | 98 | .13 | . 96 | 2.00 | | _ | <.010 | 2.00 | <.010 | | | | ОСТ 1992 | | | | | | | | | | | | | 13 | 105 | .14 | 1.56 | 1.90 | _ | | <.010 | 1.90 | .030 | .04 | . 27 | | OCT 1993 | | | | | | | | | | | | | 08 | | | _ | 2.30 | _ | | <.010 | 2.30 | .020 | .03 | | | OCT 1994 | | | | | | | | | | | | | 31 | | _ | | 1.90 | _ | | <.010 | 1.90 | .020 | .03 | | Table 3. Water-quality data from surface-water sites—Continued 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01(00) | |---------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 198 | 1 | | | | | | | | | | | | 20 | 0.38 | 0.50 | 0.39 | 1.9 | 1.9 | 0.050 | 0.15 | 0.040 | 0.040 | 0.12 | 1 | | OCT 198 | | | | | | | | | | | | | 29 | | | . 70 | | 2.4 | _ | _ | .040 | .030 | . 09 | 1 | | OCT 198 | | | 40 | | | 0.50 | | 050 | 0.50 | | | | 21<br>OCT 198 | | | .40 | _ | 2.0 | .060 | .18 | .050 | .050 | .15 | _ | | 22 | | | .70 | | 2.3 | .030 | _ | . 060 | .070 | .21 | | | OCT 198 | | | | | 2.0 | .000 | | .000 | .0.0 | | | | 11 | | _ | . 60 | _ | 2.7 | .050 | .15 | .040 | .020 | .06 | _ | | OCT 198 | 6 | | | | | | | | | | | | 10 | | .40 | .30 | 2.0 | 1.9 | .060 | _ | .050 | .030 | .09 | _ | | NOV 198 | | | | | | | | | | | | | 13 | | .50 | <.20 | 2.7 | _ | .080 | _ | .050 | .030 | .09 | _ | | NOV 198<br>09 | | .30 | .30 | 2.3 | 2.3 | .050 | | .040 | .030 | .09 | | | OCT 198 | | . 30 | . 30 | 2.3 | 2.3 | .030 | <u>—</u> | .040 | .030 | .09 | <u> </u> | | 11 | | .40 | .40 | 3.2 | 3.2 | .050 | _ | .030 | .030 | .09 | _ | | OCT 199 | | | | | | | | | | | | | 04 | .28 | .30 | .30 | 2.7 | 2.7 | .050 | _ | <.040 | .030 | .09 | _ | | OCT 199 | | | | | | | | | | | | | 08 | | <.20 | .10 | _ | 2.1 | .060 | _ | .040 | .040 | .12 | _ | | OCT 199 | | 20 | 20 | | | 000 | | 000 | 070 | | | | 13<br>OCT 199 | | .30 | .30 | 2.2 | 2.2 | .090 | _ | .080 | .070 | .21 | _ | | 08 | | _ | | | _ | _ | _ | | .050 | .15 | | | OCT 1994 | | | | | | | | | | | | | 31 | | _ | _ | | _ | | _ | _ | .030 | .09 | _ | Table 3. Water-quality data from surface-water sites—Continued 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 20 | <1.0 | <1 | <1 | 4 | 83 | 1 | 18 | <0.1 | 3 | 6 | _ | | OCT 1982 | | | | | | | | | | | | | 29 | <1.0 | <1 | <1 | <1 | 40 | <1 | 9 | <.1 | 1 | <4 | 0.02 | | OCT 1983 | | | | | | | | | | | | | 21 | | | _ | | 87 | | 20 | | | _ | _ | | OCT 1984<br>22 | | | | | 51 | | 12 | | | | | | OCT 1985 | _ | | | | 21 | | 12 | | | _ | _ | | 11 | | _ | | | 43 | | 15 | | _ | | _ | | OCT 1986 | | | | | 43 | | 10 | | | | | | 10 | | | | | 64 | | 19 | | | | | | NOV 1987 | | | | | | | | | | | | | 13 | | _ | | _ | 85 | | 47 | _ | | | | | NOV 1988 | | | | | | | | | | | | | 09 | _ | _ | _ | _ | 56 | _ | 17 | | _ | _ | _ | | OCT 1989 | | | | | | | | | | | | | 11 | | | _ | | 53 | | 26 | | | _ | | | OCT 1990 | | | | | | | | | | | | | 04 | _ | _ | | | 36 | | 16 | | | _ | | | OCT 1991 | | | | | | | | | | | | | 08 | | | | | 51 | <del></del> | 17 | | | | | | OCT 1992<br>13 | | | | | 68 | | 23 | | | | | | OCT 1993 | _ | | _ | | 00 | | 23 | | | _ | | | 08 | _ | _ | | | | | | | | - | | | OCT 1994 | | | | | | | | | | | | | 31 | | _ | | | | | _ | | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01472109 Stony Run near Spring City, Pa. (Site 6) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-<br>ATURE,<br>WATER<br>(DEG C) | TUR-<br>BID-<br>ITY<br>(NTU) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> ) | | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | |----------------|------|------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------|-------------------------------------|---------------------------------------------------------------|---------|-----------------------------------------------| | OCT 1981 | | (00061) | (00095) | (00400) | (00010) | (00076) | (00300) | (00900) | (00902) | (0091.5) | | 20 | 1115 | | 270 | 7 3 | 6 3 | | 12.2 | 90 | | 23 | | OCT 1982 | 1115 | | 270 | 7.3 | 6.3 | _ | 12.2 | 90 | _ | 23 | | 19 | 1130 | 0.45 | 259 | 7.1 | 8.5 | | 10.5 | 87 | | 22 | | OCT 1983 | 1130 | 0.45 | 233 | 7.1 | 6.5 | | 10.5 | 07 | | 22 | | 20 | 1430 | .33 | 150 | 7.2 | 12.2 | 2.2 | 9.7 | 97 | | 25 | | OCT 1984 | 1430 | | 130 | 7.2 | 12.2 | 2.2 | 3.1 | ,, | | 23 | | 11 | 1145 | .53 | _ | 7.6 | 14.0 | 1.0 | 9.9 | 82 | _ | 21 | | OCT 1985 | 11.0 | | | | | 1.0 | | 02 | | | | 11 | 1230 | .75 | 250 | 7.6 | 12.8 | 1.7 | 11.8 | 85 | | 21 | | OCT 1986 | | | | | | | | | | | | 10 | 0900 | .27 | 300 | 7.5 | 10.8 | 1.0 | 9.2 | 97 | _ | 25 | | NOV 1987 | | | | | | | | | | | | 13 | 0930 | 2.2 | 238 | 7.1 | 6.0 | 2.5 | 12.2 | 82 | | 20 | | NOV 1988 | | | | | | | | | | | | 09 | 0930 | .41 | 315 | 7.4 | 10.0 | 1.3 | 12.1 | 95 | _ | 24 | | OCT 1989 | | | | | | | | | | | | 11 | 1000 | 2.3 | 248 | 7.5 | 12.5 | . 70 | 10.9 | 77 | 33 | 19 | | OCT 1990 | | | | | | | | | | | | 04 | 1145 | . 67 | 242 | 6.8 | 15.0 | 3.0 | 9.9 | 78 | 12 | 20 | | OCT 1991 | | | | | | | | | | | | 08 | 1045 | .17 | 247 | 7.1 | 10.0 | 3.3 | 9.8 | 85 | 37 | 22 | | OCT 1992 | | | | | | | | | | | | 08 | 1145 | .25 | 259 | 7.0 | 10.0 | 3.2 | 11.3 | 89 | | 23 | | OCT 1993 | | 20 | 050 | - 1 | | | | | | | | 08<br>NOV 1994 | 0900 | .38 | 250 | 7.1 | 11.5 | | 9.0 | _ | | | | 01 | 0945 | . 65 | 265 | 7.3 | 13.5 | _ | 7.8 | | | | | 01 | 0343 | . 03 | 203 | 1.5 | 13.5 | | 7.0 | · · | | | Table 3. Water-quality data from surface-water sites—Continued 01472109 Stony Run near Spring City, Pa. (Site 6)—Continued | DATE | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO <sub>3</sub> (00410) | ANC WATER UNFLTRD IT FIELD MG/L AS CACO <sub>3</sub> (00419) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-, RIDE, DIS-SOLVED (MG/L AS CL) (00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |---------------|-----------------------------------------------------------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 198 | 1 | | | | | | | | | | | | | 20 | 7.8 | 22 | 33 | 1 | 4.9 | _ | _ | 27 | 32 | <0.10 | 18 | 178 | | OCT 198 | 7.7 | 15 | 27 | . 8 | 2.4 | 47 | _ | 25 | 22 | <.10 | 19 | 274 | | 20 | 8.3 | 15 | 23 | .7 | 8.9 | 56 | | 37 | 27 | | 17 | 203 | | OCT 198 | | | | | | | | | | | | | | 09 | 7.1 | 14 | 26 | .7 | 3.2 | 48 | _ | 24 | 19 | | 17 | 145 | | OCT 198 | 7.8 | 13 | 24 | . 6 | 4.0 | 54 | | 26 | 22 | | 17 | 156 | | OCT 198 | | | | | | • • | | 20 | | | | 200 | | 10 | 8.4 | 21 | 31 | . 9 | 4.5 | 72 | _ | 22 | 35 | | 20 | 244 | | NOV 198 | | 1.2 | 24 | . 6 | 5.0 | 44 | | 26 | 24 | | 1 5 | 175 | | NOV 198 | 7.8<br>8 | 13 | 24 | . 6 | 5.0 | 44 | | 26 | 24 | | 15 | 175 | | 09 | 8.6 | 22 | 32 | 1 | 4.7 | 62 | | 25 | 34 | | 17 | _ | | OCT 198 | | | | | | | | | | | | | | 11<br>OCT 199 | 7.2 | 12 | 24 | . 6 | 3.0 | 44 | _ | 24 | 20 | _ | 15 | _ | | 04 | 6.9 | 12 | 24 | . 6 | 2.3 | 66 | _ | 21 | 18 | <.10 | 17 | | | OCT 199 | | | | | | | | | | | | | | 08 | 7.4 | 11 | 21 | .5 | 3.4 | 48 | | 22 | 18 | <.10 | 18 | | | OCT 199 | 2<br>7.6 | 12 | 22 | . 6 | 3.0 | | 40 | 23 | 22 | <.10 | 18 | | | OCT 199 | | 12 | 22 | . 0 | 3.0 | | 40 | 23 | 22 | V.10 | 10 | <del></del> | | 08 | _ | | | | | _ | 54 | _ | | _ | _ | _ | | NOV 199 | 4 | | | | | | | | | | | | | 01 | | | | | | | 54 | _ | 19 | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472109 Stony Run near Spring City, Pa. (Site 6)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITFO-<br>GET,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00€05) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 20 | _ | 0.24 | | 3.40 | | | <0.010 | 3.10 | 0.070 | 0.09 | 0.88 | | OCT 1982 | | 27 | 0.00 | | 4 00 | 20 | 010 | 4 00 | 010 | 01 | | | 19<br>OCT 1983 | 163 | .37 | 0.33 | | 4.90 | 22 | .010 | 4.90 | .010 | .01 | | | 20 | 186 | . 28 | .18 | | 3.00 | 13 | .050 | 3.00 | .090 | .12 | | | OCT 1984 | | | | | | | | | | | | | 09 | 155 | .20 | .21 | | 4.55 | 20 | .050 | 4.60 | .070 | .09 | | | OCT 1985 | | | | | | | | | | | | | 11 | 161 | .21 | . 32 | | 3.87 | 17 | .030 | 3.90 | .020 | .03 | .78 | | OCT 1986<br>10 | 190 | .33 | .18 | | 2.38 | 11 | . 020 | 2.40 | <.010 | | _ | | NOV 1987 | | .55 | .10 | | 2.50 | | .020 | 2.40 | 1,010 | | | | 13 | 157 | .24 | 1.04 | _ | 4.39 | 19 | .010 | 4.40 | .130 | .17 | .87 | | NOV 1988 | | | | | | | | | | | | | 09 | 188 | .26 | .21 | _ | 3.37 | 15 | .030 | 3.40 | .040 | .05 | . 36 | | OCT 1989 | 150 | .20 | . 93 | | 5.27 | 23 | . 030 | 5.30 | .020 | .03 | . 48 | | OCT 1990 | | .20 | . 33 | | 3.21 | 23 | .030 | 3.30 | .020 | .03 | .40 | | 04 | 156 | .21 | . 28 | | 4.29 | 19 | .010 | 4.30 | .020 | .03 | . 38 | | OCT 1991 | | | | | | | | | | | | | 08 | 146 | .20 | .07 | | _ | | <.010 | 3.40 | <.010 | | _ | | OCT 1992 | | 20 | | | 2.00 | • • | 01.0 | 4 00 | 050 | 06 | 45 | | 08<br>OCT 193 | 151 | . 20 | .10 | | 3.99 | 18 | .010 | 4.00 | .050 | .06 | . 45 | | 08 | | | | | 3.98 | 18 | . 020 | 4.00 | .040 | . 05 | _ | | NOV 1994 | | | | | | | | | | _ | | | 01 | | | - | _ | 3.68 | 16 | .020 | 3.70 | <.015 | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01472109 Stony Run near Spring City, Pa. (Site 6)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS IS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 20 | 0.90 | 0.94 | 0.97 | 4.3 | 4.1 | 0.500 | 1.5 | 0.260 | 0.230 | 0.71 | 1 | | OCT 1982 | | | | | | | | | | | | | 19 | 1.7 | | 1.7 | _ | 6.6 | | | .060 | .050 | .15 | 1 | | OCT 1983 | | | | | | | | | | | | | 20 | 1.2 | | 1.3 | | 4.3 | .270 | .83 | .220 | .210 | . 64 | | | OCT 1984 | | | 4.0 | | | | | | | | | | 09<br>OCT 1985 | . 33 | | .40 | | 5.0 | .140 | | .100 | .100 | .31 | | | 11 | .58 | .80 | . 60 | 4.7 | 4.5 | .160 | . 49 | .130 | .110 | . 34 | | | OCT 1986 | .56 | . 60 | . 60 | 4.7 | 4.5 | .160 | .45 | .130 | .110 | . 34 | | | 10 | | .50 | .40 | 2.9 | 2.8 | .160 | | .120 | .110 | . 34 | | | NOV 1987 | | | | | | , _ 00 | | | | | | | 13 | .47 | 1.0 | . 60 | 5.4 | 5.0 | .180 | | .140 | .080 | .25 | | | NOV 1988 | | | | | | | | | | | | | 09 | .56 | .40 | . 60 | 3.8 | 4.0 | .290 | | .240 | .220 | .67 | | | OCT 1989 | | | | | | | | | | | | | 11 | .58 | . 50 | . 60 | 5.8 | 5.9 | .090 | _ | .060 | .060 | .18 | | | OCT 1990 | | | | | | | | | | | | | 04 | .48 | .40 | .50 | 4.7 | 4.8 | .050 | | <.060 | .050 | .15 | | | OCT 1991 | | 20 | 20 | 2.6 | 2 7 | 100 | | 050 | 0.00 | 10 | | | 08<br>OCT 1992 | | .20 | .30 | 3.6 | 3.7 | .100 | | .050 | .060 | .18 | <del></del> | | 08 | .35 | . 50 | .40 | 4.5 | 4.4 | .100 | | .070 | .070 | .21 | | | OCT 1993 | | | . 20 | 3.5 | 2.2 | . 100 | | .0.0 | .0.0 | .21 | | | 08 | | _ | _ | | | | | | .080 | .25 | | | NOV 1994 | | | | | | | | | | | | | 01 | | | | | | | | | .050 | .15 | | Table 3. Water-quality data from surface-water sites—Continued 01472109 Stony Run near Spring City, Pa. (Site 6)—Continued | DATE | CADMIUM, DIS- SOLVED (µG/L AS CD) (01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCT<br>(MG/I.)<br>(3826C) | |----------------|-------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 20 | <1.0 | <1.0 | <1.0 | 3.0 | 150 | 1.0 | 57 | <0.1 | 6.0 | 6.0 | _ | | OCT 1982 | | | | 2.0 | •• | - 0 | | | -1 0 | 7.0 | 0.05 | | 19<br>OCT 1983 | <1.0 | <1.0 | 1.0 | 3.0 | 12 | <1.0 | 17 | .1 | <1.0 | 7.0 | 0.05 | | 20 | _ | _ | _ | _ | 89 | | 54 | _ | | _ | _ | | OCT 1984 | | | | | | | | | | | | | 09 | _ | | | - | 35 | _ | 44 | | | _ | | | OCT 1985 | | | | | | | | | | | | | 11 | _ | | _ | | 44 | _ | 70 | _ | | | _ | | OCT 1986<br>10 | _ | _ | _ | | 62 | | 57 | | | | | | NOV 1987 | | | | | 02 | | 3, | | | | | | 13 | _ | _ | _ | _ | 130 | | 110 | | _ | _ | _ | | NOV 1988 | | | | | | | | | | | | | 09 | _ | | _ | _ | 83 | | 75 | | _ | | _ | | OCT 1989<br>11 | | | | | 42 | | 32 | _ | _ | | | | OCT 1990 | <del></del> | _ | _ | | 42 | _ | 32 | | | | | | 04 | _ | | _ | | 17 | | 47 | | | | _ | | OCT 1991 | | | | | | | | | | | | | 08 | _ | _ | _ | _ | 33 | | 28 | | _ | | | | OCT 1992 | | | | | 00 | | 2. | | | | | | 08<br>OCT 1993 | _ | | _ | _ | 23 | _ | 31 | | | | | | 08 | _ | | | | | | _ | | | | _ | | NOV 1994 | | | | | | | | | | | | | 01 | _ | _ | _ | | | _ | _ | _ | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01472110 Stony Run at Spring City, Pa. (Site 7) | DIS- PH CHARGE, SPE- WATER HARD- MAGNE- INST. CIFIC WHOLE NESS, CALCIUM, SIUM, SODIUM, (CUBIC CON- FIELD TEMPER- OXYGEN, TOTAL DIS- DIS- DIS- FEET DUCT- (STAND- ATURE DIS- (MG/L SOLVED SOLVED SOLVED DATE TIME PER ANCE ARD WATER SOLVED AS (MG/L (MG/L (MG/L SECOND) (μS/CM) UNITS) (DEG C) (MG/L) CACO <sub>3</sub> ) AS CA) AS MG) AS NA) (00061) (00095) (000400) (00010) (000300) (00900) (00915) (00925) (00930) | SCDIUM<br>PE~CENT<br>(CO932) | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------| | OCT 1981<br>20 0915 — 260 7.0 5.0 8.1 86 22 7.6 17<br>OCT 1982 | 29 | | 19 0955 0.75 242 6.5 7.0 8.5 83 21 7.3 13 | 25 | | ALKA- POTAS- LINITY CHLO- FLUO- SILICA, RESIDUE SUM OF SOLIDS SODIUM SIUM, WAT WH SULFATE, RIDE, RIDE, DIS- AT 180 CONSTI- DIS- AD- DIS- TOT FET DIS- DIS- DIS- SOLVED DEG. C TUENTS, SOLVED SORP- SOLVED FIELD SOLVED SOLVED SOLVED (MG/L DIS- DIS- (TONS) TION (MG/L (MG/L AS (MG/L (MG/L (MG/L AS SOLVED SOLVED PER RATIO AS K) CACO <sub>3</sub> ) AS SO <sub>4</sub> ) AS CL) AS F) SIO <sub>2</sub> ) (MG/L) (MG/L) AC-FT) (00931) (00935) (00410) (00945) (00940) (00950) (00955) (70300) (70301) (70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | | OCT 1981<br>20 0.8 4.9 — 30 23 <0.10 14 159 — 0.22 | _ | | OCT 1982<br>196 2.2 46 24 18 <.10 17 156 152 .21 | .32 | | 150 2.2 40 24 10 1.10 17 130 132 .21 | .52 | | NITRO- | | | OCT 1981 | | | 20 3.31 3.61 16 0.090 3.70 0.430 0.55 0.53 0.87 0.75 | | | OCT 1982<br>19 4.72 4.72 21 .080 4.80 .130 .17 — 2.2 — | | | NITRO- GEN, AM- MONIA + NITRO- GEN, PHOS- DIS- DI | | | OCT 1981 | | | 20 1.3 4.1 5.0 0.210 0.64 0.190 0.170 0.52 1 3.0 OCT 1982 | | | 19 2.3 — 7.1 — — .150 .150 .46 1 <1.0 | | | CHRO- MIUM, COBALT, COPPER, IRON, LEAD, NESE, MERCURY, NICKEL, ZINC, BLUE DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | ; | | OCT 1981<br>20 <1 1 4 39 1 10 <0.1 1 <4 0.10 | | | OCT 1982<br>19 <1 1 3 17 <1 17 — <1 5 .05 | | Table 3. Water-quality data from surface-water sites—Continued # 01472126 - French Creek at Trythall, Pa. (Site 41) | DATE<br>OCT 1981 | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | (STAND-<br>ARD | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | OXYGEN, DIS- SOLVED (MG/L) (00300) | HARD-<br>NESS (<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | (MG/L | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | |------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | 22 | 1045 | _ | 75 | 7.0 | 9.0 | 10.1 | 26 | 6.9 | 2.1 | 4.0 | | OCT 1982<br>26 | 1130 | 4.2 | 75 | 6.4 | 9.0 | 9.9 | 27 | 7.1 | 2.2 | 3.3 | | | | | | | | | | | | | | DATE | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | | OCT 1981<br>22 | 24 | 0.3 | 1.0 | | 6.2 | 2.7 | <0.10 | 6.6 | 43 | | | OCT 1982 | 24 | 0.3 | 1.0 | | 0.2 | 2.1 | <b>CO.10</b> | 6.6 | 43 | | | 26 | 20 | .3 | 1.2 | 20 | 10 | 4.1 | <.10 | 10 | 60 | 51 | | DATE | SOLIDS<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | , SOLIDS DIS- SOLVED (TONS PER DAY) (70302) | GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) | NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | DIS- | GEN,<br>AMMONIA<br>DIS- | GEN,<br>AMMONIA<br>DIS- | NITRO-<br>GEN,<br>ORGANIO<br>TOTAL<br>(MG/L<br>AS N) | SOLVED<br>(MG/L<br>AS N) | ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | | OCT 1981 | | | | | | | | | | | | 22 | 0.06 | | 0.080 | <0.010 | 0.090 | 0.080 | 0.10 | 0.22 | 0.62 | 0.25 | | OCT 1982<br>26 | .08 | 60 | 120 | < 010 | 120 | 020 | 0.4 | | . 77 | | | 20 | .00 | . 68 | .130 | <.010 | .130 | .030 | .04 | | .,, | _ | | DATE | NITRO<br>GEN, AM<br>MONIA<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | -<br>+ NITRO- | DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVE:<br>(MG/L<br>AS PO4: | (μG/L<br>AS AS) | DIS-<br>D SOLVED<br>(µG/L<br>AS CD) | DIS-<br>SOLVED<br>(µG/L<br>AS CR) | | OCT 1981 | | | | | | | | | | | | 22<br>OCT 1982 | 0.70 | 0.33 | 0.79 | <0.010 | 0.010 | 0.020 | 0.06 | 1 | 1.0 | <1 | | 26 | . 80 | | . 93 | | .020 | .010 | .03 | <1 | <1.0 | <1 | | | DATE | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | DIS-<br>SOLVED<br>(µG/L<br>AS CU) | DIS-<br>SOLVED<br>(µG/L<br>AS FE) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | | MERCURY<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG | | | | | | OCT 1981 | | | | | | | | | | | | 22<br>OCT 1982 | <1 | 3 | 130 | 1 | 52 | <0.1 | | | _ | | | 26 | <1 | 2 | 320 | 1 | 55 | <.1 | 1 | 7 | 0.02 | Table 3. Water-quality data from surface-water sites—Continued # 01472129 - French Creek near Knauertown, Pa. (Site 11) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>, SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODITM,<br>DIS-<br>SOLVED<br>(M3/L<br>AS NA)<br>(00930) | |----------------|--------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981<br>22 | 0900 | | 92 | 6.6 | 8.0 | 9.1 | 32 | 8.5 | 2.5 | 3.4 | | OCT 1982 | | | | | | | | | | | | 26 | 1400 | 18 | 99 | 6.8 | 9.5 | 10.3 | 34 | 8.7 | 3.1 | 3.6 | | DATE | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PR<br>AC-FT)<br>(70303) | | OCT 1981 | | | | | | | | | | | | 22<br>OCT 1982 | 18 | 0.3 | 1.3 | | 7.7 | 3.8 | <0.10 | 9.1 | 56 | 0.08 | | 26 | _ | . 3 | <.10 | 18 | 14 | 7.5 | <.10 | 11 | 76 | .10 | | DATE | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00°23) | | OCT 1981 | | 0 160 | 40 010 | 0.100 | 0.000 | 0.00 | 0.60 | 0 11 | 0.72 | 0.12 | | 22<br>OCT 1982 | _ | 0.160 | <0.010 | 0.180 | 0.020 | 0.03 | 0.68 | 0.11 | 0.73 | 0.13 | | 26 | 3.69 | .410 | <.010 | .410 | .020 | .03 | | .48 | | . 50 | | DATE | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | CADMIUN<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>4, MIUM,<br>DIS-<br>SOLVED<br>(µ3/L<br>AS CR)<br>(01030) | | OCT 1981<br>22 | 0.89 | 0.31 | 0.030 | 0.09 | <0.010 | <0.010 | | 1 | <1.0 | <1 | | OCT 1982 | 0.69 | | 0.030 | 0.09 | <b>\0.010</b> | <b>\0.010</b> | | 1 | <b>\1.0</b> | <b>\1</b> | | 26 | | . 91 | _ | | .040 | .020 | 0.06 | 1 | <1.0 | <1 | | DAT | COBA<br>DIS<br>SOLV<br>E (µG<br>AS<br>(010 | - DIS<br>ED SOL<br>/L (µG<br>CO) AS | - DI<br>VED SOI<br>/L (µG<br>CU) AS | S- DI<br>VED SOI<br>/L (µG<br>FE) AS | D, NES<br>S- DI<br>VED SOI<br>-/L (μG<br>PB) AS | is- di<br>LVED SOI<br>L/L (p.G<br>MN) AS | S- DIS<br>LVED SO:<br>J/L (μC<br>HG) AS | 5- DI | LEC, BI S- ACT VED SU /L STA ZN) (MC | THY-<br>ENE<br>LUE<br>TIVE<br>JB-<br>NCE<br>G/L)<br>260) | | OCT 198 | | <b>~</b> 1 | 2 | 160 | 1 | <b>51</b> - | :0.1 | 2 | 6 - | | | 22<br>OCT 198 | | <1 | 3 | 100 | 1 | 51 | 1 | 2 | ъ - | _ | | 26 | | <1 | 2 | 350 | <1 | 52 | <.1 | 1 | 10 ( | 0.03 | Table 3. Water-quality data from surface-water sites—Continued 01472138 - French Creek near Coventryville, Pa. (Site 13) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 1345 | | 154 | 7.8 | 7.5 | | 10.2 | 58 | _ | 15 | 5.0 | | NOV 1982 | 1015 | 7.3 | 140 | 7.2 | 15.0 | | 7.2 | 58 | | 15 | 5.1 | | 04<br>OCT 1983 | 1015 | 7.3 | 140 | 7.3 | 15.0 | | 1.2 | 38 | | 15 | 3.1 | | 18 | 1330 | 9.5 | 125 | 7.4 | 13.0 | 1.8 | 9.5 | 47 | _ | 12 | 4.2 | | OCT 1984 | | | | | | | | | | | | | 10 | 1430 | 10 | 125 | 7.7 | 13.0 | . 50 | 10.6 | 47 | _ | 12 | 4.1 | | OCT 1985<br>10 | 0830 | 11 | 125 | 7.2 | 8.5 | 1.0 | 9.9 | 47 | | 12 | 4.2 | | OCT 1986 | 0030 | 11 | 125 | 7.2 | 0.5 | 1.0 | 3.3 | 7, | | 12 | 4.2 | | 22 | 0900 | 5.0 | 145 | 7.5 | 10.0 | 1.4 | 7.1 | 54 | | 14 | 4.7 | | OCT 1987 | | | | | | | | | | | | | 16<br>OCT 1988 | 1000 | 10 | 122 | 7.2 | 10.0 | .70 | 11.2 | 48 | | 12 | 4.3 | | 20 | 0930 | 7.3 | 145 | 6.7 | 9.0 | . 90 | 11.0 | 56 | | 14 | 5.0 | | OCT 1989 | | | | • | | | | • | | | | | 23 | 1030 | 32 | 123 | 7.3 | 9.5 | 1.0 | 11.8 | 44 | 12 | 11 | 4.0 | | NOV 1990 | 0000 | 1.0 | 122 | <i>c</i> 0 | C = | 1 2 | 10.4 | 49 | 3 | 12 | 4.6 | | 16<br>OCT 1991 | 0900 | 16 | 132 | 6.8 | 6.5 | 1.3 | 12.4 | 49 | 3 | 12 | 4.0 | | 09 | 0930 | 6.8 | 146 | 7.1 | 10.0 | 2.5 | 10.6 | 54 | 17 | 14 | 4.6 | | OCT 1992 | | | | | | | | | | | | | 15 | 0900 | 9.8 | 145 | 7.4 | 11.5 | 0.90 | 10.5 | 54 | _ | 14 | 4.6 | | OCT 1993<br>14 | 0945 | 16 | 127 | 7.1 | 8.0 | | 10.7 | | | | | | OCT 1994 | 0,40 | 10 | 161 | | 0.0 | | 10.7 | _ | | | | | 27 | 1155 | 10 | 148 | 7.5 | 8.5 | _ | 11.1 | | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01472138 - French Creek near Coventryville, Pa. (Site 13)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>PESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 6.0 | 18 | 0.3 | 1.9 | | | 11 | 9.4 | <0.10 | 15 | 86 | | NOV 1982 | | | | | | | | | | | | | 04 | 5.5 | 17 | . 3 | 1.4 | 48 | | 12 | 8.1 | <.10 | 15 | 94 | | OCT 1983<br>18 | <i>c</i> 1 | 21 | . 4 | 1.6 | 20 | | | | | 16 | 100 | | OCT 1984 | 6.1 | 21 | . 4 | 1.6 | 38 | <del></del> | 14 | 8.2 | | 16 | 100 | | 10 | 5.0 | 18 | .3 | 1.2 | 42 | | 9.4 | 6.9 | | 16 | 81 | | OCT 1985 | 0.0 | | | | | | 5.1 | 0.5 | | | 01 | | 10 | 5.1 | 18 | .3 | 1.4 | 40 | | 16 | 7.4 | | 15 | 83 | | OCT 1986 | | | | | | | | | | | | | 22 | 5.7 | 18 | .3 | 1.5 | 50 | | 11 | 8.3 | <del></del> | 16 | 104 | | OCT 1987 | | | _ | | | | | | | | | | 16<br>OCT 1988 | 5.3 | 19 | .3 | 1.4 | 44 | | 15 | 6.6 | | 15 | 81 | | 20 | 5.6 | 18 | .3 | 1.4 | 46 | | 13 | 8.2 | | 16 | | | OCT 1989 | 0.0 | 20 | | | | | 23 | 0.2 | | | | | 23 | 5.2 | 20 | .3 | 1.5 | 32 | | 13 | 6.2 | | 15 | | | NOV 1990 | | | | | | | | | | | | | 16 | 5.9 | 20 | . 4 | 1.3 | 46 | | 13 | 7.3 | .30 | 18 | | | OCT 1991 | | •• | .3 | | | | | | | • • | | | 09<br>OCT 1992 | 5.5 | 18 | . 3 | 1.4 | 37 | | 11 | 8.1 | .10 | 16 | _ | | 15 | 6.0 | 19 | . 4 | 1.6 | | 54 | 15 | 8.7 | <.10 | 17 | | | OCT 1993 | 0.0 | 10 | • • | 1.0 | | 34 | 13 | 0.7 | 1.10 | | | | 14 | | | | | | 26 | | | | | | | OCT 1994 | | | | | | | | | | | | | 27 | _ | | _ | _ | _ | 40 | | 8.7 | _ | | | 01472138 - French Creek near Coventryville, Pa. (Site 13)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITROGEN, NITRATE DIS- SOLVED (MG/L AS NO <sub>3</sub> ) (71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-GEN, ORGANIC TOTAL (MG/L AS N) (00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------| | OCT 1981 | _ | | | | | | | | | | | | 21 | _ | 0.12 | _ | 0.270 | | _ | <0.010 | 0.290 | 0.040 | 0.05 | 0.30 | | NOV 1982 | | | | | | | | | | | | | 04 | 92 | .13 | 1.86 | .330 | _ | _ | <.010 | .330 | .010 | .01 | _ | | OCT 1983<br>18 | 89 | .14 | 2.57 | .810 | 0.810 | 3.6 | .050 | .860 | .120 | .15 | | | OCT 1984 | | .17 | 2.31 | .610 | 0.810 | 3.0 | .050 | .000 | .120 | .13 | | | 10 | 83 | .11 | 2.19 | .770 | | | <.010 | .770 | .020 | .03 | | | OCT 1985 | i | | | | | | | | | | | | 10 | 89 | .11 | 2.47 | .780 | _ | _ | <.010 | .780 | .020 | .03 | .48 | | OCT 1986 | | | | | | | | | | | | | 22 | 95 | .14 | 1.40 | .720 | _ | _ | <.010 | .720 | <.010 | _ | .40 | | OCT 1987<br>16 | ,<br>90 | .11 | 2.19 | .800 | | _ | <.010 | .800 | .020 | .03 | .48 | | OCT 1988 | | •11 | 2.13 | .000 | | | 1.010 | . 000 | .020 | .03 | .40 | | 20 | 94 | .13 | 1.85 | . 640 | _ | _ | <.010 | . 640 | .010 | .01 | .29 | | OCT 1989 | ) | | | | | | | | | | | | 23 | 79 | .11 | 6.86 | .900 | _ | _ | <.010 | .900 | <.010 | _ | | | NOV 1990 | | | | | | | | | | | | | 16 | 95 | .13 | 4.06 | 1.10 | | _ | <.010 | 1.10 | .050 | .06 | | | OCT 1991<br>09 | 86 | .12 | 1.58 | .630 | | _ | <.010 | . 630 | <.010 | _ | | | OCT 1992 | | .12 | 1.50 | .050 | | | 1.010 | . 050 | 1.010 | | | | 15 | 103 | .14 | 2.72 | .710 | | | <.010 | .710 | .020 | .03 | | | OCT 1993 | 3 | | | | | | | | | | | | 14 | | - | _ | .460 | _ | _ | <.010 | .460 | .020 | .03 | | | OCT 1994 | 1 | | | | | | | | | | | | 27 | | _ | _ | .420 | _ | _ | <.010 | .420 | .020 | .03 | | Table 3. Water-quality data from surface-water sites—Continued 01472138 - French Creek near Coventryville, Pa. (Site 13)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | AFSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 0.28 | 0.31 | 0.32 | 0.59 | 0.61 | 0.020 | 0.06 | <0.010 | <0.010 | - | 1 | | NOV 1982<br>04 | .29 | _ | .30 | | . 63 | _ | | .010 | <.010 | _ | <1 | | OCT 1983 | | | | | | | | | | | | | 18 | . 48 | | . 60 | | 1.5 | .020 | .06 | .020 | .010 | .03 | _ | | OCT 1984 | | | | | | | | | | | | | 10 | .28 | | .30 | | 1.1 | .040 | | .020 | .020 | .06 | | | OCT 1985<br>10 | . 28 | .50 | . 30 | 1.3 | 1.1 | .020 | .06 | .030 | <.010 | | | | OCT 1986 | .20 | .50 | . 30 | 1.3 | 1.1 | .020 | .00 | .030 | <.010 | _ | _ | | 22 | _ | . 40 | .50 | 1.1 | 1.2 | .030 | _ | <.010 | .010 | .03 | _ | | OCT 1987 | | | | | | | | | | | | | 16 | .18 | .50 | .20 | 1.3 | 1.0 | .010 | _ | <.010 | <.010 | _ | | | OCT 1988 | 10 | 30 | .20 | . 94 | .84 | .010 | | 010 | <.010 | | | | 20<br>OCT 1989 | .19 | .30 | .20 | . 94 | .84 | .010 | _ | .010 | <.010 | | _ | | 23 | _ | <.20 | .30 | | 1.2 | .030 | | .010 | .040 | .12 | _ | | NOV 1990 | | | | | | | | | | | | | 16 | .25 | <.20 | . 30 | _ | 1.4 | <.010 | | <.010 | <.010 | _ | _ | | OCT 1991 | | | | | | | | | | | | | 09<br>OCT 1992 | _ | <.20 | | _ | _ | .030 | _ | <.010 | .010 | .03 | _ | | 15 | | <.20 | <.20 | | | .030 | | .020 | .020 | .06 | | | OCT 1993 | | | 7.20 | | | .030 | | .020 | .020 | | | | 14 | | | _ | | - | | _ | _ | <.010 | | _ | | OCT 1994 | | | | | | | | | | | | | 27 | | | | | _ | _ | | | .010 | .03 | _ | Table 3. Water-quality data from surface-water sites—Continued 01472138 - French Creek near Coventryville, Pa. (Site 13)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LETE<br>BLUE<br>ACTIVE<br>SUR-<br>STANCE<br>(MG/L)<br>(38250) | |----------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | <1.0 | 1 | <1 | 2 | 120 | <1 | 27 | <0.1 | <1 | 4 | _ | | NOV 1982 | | | _ | _ | | | | | | | | | 04<br>OCT 1983 | <1.0 | <1 | 1 | 2 | 100 | <1 | 29 | <.1 | <1 | <4 | 0.02 | | 18 | | | | | 150 | _ | 20 | | | _ | | | OCT 1984 | | | | | 150 | | 20 | | | | | | 10 | _ | | | | 130 | _ | 16 | _ | | _ | | | OCT 1985 | | | | | | | | | | | | | 10 | _ | | _ | _ | 85 | | 18 | _ | | _ | _ | | OCT 1986 | | | | | | | | | | | | | 22<br>OCT 1987 | _ | | | _ | 88 | _ | 22 | _ | _ | _ | _ | | 16 | | | | | 150 | | 10 | _ | | | | | OCT 1988 | | | | | 130 | | 10 | | | | | | 20 | | | | | 81 | | 15 | _ | | _ | | | OCT 1989 | | | | | | | | | | | | | 23 | _ | _ | _ | _ | 140 | _ | 21 | _ | | | _ | | NOV 1990 | | | | | | | | | | | | | 16 | | _ | _ | _ | 120 | _ | 17 | | _ | _ | _ | | OCT 1991<br>09 | _ | | | _ | 94 | | 17 | _ | | _ | | | OCT 1992 | | | | | 24 | | 17 | | | | | | 15 | | | | | 110 | | 26 | _ | | | | | OCT 1993 | | | | | | | | | | | | | 14 | | _ | _ | _ | | _ | _ | | _ | _ | _ | | OCT 1994 | | | | | | | | | | | | | 27 | | | | | | _ | _ | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND-ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGYE-<br>SITM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 1500 | | 182 | 8.5 | 10.5 | | 13.8 | 63 | _ | 17 | 5.1 | | NOV 1982 | | | | | | | | | | | | | 04<br>OCT 1983 | 1315 | 6.9 | 161 | 8.0 | 17.0 | _ | 10.6 | 64 | | 17 | 5.3 | | 18 | 1500 | 4.7 | 181 | 8.1 | 14.5 | <1.0 | 10.4 | 70 | _ | 19 | 5.4 | | OCT 1984 | 2000 | ••• | 101 | 0.1 | 11.0 | 12.0 | 10.1 | , 0 | | | 0.1 | | 10 | 1600 | 7.8 | 185 | 8.1 | 15.0 | .40 | 10.6 | 68 | _ | 18 | 5.5 | | OCT 1985 | | | | | | | | | | | | | 10 | 1130 | 7.7 | 195 | 7.4 | 9.5 | . 90 | 12.6 | 70 | | 18 | 6.0 | | OCT 1986 | 1220 | | 100 | 0.0 | 10.0 | 20 | 10.0 | 60 | | 10 | | | 22<br>OCT 1987 | 1230 | 4.4 | 180 | 8.0 | 12.0 | . 30 | 12.8 | 68 | _ | 18 | 5.5 | | 16 | 1400 | 7.6 | 190 | 7.7 | 13.5 | . 60 | 12.8 | 70 | _ | 18 | 6.0 | | OCT 1988 | | | | | | | | | | | | | 20 | 1330 | 5.5 | 198 | 7.1 | 10.0 | . 60 | 12.1 | 73 | _ | 19 | 6.1 | | OCT 1989 | | | | | | | | | | | | | 23<br>NOV 1990 | 1430 | 19 | 188 | 7.2 | 12.5 | 1.5 | 9.3 | 66 | 10 | 17 | 5.6 | | 16 | 1150 | 9.6 | 196 | 6.9 | 7.5 | 1.5 | 12.8 | 70 | 17 | 18 | 6.0 | | OCT 1991 | 1100 | 3.0 | 130 | 0.5 | , | 1.0 | 12.0 | ,, | | 10 | 0.0 | | 09 | 1130 | 4.5 | 203 | 7.2 | 10.5 | . 50 | 12.4 | 71 | 32 | 19 | 5.8 | | OCT 1992 | | | | | | | | | | | | | 15 | 1215 | 5.6 | 208 | 7.2 | 13.0 | . 90 | 12.4 | 71 | _ | 19 | 5.8 | | OCT 1993 | 1240 | 8.3 | 196 | 7.3 | 0.0 | | 11.7 | | | | | | 14<br>OCT 1994 | 1240 | 0.3 | 130 | 1.3 | 8.0 | _ | 11.7 | _ | _ | _ | | | 27 | 1420 | 6.0 | 202 | 8.1 | 9.0 | _ | 12.9 | _ | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIFS,<br>RESIDUTA<br>AT 18C<br>DEG. C<br>DIS-<br>SOLVER<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21<br>NOV 1982 | 8.3 | 21 | 0.5 | 2.8 | | | 15 | 12 | <0.10 | 19 | 105 | | 04 | 7.4 | 19 | . 4 | 2.2 | 43 | _ | 15 | 12 | <.10 | 18 | 116 | | OCT 1983 | | | | | | | | | | | | | 18<br>OCT 1984 | 7.0 | 17 | . 4 | 2.2 | 50 | | 17 | 12 | | 20 | 137 | | 10 | 7.6 | 19 | . 4 | 1.9 | 48 | | 16 | 12 | | 19 | 121 | | OCT 1985 | | | | | | | | | | | | | 10<br>OCT 1986 | 7.9 | 19 | . 4 | 2.3 | 50 | _ | 20 | 14 | | 19 | 126 | | 22 | 7.4 | 19 | . 4 | 2.1 | 51 | | 16 | 12 | | 18 | 128 | | OCT 1987 | | | | | | | | | | | | | 16 | 8.2 | 20 | . 4 | 2.2 | 46 | | 15 | 13 | | 17 | 121 | | OCT 1988<br>20 | 7.4 | 18 | . 4 | 2.0 | 44 | | 17 | 13 | | 18 | | | OCT 1989 | 7.3 | 10 | • • | 2.0 | 77 | | 1, | 13 | | 10 | | | 23 | 7.3 | 19 | . 4 | 2.4 | 56 | | 16 | 11 | | 19 | | | NOV 1990<br>16 | 7.6 | 19 | . 4 | 2.1 | 53 | | 21 | 17 | .10 | 20 | | | OCT 1991 | 7.6 | 19 | . 4 | 2.1 | 55 | _ | 21 | 17 | .10 | 20 | | | 09 | 7.4 | 18 | . 4 | 2.2 | 39 | _ | 14 | 15 | .20 | 19 | | | OCT 1992 | | | _ | | | | | | | | | | 15<br>OCT 1993 | 7.2 | | . 4 | <.10 | | 60 | 18 | 13 | .10 | 18 | | | 14 | | | _ | _ | | 42 | | | | _ | | | OCT 1994 | | | | | | | | | | | | | 27 | _ | | | | _ | 38 | | 17 | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12)—Continued | D <b>ATE</b> | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21<br>NOV 1982 | _ | 0.14 | _ | 2.00 | | | <0.010 | 2.00 | 0.020 | 0.03 | 0.23 | | 04<br>OCT 1983 | 112 | .16 | 2.17 | 1.99 | 1.99 | 8.8 | .010 | 2.00 | <.010 | .01 | | | 18 | 125 | .19 | 1.74 | 2.80 | ***** | _ | <.010 | 2.80 | .020 | .03 | | | OCT 1984<br>10 | 124 | .16 | 2.55 | 3.40 | | | <.010 | 3.40 | .040 | .05 | | | OCT 1985 | 124 | .10 | 2.33 | 3.40 | | | V.010 | 3.40 | .040 | .03 | | | 10 | 132 | .17 | 2.62 | 3.40 | _ | | <.010 | 3.40 | .010 | .01 | .49 | | OCT 1986<br>22 | 122 | .17 | 1.52 | 2.80 | | _ | <.010 | 2.80 | .010 | .01 | 1.2 | | OCT 1987<br>16 | 123 | .16 | 2.48 | 3.60 | | | <.010 | 3.60 | .020 | .03 | . 38 | | OCT 1988 | | | | | | | | | | | | | 20<br>OCT 1989 | 123 | .17 | 1.83 | 3.20 | | <del></del> | <.010 | 3.20 | .020 | .03 | .38 | | 23<br>NOV 1990 | 127 | .17 | 6.50 | 3.30 | _ | _ | <.010 | 3.30 | .010 | .01 | _ | | 16 | 141 | .19 | 3.64 | 3.80 | | | <.010 | 3.80 | .050 | .06 | .65 | | OCT 1991<br>09 | 120 | .16 | 1.45 | 3.20 | | | <.010 | 3.20 | <.010 | | _ | | OCT 1992 | 120 | .10 | 1.45 | 3.20 | _ | _ | <.010 | 3.20 | <.010 | _ | _ | | 15 | _ | | | 2.60 | _ | _ | <.010 | 2.60 | .010 | .01 | .19 | | OCT 1993<br>14 | | | ***** | 2.30 | | | <.010 | 2.30 | .020 | .03 | _ | | OCT 1994 | | | | 2.30 | | | 7.010 | 2.50 | .020 | .03 | | | 27 | | | | 2.50 | _ | | <.010 | 2.50 | <.015 | - | _ | Table 3. Water-quality data from surface-water sites—Continued 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12)—Continued | DATE | ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN,<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | GEN,<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> ) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub><br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 0.21 | 0.24 | 0.23 | 2.2 | 2.2 | 0.040 | 0.12 | <0.010 | <0.010 | ) <del></del> | 2 | | NOV 1982 | | | 10 | | 2.1 | | | . 020 | .010 | | <1 | | 04<br>OCT 1983 | | | .10 | | 2.1 | | | . 020 | .010 | 0.03 | <1 | | 18 | .28 | | .30 | | 3.1 | .040 | .12 | .040 | <.010 | ) — | | | OCT 1984 | | | | | | | | | | | | | 10 | .46 | | . 50 | _ | 3.9 | .050 | | .030 | .020 | .06 | _ | | OCT 1985 | | | | | | | | | | | | | 10<br>OCT 1986 | .29 | .50 | .30 | 3.9 | 3.7 | .020 | .06 | .020 | .020 | .06 | | | 22 | 1.2 | 1.2 | 1.2 | 4.0 | 4.0 | <.010 | _ | <.010 | .010 | .03 | | | OCT 1987 | 1.2 | ±.2 | 1.2 | 4.0 | 4.0 | 1.010 | | 7.010 | .01. | | | | 16 | .38 | .40 | . 40 | 4.0 | 4.0 | <.010 | | <.010 | <.010 | _ | | | OCT 1988 | | | | | | | | | | | | | 20 | .38 | .40 | . 40 | 3.6 | 3.6 | .010 | _ | .010 | <.010 | ) — | | | OCT 1989<br>23 | . 49 | <.20 | .50 | _ | 3.8 | .040 | | .030 | .020 | .06 | | | NOV 1990 | .43 | 1.20 | . 30 | | 5.0 | .040 | | .030 | .021 | .00 | | | 16 | .35 | .70 | .40 | 4.5 | 4.2 | .030 | _ | <.010 | .010 | .03 | _ | | OCT 1991 | | | | | | | | | | | | | 09 | _ | <.20 | | | | .030 | _ | <.010 | <.010 | ) <del>-</del> | | | OCT 1992 | | 00 | 00 | | | 040 | | 000 | | | | | 15<br>OCT 1993 | .19 | .20 | . 20 | 2.8 | 2.8 | .040 | _ | . 020 | .020 | .06 | | | 14 | _ | _ | _ | _ | _ | | | _ | .020 | .06 | | | OCT 1994 | | | | | | | | | | | | | 27 | _ | _ | _ | _ | | _ | _ | _ | .010 | .03 | | Table 3. Water-quality data from surface-water sites—Continued # 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12)—Continued | DATE | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | <1.0 | <1 | <1 | 1 | 53 | <1 | 9 | <0.1 | <1 | <4 | _ | | NOV 1982 | -1 0 | -11 | -11 | • | | | 10 | . 1 | | | 0.00 | | 04<br>OCT 1983 | <1.0 | <1 | <1 | 3 | 66 | 1 | 10 | <.1 | <1 | <4 | 0.03 | | 18 | | | | | 72 | _ | 10 | | | | _ | | OCT 1984 | | | | | | | | | | | | | 10 | | | | | 69 | _ | 11 | | | | _ | | OCT 1985 | | | | | | | | | | | | | 10<br>OCT 1986 | | | | | 65 | | 14 | | | _ | _ | | 22 | | | | | 35 | _ | 6 | | | | | | OCT 1987 | | | | | 33 | | Ū | | | | | | 16 | | | | | 77 | | 11 | _ | | | _ | | OCT 1988 | | | | | | | | | | | | | 20 | | | | | 62 | | 8 | _ | | | | | OCT 1989<br>23 | | | | | 140 | | 33 | | | | | | NOV 1990 | | | | | 140 | <del></del> | 33 | _ | | | | | 16 | | | | | 100 | _ | 20 | _ | | | _ | | OCT 1991 | | | | | | | | | | | | | 09 | | | _ | | 69 | | 11 | _ | | | | | OCT 1992 | | | | | 4.00 | | | | | | | | 15<br>OCT 1993 | | | | | 130 | _ | 15 | | | | | | 14 | | | | | | _ | | | _ | | | | OCT 1994 | | | | | | | | | | | | | 27 | | | | | _ | _ | _ | - | | | _ | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01472154 - French Creek near Pughtown, Pa. (Site 14) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE -<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/I-<br>AS MG'<br>(00925) | |----------------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 1130 | _ | 164 | 7.1 | 6.5 | | 11.1 | 57 | | 15 | 4.8 | | NOV 1982 | | | | | | | | | | | | | 02 | 1400 | 19 | 140 | 7.8 | 14.5 | _ | 9.6 | 57 | _ | 15 | 4.7 | | OCT 1983<br>20 | 1015 | 30 | 147 | 7.1 | 11.0 | 1.9 | 9.6 | 56 | | 15 | 4.6 | | OCT 1984 | 1013 | 30 | 14/ | 7.1 | 11.0 | 1.9 | 9.0 | 30 | _ | 13 | 4.0 | | 10 | 1200 | 23 | 150 | 7.7 | 13.0 | . 60 | 11.0 | 56 | _ | 15 | 4.6 | | OCT 1985 | | | | | | | | | | | | | 11 | 0900 | 24 | 155 | 7.3 | 11.0 | . 90 | 10.2 | 55 | _ | 14 | 4.8 | | OCT 1986 | | | | | | | | | | | | | 31 | 0900 | 17 | 160 | 7.5 | 9.0 | . 70 | 9.4 | 62 | _ | 16 | 5.3 | | OCT 1987 | 1000 | 20 | 147 | 7.4 | 0.0 | 40 | 10.0 | 57 | | 15 | 4.0 | | 14<br>OCT 1988 | 1000 | 28 | 147 | 7.4 | 9.0 | . 40 | 12.2 | 51 | _ | 15 | 4.8 | | 21 | 0930 | 16 | 163 | 7.5 | 8.5 | . 90 | 11.2 | 62 | | 16 | 5.3 | | OCT 1989 | ***** | | | | | | | | | | | | 24 | 0930 | 60 | 149 | 7.2 | 9.0 | 1.1 | 12.1 | 51 | 0 | 13 | 4.6 | | NOV 1990 | | | | | | | | | | | | | 15 | 0830 | 35 | 165 | 7.0 | 4.0 | 1.1 | 12.9 | 55 | 3 | 14 | 4.9 | | OCT 1991 | | | 1.50 | | | | | <b>c</b> 0 | 2.4 | | | | 15 | 0900 | 15 | 168 | 7.0 | 10.0 | 1.0 | 10.4 | 60 | 24 | 16 | 4.9 | | OCT 1992<br>14 | 1045 | 20 | 159 | 7.2 | 11.0 | 3.3 | 11.0 | 61 | | 16 | 5.0 | | OCT 1993 | 1010 | | 200 | | **** | 5.5 | **** | 01 | | | 0.0 | | 15 | 1100 | 24 | 160 | 7.1 | 9.5 | | 10.8 | | _ | | | | OCT 1994 | | | | | | | | | | | | | 27 | 0905 | 20 | 168 | 7.4 | 8.5 | _ | 10.9 | | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472154 - French Creek near Pughtown, Pa. (Site 14)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 7.4 | 21 | 0.4 | 2.3 | _ | | 13 | 9.3 | <0.10 | 16 | 90 | | NOV 1982 | | | | | | | | | | | | | 02 | 6.5 | 19 | . 4 | 1.8 | 42 | _ | 14 | 9.7 | <.10 | 15 | 92 | | OCT 1983<br>20 | 6.6 | 19 | . 4 | 2.4 | 40 | _ | 19 | 11 | _ | 17 | 111 | | OCT 1984 | 0.0 | 19 | .4 | 2.4 | 40 | | 13 | 11 | | 17 | 111 | | 10 | 7.4 | 22 | .4 | 1.5 | 42 | | 14 | 9.4 | _ | 16 | 92 | | OCT 1985 | | | | | | | | | | | | | 11 | 6.9 | 21 | .4 | 2.0 | 42 | _ | 19 | 10 | _ | 16 | 103 | | OCT 1986 | | | | | | | | | | | | | 31 | 7.2 | 19 | . 4 | 2.4 | 44 | | 16 | 11 | _ | 17 | 111 | | OCT 1987<br>14 | 6.7 | 20 | . 4 | 1.8 | 43 | | 12 | 9.5 | | 15 | 97 | | OCT 1988 | 0.7 | 20 | • ** | 1.0 | 43 | | 12 | 9.3 | | 13 | 31 | | 21 | 6.8 | 19 | . 4 | 1.7 | 51 | _ | 15 | 10 | _ | 16 | _ | | OCT 1989 | | | | | | | | | | | | | 24 | 6.0 | 19 | . 4 | 2.0 | 54 | | 13 | 8.2 | | 17 | | | NOV 1990 | | | | | | | | | | | | | 15<br>OCT 1991 | 6.7 | 20 | . 4 | 1.9 | 52 | | 15 | 9.6 | <.10 | 17 | _ | | 15 | 6.5 | 18 | . 4 | 2.0 | 36 | | 12 | 11 | .20 | 17 | _ | | OCT 1992 | 0.5 | | • • | 2.0 | 50 | | | | | | | | 14 | 6.9 | 19 | . 4 | 2.8 | | 30 | 17 | 11 | .10 | 16 | - | | OCT 1993 | | | | | | | | | | | | | 15 | _ | _ | | | _ | 38 | | | _ | _ | _ | | OCT 1994 | | | | | | 4.0 | | | | | | | 27 | | _ | | | | 43 | _ | 11 | _ | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01472154 - French Creek near Pughtown, Pa. (Site 14)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(1°G/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | _ | 0.12 | | 0.700 | _ | | <0.010 | 0.710 | 0.030 | 0.04 | 0.36 | | NOV 1982 | 0.0 | | 4 70 | 020 | 0 000 | | 010 | 040 | 040 | 0.5 | | | 02<br>OCT 1983 | 96 | .13 | 4.72 | . 930 | 0.930 | 4.1 | .010 | . 940 | .040 | .05 | _ | | 20 | 105 | .15 | 8.99 | 1.17 | 1.17 | 5.2 | .030 | 1.20 | <.010 | | _ | | OCT 1984 | | | | | | | | | | | | | 10 | 101 | .13 | 5.71 | 1.80 | _ | _ | <.010 | 1.80 | .040 | .05 | _ | | OCT 1985 | | | | | | | | | | | | | 11 | 105 | .14 | 6.67 | 1.70 | | _ | <.010 | 1.70 | .010 | .01 | . 69 | | OCT 1986<br>31 | 105 | . 15 | 5.15 | .800 | | | <.010 | .800 | .050 | .06 | . 25 | | OCT 1987 | 105 | .13 | 3.13 | .800 | | | <.010 | . 800 | .050 | .00 | .23 | | 14 | 98 | .13 | 7.33 | 1.60 | | _ | <.010 | 1.60 | .020 | .03 | . 38 | | OCT 1988 | | | | | | | | | | | | | 21 | 108 | .15 | 4.67 | 1.50 | _ | _ | <.010 | 1.50 | .020 | .03 | .18 | | OCT 1989 | | | | | | | | | | | | | 24<br>NOV 1990 | 103 | .14 | 16.8 | 1.60 | _ | _ | <.010 | 1.60 | <.010 | _ | .40 | | 15 | 108 | .15 | 10.3 | 1.80 | | | <.010 | 1.80 | .050 | .06 | _ | | OCT 1991 | 100 | .13 | 10.5 | 1.00 | | | 1.010 | 1.00 | .000 | .00 | | | 15 | 98 | .13 | 4.03 | 1.40 | | | <.010 | 1.40 | .030 | .04 | _ | | OCT 1992 | | | | | | | | | | | | | 14 | 98 | .13 | 5.21 | 1.10 | | _ | <.010 | 1.10 | .030 | .04 | . 37 | | OCT 1993 | | | | | | | | | | •• | | | 15<br>OCT 1994 | | | _ | 1.20 | | | <.010 | 1.20 | .020 | .03 | _ | | 27 | | | _ | . 950 | | | <.010 | . 950 | <.015 | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472154 - French Creek near Pughtown, Pa. (Site 14)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 0.43 | 0.39 | 0.46 | 1.1 | 1.2 | 0.040 | 0.12 | <0.010 | <0.010 | _ | 1 | | NOV 1982 | | | | | | | | | | | | | 02 | . 26 | | .30 | | 1.2 | _ | _ | .020 | <.010 | | <1 | | OCT 1983 | | | | | | | | | | | | | 20 | _ | _ | . 60 | _ | 1.8 | .040 | .12 | .020 | .020 | 0.06 | | | OCT 1984 | .16 | | .20 | | 2.0 | .080 | | .080 | .040 | .12 | | | 10<br>OCT 1985 | .10 | _ | .20 | _ | 2.0 | .080 | _ | .080 | .040 | .12 | | | 11 | . 29 | .70 | . 30 | 2.4 | 2.0 | .020 | .06 | .010 | <.010 | | _ | | OCT 1986 | | ••• | .50 | | 2.0 | .020 | ,,,, | | 11020 | | | | 31 | . 65 | .30 | .70 | 1.1 | 1.5 | .020 | _ | .010 | <.010 | | _ | | OCT 1987 | | | | | | | | | | | | | 14 | .28 | .40 | .30 | 2.0 | 1.9 | .010 | _ | <.010 | <.010 | | _ | | OCT 1988 | | | | | | | | | | | | | 21 | .18 | .20 | .20 | 1.7 | 1.7 | .010 | _ | .010 | <.010 | _ | _ | | OCT 1989 | | | | | | | | 000 | 000 | 0.5 | | | 24<br>NOV 1990 | | . 40 | <.20 | 2.0 | _ | .030 | _ | .020 | .020 | .06 | <del></del> | | 15 | .25 | <.20 | . 30 | | 2.1 | .030 | _ | .020 | <.010 | | | | OCT 1991 | .25 | 1,20 | .50 | | 2.1 | .050 | | .020 | 11010 | | | | 15 | | <.20 | <.20 | | | .070 | _ | .020 | <.010 | | | | OCT 1992 | | | | | | | | | | | | | 14 | . 47 | .40 | . 50 | 1.5 | 1.6 | .060 | _ | .030 | .020 | .06 | | | OCT 1993 | | | | | | | | | | | | | 15 | - | | _ | _ | _ | | | | .010 | .03 | _ | | OCT 1994 | | | | | | | | | | | | | 27 | | _ | _ | _ | | _ | | _ | <.010 | _ | | Table 3. Water-quality data from surface-water sites—Continued ### 01472154 - French Creek near Pughtown, Pa. (Site 14)—Continued | DATE | CADMIUM<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(μG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>STB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|---------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21<br>NOV 1982 | 1.0 | 4 | <1 | 4 | 110 | 2 | 23 | <0.1 | <1 | 5 | _ | | 02<br>OCT 1983 | <1.0 | <1 | <1 | 1 | 65 | 1 | 12 | <0.1 | <1 | <4 | 0.02 | | 20 | _ | _ | _ | _ | 120 | _ | 16 | _ | _ | _ | | | OCT 1984 | | | | | | | | | | | | | 10<br>OCT 1985 | _ | _ | _ | | 61 | _ | 8 | _ | _ | _ | _ | | 11 | _ | _ | _ | _ | 57 | _ | 8 | | _ | _ | _ | | OCT 1986 | | | | | | | | | | | | | 31 | _ | _ | _ | _ | 83 | | 14 | _ | _ | _ | _ | | OCT 1987 | | _ | | | 110 | | 10 | _ | _ | _ | _ | | OCT 1988 | | | | | | | | | | | | | 21 | _ | _ | _ | _ | 53 | _ | 9 | _ | _ | _ | _ | | OCT 1989<br>24 | | | | | 120 | | 22 | | | | | | NOV 1990 | _ | _ | _ | | 120 | | 22 | | _ | | _ | | 15 | _ | _ | _ | _ | 140 | _ | 19 | | _ | | _ | | OCT 1991 | | | | | | | | | | | | | 15<br>OCT 1992 | _ | _ | _ | | 94 | | 14 | _ | | _ | _ | | 14 | | _ | _ | _ | 140 | | 18 | _ | _ | _ | _ | | OCT 1993 | | | | | | | | | | | | | 15 | | _ | _ | _ | | _ | | _ | _ | | _ | | OCT 1994<br>27 | | - | _ | | _ | | _ | _ | | _ | _ | | 2, | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01472157 - French Creek near Phoenixville, Pa. (Site 15) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 0930 | 17 | 153 | 7.2 | 5.5 | | 12.0 | 57 | _ | 15 | 4.7 | | NOV 1982 | | | | | | | | | | | | | 02 | 1300 | 24 | 137 | 8.3 | 14.5 | | 10.4 | 57 | _ | 15 | 4.7 | | OCT 1983 | | | | | | | | | | | | | 20 | 0845 | 44 | 138 | 7.5 | 11.5 | 1.2 | 9.9 | 56 | | 15 | 4.5 | | OCT 1984 | | | | | | | | | | | | | 22 | 1200 | 30 | 148 | 7.8 | 16.0 | .50 | 10.0 | 60 | | 16 | 4.8 | | OCT 1985<br>10 | 1430 | 32 | 150 | 7.8 | 11.5 | . 90 | 11.4 | 54 | | 14 | 4.7 | | DEC 1986 | 1430 | 32 | 150 | 7.0 | 11.5 | . 90 | 11.4 | 34 | _ | 14 | 4.7 | | 05 | 1530 | 73 | 138 | 7.6 | 3.0 | 2.7 | 13.6 | 49 | - | 12 | 4.5 | | OCT 1987 | 1000 | | 200 | | 0.0 | | 10.0 | | | | | | 14 | 1400 | 28 | 147 | 7.6 | 10.5 | .50 | 12.0 | 57 | _ | 15 | 4.8 | | OCT 1988 | | | | | | | | | | | | | 19 | 1000 | 18 | 168 | 6.7 | 12.0 | 1.2 | 11.4 | 62 | | 16 | 5.3 | | OCT 1989 | | | | | | | | | | | | | 23 | 1730 | 121 | 153 | 7.3 | 10.5 | 1.2 | 11.5 | 51 | 18 | 13 | 4.6 | | NOV 1990 | | | | | | | | | | | | | 15 | 1130 | 44 | 157 | 7.7 | 5.5 | 1.0 | 13.4 | 57 | 0 | 15 | 4.7 | | OCT 1991 | | | | | | | | | | • • | | | 04 | 0930 | 20 | 152 | 7.3 | 16.5 | . 70 | 10.1 | 59 | 12 | 16 | 4.6 | | OCT 1992<br>14 | 0845 | 27 | 165 | 7.2 | 9.5 | 1.1 | 12.1 | 58 | | 15 | 4.9 | | OCT 1993 | 0043 | ۷, | 103 | 1.2 | 9.3 | 1.1 | 12.1 | 36 | | 13 | 7.7 | | 15 | 0900 | 47 | 160 | 7.5 | 9.5 | _ | 11.0 | _ | | _ | _ | | OCT 1994 | | | | | | | •• | | | | | | 28 | 1130 | 30 | 174 | 7.6 | 8.5 | | 11.8 | | | | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued ### 01472157 - French Creek near Phoenixville, Pa. (Site 15)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | 7.4 | 21 | 0.4 | 2.0 | _ | | 13 | 9.0 | <0.10 | 16 | 92 | | NOV 1982 | | | | | | | | | | | | | 02 | 6.4 | 19 | . 4 | 1.6 | 40 | | 14 | 9.4 | <.10 | 15 | 95 | | OCT 1983<br>20 | 6.4 | 19 | . 4 | 2.2 | 38 | | 19 | 9.9 | | 17 | 109 | | OCT 1984 | 0.4 | 19 | .4 | 2.2 | 36 | | 19 | 9.9 | | 1, | 109 | | 22 | 6.0 | 17 | .3 | 1.9 | 46 | | 13 | 9.7 | | 15 | 103 | | OCT 1985 | | | | | | | | | | | | | 10 | 6.6 | 20 | . 4 | 1.9 | 40 | - | 18 | 9.2 | | 17 | 101 | | DEC 1986 | | | | | | | | | | | | | 05 | 6.2 | 21 | . 4 | 1.8 | 36 | _ | 18 | 8.8 | | 15 | 98 | | OCT 1987<br>14 | 6.6 | 19 | . 4 | 1.8 | 42 | | 12 | 9.3 | | 15 | 97 | | OCT 1988 | 0.0 | 19 | . 4 | 1.6 | 42 | | 12 | 9.3 | | 15 | 91 | | 19 | 6.6 | 18 | . 4 | 1.7 | 45 | | 15 | 10 | | 16 | | | OCT 1989 | | | | | | | | | | | | | 23 | 7.4 | 23 | . 4 | 2.0 | 33 | | 14 | 9.4 | | 16 | | | NOV 1990 | | | | | | | | | | | | | 15 | 6.4 | 19 | . 4 | 1.9 | 60 | _ | 15 | 10 | <.10 | 17 | _ | | OCT 1991<br>04 | 6.6 | 19 | . 4 | 1.8 | 47 | | 13 | 11 | .20 | 16 | | | OCT 1992 | 0.0 | 19 | .4 | 1.6 | 47 | | 13 | 11 | .20 | 10 | _ | | 14 | 6.7 | 19 | . 4 | 2.8 | | 28 | 16 | 11 | .10 | 15 | | | OCT 1993 | | | | | | | | | | | | | 15 | | | _ | | _ | 41 | | - | _ | | | | OCT 1994 | | | | | | | | | | | | | 28 | | | _ | _ | | 48 | | 12 | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472157 - French Creek near Phoenixville, Pa. (Site 15)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>CRGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | | 0.13 | _ | 0.770 | | | <0.010 | 0.770 | 0.050 | 0.06 | 0.24 | | NOV 1982 | | | c 05 | 252 | 252 | 4.0 | 010 | 0.50 | 010 | | | | 02<br>OCT 1983 | 94 | .13 | 6.05 | . 950 | . 950 | 4.2 | .010 | . 960 | .010 | .01 | _ | | 20 | 102 | .15 | 12.9 | 1.07 | 1.07 | 4.7 | .030 | 1.10 | <.010 | | _ | | OCT 1984 | 102 | | 12.5 | 2.07 | 2.07 | *** | | 1110 | 1,020 | | | | 22 | 99 | .14 | 8.34 | 1.07 | 1.07 | 4.7 | .030 | 1.10 | .040 | .05 | _ | | OCT 1985 | | | | | | | | | | | | | 10 | 103 | .14 | 8.73 | 1.60 | - | | <.010 | 1.60 | .020 | .03 | .28 | | DEC 1986<br>05 | 96 | .13 | 19.3 | 1.70 | | | <.010 | 1.70 | .020 | . 03 | .28 | | OCT 1987 | 90 | .13 | 19.3 | 1.70 | _ | | V.010 | 1.70 | .020 | .03 | .20 | | 14 | 96 | .13 | 7.33 | 1.50 | _ | | <.010 | 1.50 | .020 | .03 | . 48 | | OCT 1988 | | | | | | | | | | | | | 19 | 104 | .14 | 5.05 | 1.40 | _ | | <.010 | 1.40 | .070 | .09 | .23 | | OCT 1989 | | | | | | | | | | | 20 | | 23<br>NOV 1990 | 94 | .13 | 3.8 | 1.80 | | | <.010 | 1.80 | .010 | .01 | . 39 | | 15 | 114 | .16 | 13.6 | 1.80 | | _ | <.010 | 1.80 | .050 | .06 | .15 | | OCT 1991 | | | 2010 | 2.00 | | | | | | | | | 04 | 104 | .14 | 5.63 | 1.40 | | _ | <.010 | 1.40 | <.010 | | | | OCT 1992 | | | | | | | | | | | | | 14 | 93 | .13 | 6.83 | 1.10 | | _ | <.010 | 1.10 | .020 | .03 | .28 | | OCT 1993<br>15 | | | _ | 1.20 | | | <.010 | 1.20 | .020 | .03 | | | OCT 1994 | | | _ | 1.20 | | _ | ~.010 | 1.20 | .020 | .03 | | | 28 | _ | _ | | 1.00 | | | <.010 | 1.00 | <.015 | _ | | Table 3. Water-quality data from surface-water sites—Continued 01472157 - French Creek near Phoenixville, Pa. (Site 15)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO4)<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01070) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | 1 | | | | | | | | | | | | 21 | 0.24 | 0.32 | 0.29 | 1.1 | 1.1 | <0.010 | _ | <0.010 | <0.010 | | 1 | | NOV 1982 | | | | | | | | | | | | | 02 | .79 | _ | .80 | _ | 1.8 | _ | | <.010 | <.010 | _ | 1 | | OCT 1983 | 3 | | | | | | | | | | | | 20<br>OCT 1984 | | | . 40 | | 1.5 | .030 | 0.09 | .030 | .020 | 0.06 | | | 22 | .26 | | .30 | _ | 1.4 | <.010 | | .030 | .010 | .03 | _ | | OCT 198 | | | .55 | | | 1.010 | | .000 | .010 | . 45 | | | 10 | .28 | .30 | .30 | 1.9 | 1.9 | .020 | .06 | .020 | .010 | .03 | | | DEC 198 | | | | | | | | | | | | | 05 | .48 | .30 | .50 | 2.0 | 2.2 | .030 | _ | . 020 | .010 | .03 | _ | | OCT 1987 | .38 | .50 | - 40 | 2.0 | 1 0 | - 010 | | - 010 | - 010 | | | | OCT 1988 | | .50 | .40 | 2.0 | 1.9 | <.010 | | <.010 | <.010 | | _ | | 19 | .23 | .30 | .30 | 1.7 | 1.7 | .020 | | . 020 | <.010 | | | | OCT 1989 | • | | | | | | | | | | | | 23 | .39 | .40 | . 40 | 2.2 | 2.2 | .040 | _ | .020 | .030 | .09 | - | | NOV 1990 | | | | | | | | | | | | | 15<br>OCT 1991 | .15 | .20 | .20 | 2.0 | 2.0 | .020 | | <.010 | <.010 | | | | 04 | L<br> | <.20 | | _ | _ | .030 | | <.010 | .010 | .03 | | | OCT 1992 | 2 | 1.20 | | | | .050 | | 1.010 | .010 | .03 | | | 14 | .28 | .30 | .30 | 1.4 | 1.4 | .030 | | .030 | .020 | .06 | _ | | OCT 199 | 3 | | | | | | | | | | | | 15 | _ | _ | _ | _ | _ | _ | - | _ | . 020 | .06 | | | OCT 1994 | | | | | | | | | | | | | 28 | _ | | | | | | | | <.010 | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01472157 - French Creek near Phoenixville, Pa. (Site 15)—Continued | DATE | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(mG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 21 | <1.0 | <1 | <1 | 2 | 97 | <1 | 6 | <0.1 | 1 | 4 | _ | | NOV 1982 | | | | | | | | | | | | | 02 | <1.0 | <1 | <1 | 1 | 51 | <1 | 4 | <.1 | <1 | <4 | 0.01 | | OCT 1983 | | | | | | | | | | | | | 20 | _ | | | _ | 100 | | 6 | | | | | | OCT 1984 | | | | | | | | | | | | | 22 | | | | | 42 | | 3 | | | | | | OCT 1985 | | | | | | | | | | | | | 10 | | _ | | _ | 53 | _ | 4 | | <del></del> | _ | | | DEC 1986 | | | | | 110 | | 1.0 | | | | | | 05<br>OCT 1987 | | | | | 110 | | 16 | | | | | | 14 | | | | | 93 | | 6 | | | | | | OCT 1988 | | | | _ | 93 | | U | | | | | | 19 | | _ | | | 38 | | 4 | | | | | | OCT 1989 | | | | | 30 | | • | | | | | | 23 | | | | | 120 | | 12 | | | | | | NOV 1990 | | | | | | | | | | | | | 15 | | _ | | _ | 120 | | 8 | | | | | | OCT 1991 | | | | | | | | | | | | | 04 | | | _ | | 72 | | 5 | _ | | | | | OCT 1992 | | | | | | | | | | | | | 14 | | _ | | _ | 120 | _ | 6 | | | | | | OCT 1993 | | | | | | | | | | | | | 15 | | | | | _ | _ | | _ | | | | | OCT 1994 | | | | | | | | | | | | | 28 | _ | | | | _ | | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 23 | 1200 | | 468 | 4.3 | 17.0 | _ | 9.1 | 130 | | 38 | 9.0 | | NOV 1982 | | | | | | | | | | | | | 02 | 1045 | 30 | 189 | 8.0 | 14.0 | _ | 10.7 | 75 | _ | 20 | 6.0 | | OCT 1983 | | | | | | | | | | | | | 20 | 1230 | 52 | 185 | 7.8 | 13.0 | 1.5 | 10.5 | 67 | | 18 | 5.4 | | OCT 1984 | | | | | | | | | | | | | 10 | 0900 | 35 | 200 | 7.8 | 14.0 | .80 | 10.6 | 78 | | 21 | 6.2 | | OCT 1985<br>09 | 1500 | 43 | 225 | 7.3 | 10.0 | 1.5 | 11.8 | 80 | | 21 | 6.8 | | OCT 1986 | 1300 | 43 | 223 | 7.3 | 10.0 | 1.5 | 11.6 | 80 | | 21 | 0.0 | | 31 | 1200 | 24 | 220 | 8.0 | 12.0 | .90 | 10.4 | 86 | | 23 | 6.9 | | OCT 1987 | 1200 | | | 0.0 | 12.0 | | | • | | | 0.5 | | 13 | 0930 | 39 | 188 | 7.5 | 10.0 | . 60 | 12.2 | 75 | | 20 | 6.0 | | OCT 1988 | | | | | | | | | | | | | 19 | 1500 | 35 | 232 | 7.2 | 13.5 | 1.1 | 11.5 | 87 | | 23 | 7.2 | | OCT 1989 | | | | | | | | | | | | | 24 | 1430 | 123 | 189 | 7.3 | 11.5 | 1.0 | 11.9 | 66 | 22 | 17 | 5.8 | | NOV 1990 | | | | | | | | | | | | | 15 | 1400 | 51 | 197 | 7.4 | 7.5 | 4.5 | 13.1 | 69 | 13 | 18 | 5.8 | | OCT 1991 | | | | | | | | | | | | | 21 | 0915 | 27 | 212 | 7.2 | 7.5 | 2.3 | 12.1 | 78 | 18 | 21 | 6.2 | | OCT 1992<br>13 | 1200 | 45 | 202 | 7.1 | 12.5 | 1.5 | 11.3 | 71 | | 19 | 5.8 | | OCT 1993 | 1200 | 43 | 202 | /.1 | 12.5 | 1.5 | 11.3 | /1 | | 13 | 3.0 | | 18 | 0800 | 35 | 218 | 7.2 | 13.5 | | 10.1 | | | | _ | | OCT 1994 | 0000 | 33 | 210 | | 10.0 | | 10.1 | | | | | | 28 | 0830 | 31 | 219 | 7.8 | 8.0 | _ | 11.4 | | | _ | _ | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16)—Continued | | | | | POTAS- | ALKA-<br>LINITY | ALKA-<br>LINITY | | CHLO- | FLUO- | SILICA, | |----------------|---------|---------|---------|---------|------------------------|-----------------|------------|---------|-------------|--------------------| | | SODIUM, | | SODIUM | SIUM, | WAT WH | WAT WH | SULFATE, | RIDE, | RIDE, | DIS- | | | DIS- | | AD- | DIS- | TOT FET | TOT IT | DIS- | DIS- | DIS- | SOLVED | | | SOLVED | | SORP | (SOLVED | FIELD | FIELD | SOLVED | SOLVED | SOLVED | (MG/I | | DATE | (MG/L | SODIUM | TION | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | AS | | | AS NA) | PERCENT | RATIO | AS K) | AS CACO <sub>3</sub> ) | | 3) AS SO4) | AS CL) | AS F) | SIO <sub>2</sub> ) | | | (00930) | (00932) | (00931) | (00935) | (00410) | (00419) | (00945) | (00940) | (00950) | (00955) | | OCT 1981 | | | | | | | | | | | | 23 | 27 | 30 | 1 | 4.1 | _ | _ | 76 | 36 | 1.5 | 11 | | NOV 1982 | | | | | | | | | | | | 02 | 9.2 | 21 | .5 | 2.0 | 52 | _ | 21 | 12 | <.10 | 14 | | OCT 1983 | | | | | | | | | | | | 20 | 9.2 | 22 | . 5 | 2.5 | 50 | _ | 22 | 14 | <del></del> | 16 | | OCT 1984 | | | | | | | | | | | | 10 | 9.3 | 20 | . 5 | 1.9 | 54 | _ | 22 | 13 | | 15 | | OCT 1985 | | | | | | | | | | | | 09 | 11 | 22 | . 5 | 2.6 | 52 | | 26 | 15 | _ | 16 | | OCT 1986 | | | | | | | | | | | | 31 | 10 | 20 | .5 | 2.9 | 62 | | 24 | 14 | _ | 16 | | OCT 1987 | | | | | | | | | | | | 13 | 8.6 | 19 | . 4 | 2.1 | 56 | | 18 | 12 | _ | 16 | | OCT 1988 | | 0.1 | - | | 50 | | 0.4 | | | | | 19 | 11 | 21 | .5 | 2.1 | 58 | _ | 24 | 15 | | 15 | | OCT 1989<br>24 | 8.1 | 20 | . 4 | 2.1 | 44 | | 19 | 10 | | 17 | | NOV 1990 | 0.1 | 20 | . 4 | 2.1 | 44 | | 19 | 10 | _ | 17 | | 15 | 8.8 | 21 | .5 | 2.1 | 56 | | 20 | 13 | .10 | 16 | | OCT 1991 | 0.0 | 21 | | 2.1 | 36 | | 20 | 13 | .10 | 10 | | 21 | 9.5 | 20 | . 5 | 2.7 | 60 | _ | 23 | 16 | .10 | 15 | | OCT 1992 | 3.3 | 20 | | 2., | 90 | | 23 | 10 | .10 | 13 | | 13 | 8.2 | 19 | . 4 | 3.0 | | 35 | 20 | 13 | .10 | 16 | | OCT 1993 | 5.2 | | | 5.0 | | | | | | | | 18 | | | | | _ | 47 | | | | _ | | OCT 1994 | | | | | | | | | | | | 28 | _ | _ | _ | _ | _ | 48 | | 15 | | | Table 3. Water-quality data from surface-water sites—Continued 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 23 | 323 | | 0.44 | | 14.0 | 14.0 | 62 | 0.020 | 14.0 | 0.140 | | NOV 1982 | | | | | | | | | | | | 02 | 124 | 120 | .17 | 10.0 | .910 | . 910 | 4.0 | .010 | .920 | <.010 | | OCT 1983 | 124 | 100 | 10 | 10.0 | | | <b>5</b> 0 | 000 | 1 00 | 4 010 | | 20<br>OCT 1984 | 134 | 123 | .18 | 18.8 | 1.17 | 1.17 | 5.2 | .030 | 1.20 | <.010 | | 10 | 127 | 129 | .17 | 12.0 | 1.70 | _ | _ | <.010 | 1.70 | .020 | | OCT 1985 | | 103 | | 12.0 | 1.70 | | | 1.010 | 1.70 | .020 | | 09 | 139 | 138 | .19 | 16.1 | 1.78 | 1.78 | 7.9 | .020 | 1.80 | .030 | | OCT 1986 | | | | | | | | | | | | 31 | 147 | 138 | .20 | 9.49 | .810 | _ | _ | <.010 | .810 | .050 | | OCT 1987 | | | | | | | | | | | | 13<br>OCT 1988 | 121 | 124 | .16 | 12.7 | 1.60 | | _ | <.010 | 1.60 | .030 | | 19 | | 139 | .19 | 13.1 | 1.40 | | | <.010 | 1.40 | . 030 | | OCT 1989 | | 100 | | 10.1 | 11.10 | | | 4.010 | 1.10 | .050 | | 24 | | 115 | .16 | 38.4 | 2.20 | | | <.010 | 2.20 | .010 | | NOV 1990 | | | | | | | | | | | | 15 | _ | 126 | .17 | 17.3 | 1.80 | | _ | <.010 | 1.80 | .060 | | OCT 1991 | | 4.55 | | | | | | | | | | 21<br>OCT 1992 | | 135 | .18 | 9.78 | 1.20 | | _ | <.010 | 1.20 | .030 | | 13 | _ | 111 | .15 | 13.5 | 1.00 | | | <.010 | 1.00 | .020 | | OCT 1993 | | | , 10 | 23.0 | 2.00 | | | | 2.00 | .020 | | 18 | | | | | 1.40 | | | <.010 | 1.40 | .030 | | OCT 1994 | | | | | | | | | | | | 28 | _ | | | | 1.00 | | | <.010 | 1.00 | <.015 | Table 3. Water-quality data from surface-water sites—Continued # 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16)—Continued | | NITRO- | | NITRO- | NITRO- | NITRO- | | | | | | |----------|----------------------|---------|---------|----------|----------|---------|---------|---------|----------------------|---------| | | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | | NITRO- | | | PHOS- | | | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS | | | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC, | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | | DATE | (MG/L | | AS NH <sub>4</sub> ) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | | | (71846) | (00605) | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (07666) | | OCT 1981 | | | | | | | | | | | | 23 | 0.18 | 0.42 | 0.36 | 0.49 | 0.50 | 14 | 15 | 0.310 | 0.95 | 0.280 | | NOV 1982 | | | | | | | | | | | | 02 | .01 | | | | .50 | | 1.4 | | | .010 | | OCT 1983 | | | | | | | | | | | | 20 | _ | | | | .50 | | 1.7 | .030 | .09 | . 020 | | OCT 1984 | | | | | | | | | | | | 10 | .03 | | .18 | | .20 | | 1.9 | .030 | | . 020 | | OCT 1985 | | | | | | | | | | | | 09 | . 04 | | .37 | | .40 | | 2.2 | .050 | .15 | .030 | | OCT 1986 | | | | | | | | | | | | 31 | .06 | .45 | . 45 | .50 | .50 | 1.3 | 1.3 | .020 | | .020 | | OCT 1987 | | | | | | | | | | | | 13 | .04 | . 27 | .27 | .30 | .30 | 1.9 | 1.9 | .010 | | <.010 | | OCT 1988 | | | | | | | | | | | | 19 | .04 | . 57 | .47 | .60 | . 50 | 2.0 | 1.9 | .010 | | .010 | | OCT 1989 | | | | | | | | | | | | 24 | .01 | .19 | .29 | .20 | .30 | 2.4 | 2.5 | .040 | | .020 | | NOV 1990 | | | | | | | | | | | | 15 | .08 | .24 | . 44 | .30 | .50 | 2.1 | 2.3 | .030 | | <.010 | | OCT 1991 | | | | | | | | | | | | 21 | .04 | .27 | .17 | .30 | .20 | 1.5 | 1.4 | .040 | _ | .020 | | OCT 1992 | •• | | | | | | | | | | | 13 | . 03 | .28 | .28 | .30 | .30 | 1.3 | 1.3 | .040 | | .040 | | OCT 1993 | | | | | | | | | | | | 18 | . 04 | | | | | | | _ | _ | | | OCT 1994 | | | | | | | | | | | | 28 | | | | _ | | | | | | - | Table 3. Water-quality data from surface-water sites—Continued 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16)—Continued <.010 28... | DATE | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRCN,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | |----------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 23 | 0.270 | 0.83 | 2 | _ | _ | 5.0 | 7 | 2 | 22 | 490 | | NOV 1982 | | | _ | | | | | _ | _ | | | 02 | .010 | .03 | 1 | _ | | <1.0 | <1 | 1 | 5 | 53 | | OCT 1983<br>20 | .010 | .03 | <1 | | | -1 0 | -1 | | 2 | 83 | | OCT 1984 | .010 | .03 | <b>\1</b> | | _ | <1.0 | <1 | <del></del> | 2 | 8. | | 10 | .010 | .03 | <1 | | | <1.0 | <1 | _ | 3 | 100 | | OCT 1985 | | | | | | 12.0 | 7. | | · | 201 | | 09 | .020 | .06 | <1 | | | <1.0 | <1 | | 4 | 84 | | OCT 1986 | | | | | | | | | | | | 31 | <.010 | _ | <1 | - | _ | 1.0 | <1 | _ | 4 | 64 | | OCT 1987 | | | | | | | | | | | | 13 | <.010 | | <1 | - <del></del> | _ | <1.0 | <1 | | 1 | 72 | | OCT 1988<br>19 | <.010 | | <1 | 42 | <.5 | <1.0 | <5 | <3 | <10 | 26 | | OCT 1989 | V.010 | | ~1 | 72 | ٧.5 | <b>\1.0</b> | \3 | <b>\</b> 3 | <b>\10</b> | 93 | | 24 | .020 | .06 | <1 | 44 | <.5 | <1.0 | <5 | <b>&lt;</b> 3 | <10 | 110 | | NOV 1990 | | | | | _ | | _ | _ | | | | 15 | .010 | .03 | <1 | 36 | <.5 | <1.0 | <5 | <3 | <10 | 120 | | OCT 1991 | | | | | | | | | | | | 21 | .010 | .03 | 2 | 44 | <.5 | <1.0 | <b>&lt;</b> 5 | <b>&lt;</b> 3 | <10 | <b>9</b> 3 | | OCT 1992 | | | _ | | _ | | _ | _ | | | | 13 | .030 | .09 | <1 | 45 | . 8 | <1.0 | <b>&lt;</b> 5 | <b>&lt;</b> 3 | <10 | 120 | | OCT 1993<br>18 | .020 | .06 | _ | | | _ | | _ | | | | OCT 1994 | .020 | .06 | <u>—</u> | | | _ | | | | <del></del> | | 331 1334 | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS V)<br>(01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METFY-<br>LEITS<br>BLUE<br>ACTIVE<br>SUF-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 23 | 200 | | 12,000 | 0.7 | 6 | _ | | | 320 | 0.20 | | NOV 1982 | | | | | | | | | | | | 02 | <1 | | 40 | <.1 | <1 | _ | | _ | <4 | .02 | | OCT 1983 | | | 01 | | • | -11 0 | | | -2 | | | 20<br>OCT 1984 | 2 | | 21 | <.1 | 1 | <1.0 | _ | | <3 | _ | | 10 | 5 | | 39 | <.1 | 2 | <1.0 | | | <3 | _ | | OCT 1985 | • | | | 11.2 | - | 12.0 | | | 10 | | | 09 | 5 | | 58 | <.1 | 2 | <1.0 | | | 24 | | | OCT 1986 | | | | | | | | | | | | 31 | <5 | - | 29 | <.1 | 3 | <1.0 | | _ | 9 | _ | | OCT 1987 | | | | | | | | | | | | 13 | <5 | | 26 | <.1 | <1 | <1.0 | | _ | 3 | _ | | OCT 1988<br>19 | <10 | <4 | 30 | .2 | <10 | <1.0 | 120 | <6 | <3 | | | OCT 1989 | <b>~10</b> | ~4 | 30 | .2 | <b>\10</b> | 11.0 | 120 | ~0 | <b>\</b> 3 | _ | | 24 | <10 | <4 | 23 | <.1 | <10 | <1.0 | 83 | <6 | 9 | _ | | NOV 1990 | | | | | | | | | | | | 15 | <10 | 4 | 33 | <.1 | <10 | <1.0 | 86 | <6 | <3 | _ | | OCT 1991 | | | | | | | | | | | | 21 | <10 | <4 | 32 | _ | <10 | <1.0 | 100 | <6 | 4 | | | OCT 1992 | -10 | -4 | | | -10 | -1.0 | 0.4 | | | | | 13<br>OCT 1993 | <10 | <4 | 29 | <.1 | <10 | <1.0 | 94 | <6 | 4 | _ | | 18 | _ | | | _ | _ | | | | | _ | | OCT 1994 | | | | | | | | | | | | 28 | - | _ | | _ | _ | _ | | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01472170 - Pickering Creek near Eagle, Pa. (Site 1) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> ) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNF-<br>SIUM,<br>DIS-<br>SOLVET<br>(MG/I.<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16 | 1115 | | 196 | 7.6 | 12.0 | _ | 11.5 | 60 | | 17 | 4.3 | | OCT 1982 | | | | | | | | | | | | | 18 | 1145 | 1.3 | 189 | 7.3 | 8.5 | | 10.9 | 76 | _ | 20 | 6.4 | | OCT 1983<br>17 | 1415 | 1.1 | 222 | 7.6 | 15.0 | 4.0 | 9.4 | 83 | _ | 22 | 6.8 | | OCT 1984 | 1415 | 1.1 | 222 | 7.0 | 13.0 | 4.0 | 7.4 | 03 | | 22 | 0.0 | | 05 | 1300 | 1.8 | 205 | 7.8 | 13.5 | 1.0 | 10.3 | 80 | | 21 | 6.8 | | OCT 1985 | | | | | | | | | | | | | 08 | 1100 | 1.8 | 195 | 7.5 | 7.0 | 1.3 | 11.6 | 73 | _ | 19 | 6.3 | | OCT 1986 | 1200 | | 000 | | 15.0 | | | 20 | | | | | 07<br>OCT 1987 | 1300 | .57 | 200 | 8.0 | 15.0 | 1.5 | 10.4 | 80 | | 21 | 6.6 | | 09 | 0930 | 1.1 | 205 | 7.5 | 9.5 | .80 | 13.0 | 80 | | 21 | 6.7 | | OCT 1988 | | | | | | | | | | | | | 13 | 1500 | .87 | 220 | 7.7 | 10.5 | 2.7 | 12.6 | 86 | | 22 | 7.5 | | OCT 1989 | | | | | | | | | | | | | 05<br>OCT 1990 | 1400 | 2.4 | 232 | 6.9 | 14.5 | 1.3 | 12.1 | 77 | 27 | 20 | 6.6 | | 03 | 0800 | 1.2 | 238 | 6.2 | 10.5 | 1.5 | 10.4 | 86 | 19 | 23 | 7.0 | | OCT 1991 | | | 200 | • • • • | 20.0 | 1.0 | -0 | • | | | ,,, | | 03 | 1215 | .78 | 227 | 7.5 | 17.0 | 2.7 | 10.6 | 81 | 36 | 22 | 6.4 | | OCT 1992 | | | | | | | | | | | | | 07<br>OCT 1993 | | | | | | | | | | | | | | 0945 | .70 | 217 | 7.1 | 8.0 | . 50 | 11.9 | 85 | | 23 | 6.7 | | | 0945 | .70 | 217 | | | . 50 | | 85 | | 23 | 6.7 | | 05<br>OCT 1994 | | | | 7.1 | 8.0<br>13.5 | .50 | 11.9<br>11.4 | 85 | <del>-</del> | 23<br>— | 6.7 | Table 3. Water-quality data from surface-water sites—Continued 01472170 - Pickering Creek near Eagle, Pa. (Site 1)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16 | 6.2 | 18 | 0.3 | 1.9 | _ | - | 12 | 18 | <0.10 | 17 | 120 | | OCT 1982<br>18 | 6.7 | 15 | .3 | 2.6 | 44 | | 13 | 21 | <.10 | 21 | 154 | | OCT 1983 | 0.7 | 13 | | 2.0 | 44 | | 13 | 21 | V.10 | 21 | 134 | | 17 | 7.1 | 15 | .3 | 2.8 | 48 | _ | 15 | 24 | _ | 22 | 167 | | OCT 1984 | | | | | | | | | | | | | 05 | 8.8 | 19 | . 4 | 1.8 | 42 | _ | 15 | 24 | _ | 20 | 137 | | OCT 1985 | | | | | 40 | | •• | | | | 120 | | 08<br>OCT 1986 | 7.4 | 17 | . 4 | 2.0 | 42 | | 18 | 18 | | 20 | 132 | | 07 | 7.9 | 17 | . 4 | 1.9 | 56 | | 15 | 19 | | 22 | 150 | | OCT 1987 | | | • • | | | | | | | | | | 09 | 8.8 | 19 | . 4 | 2.0 | 51 | | 14 | 21 | _ | 20 | 138 | | OCT 1988 | | | | | | | | | | | | | 13 | 8.1 | 17 | . 4 | 1.7 | 53 | | 16 | 23 | - | 21 | _ | | OCT 1989 | | | • | 0.0 | F.0 | | | | | 10 | | | 05<br>OCT 1990 | 7.4 | 17 | . 4 | 2.0 | 50 | _ | 14 | 21 | _ | 19 | _ | | 03 | 8.3 | 17 | . 4 | 1.8 | 67 | | 15 | 24 | .10 | 20 | | | OCT 1991 | | | • • | | • • | | | | | | | | 03 | 7.8 | 17 | . 4 | 1.8 | 45 | | 13 | 25 | .20 | 20 | _ | | OCT 1992 | | | | | | | | | | | | | 07 | 7.6 | 16 | . 4 | 1.7 | _ | 38 | 14 | 21 | .10 | 21 | _ | | OCT 1993 | | | | | | 40 | | | | | | | 05<br>OCT 1994 | | | | | _ | 49 | _ | _ | _ | _ | _ | | 25 | | | | | _ | 48 | _ | 26 | | | | | 20 | | | | | | 40 | | -0 | | | | Table 3. Water-quality data from surface-water sites—Continued 01472170 - Pickering Creek near Eagle, Pa. (Site 1)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEIT,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16 | | 0.16 | | 1.49 | 1.49 | 6.6 | 0.010 | 1.50 | 0.050 | 0.06 | 0.37 | | OCT 1982 | | | | | | | | | | | | | 18 | 127 | .21 | . 52 | 2.09 | 2.09 | 9.3 | .010 | 2.10 | .050 | .06 | | | OCT 1983 | | | | | | | | | | | | | 17 | 141 | .23 | .50 | 2.64 | 2.64 | 12 | .060 | 2.70 | .130 | .17 | | | OCT 1984 | 125 | 10 | 67 | 0.00 | | | 4 010 | 0.00 | 0.00 | 0.0 | | | 05<br>OCT 1985 | 135 | .19 | . 67 | 2.80 | | _ | <.010 | 2.80 | .060 | .08 | _ | | 08 | 126 | .18 | . 64 | 2.20 | _ | | <.010 | 2.20 | .050 | .06 | _ | | OCT 1986 | 120 | .10 | .01 | 2.20 | | | 1,010 | 2.20 | .000 | | | | 07 | 136 | .20 | .23 | 1.89 | 1.89 | 8.4 | .010 | 1.90 | .020 | .03 | .98 | | OCT 1987 | | | | | | | | | | | | | 09 | 133 | .19 | .41 | 1.90 | _ | | <.010 | 1.90 | .020 | .03 | .38 | | OCT 1988 | | | | | | | | | | | | | 13 | 142 | .19 | .33 | 2.40 | | _ | <.010 | 2.40 | .010 | .01 | .29 | | OCT 1989 | | | | | | | | | | | | | 05 | 132 | .18 | . 85 | 2.59 | 2.59 | 11 | .010 | 2.60 | .020 | .03 | .38 | | OCT 1990<br>03 | 149 | .20 | .46 | 2.20 | | | <.010 | 2.20 | .010 | .01 | .19 | | OCT 1991 | 149 | .20 | .40 | 2.20 | | _ | V.010 | 2.20 | .010 | .01 | .19 | | 03 | 131 | .18 | .28 | 1.80 | | | <.010 | 1.80 | <.010 | _ | | | OCT 1992 | | • | | | | | | | | | | | 07 | 127 | .17 | .24 | 2.10 | _ | | <.010 | 2.10 | .020 | .03 | _ | | OCT 1993 | | | | | | | | | | | | | 05 | _ | _ | | 2.20 | | _ | <.010 | 2.20 | .020 | .03 | | | OCT 1994 | | | | | | | | | | | | | 25 | | _ | | 1.90 | | _ | <.010 | 1.90 | <.015 | | | Table 3. Water-quality data from surface-water sites—Continued 01472170 - Pickening Creek near Eagle, Pa. (Site 1)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16 | 0.27 | 0.46 | 0.32 | 2.0 | 1.8 | 0.030 | 0.09 | 0.010 | 0.010 | 0.03 | 2. | | OCT 1982 | 25 | | 40 | | 2 5 | | | 040 | 000 | 0.6 | 1. | | 18<br>OCT 1983 | . 35 | _ | .40 | | 2.5 | _ | <del></del> | .040 | .020 | .06 | J. | | 17 | .87 | | 1.0 | | 3.7 | .050 | .15 | .030 | .040 | .12 | | | OCT 1984 | | | | | | | | | | | | | 05 | .14 | | .20 | _ | 3.0 | .030 | ******* | <.010 | .010 | .03 | | | OCT 1985 | | | | | | | | | | | | | 08<br>OCT 1986 | .55 | | . 60 | | 2.8 | .030 | .09 | .020 | .020 | .06 | | | 07 | . 58 | 1.0 | . 60 | 2.9 | 2.5 | .020 | | .020 | .010 | .03 | | | OCT 1987 | | | | | | | | | | | | | 09 | | .40 | <.20 | 2.3 | _ | .010 | | <.010 | <.010 | | | | OCT 1988 | | 20 | 20 | | | | | | | | | | 13<br>OCT 1989 | . 29 | . 30 | .30 | 2.7 | 2.7 | .010 | | .010 | <.010 | | | | 05 | . 48 | .40 | .50 | 3.0 | 3.1 | .020 | | <.010 | <.010 | | _ | | OCT 1990 | | | | | | | | | | | | | 03 | . 29 | .20 | .30 | 2.4 | 2.5 | <.010 | | <.010 | <.010 | _ | _ | | OCT 1991 | | . 00 | •• | | | 020 | | | | | | | 03<br>OCT 1992 | | <.20 | .10 | | 1.9 | .030 | _ | <.010 | <.010 | | _ | | 07 | _ | <.20 | <.20 | | | .020 | | <.010 | <.010 | | _ | | OCT 1993 | | | | | | | | | | | | | 05 | _ | _ | _ | | | | | - | <.010 | | _ | | OCT 1994 | | | | | | | | | | | | | 25 | _ | - | _ | | _ | | | | <.010 | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472170 - Pickering Creek near Eagle, Pa. (Site 1)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STINCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | _ | | | | | _ | •• | | | 16<br>OCT 1982 | 1.0 | <1 | 2 | 5 | 110 | <1 | 50 | <0.1 | 1 | 10 | _ | | 18 | <1.0 | <1 | <1 | <1 | 100 | <1 | 50 | <.1 | 2 | <4 | 0.02 | | OCT 1983<br>17 | _ | | | | 170 | | 56 | | _ | | | | OCT 1984 | | | | | 170 | _ | 36 | _ | | | | | 05 | | | | | 93 | | 35 | _ | | _ | _ | | OCT 1985 | | | | | | | | | | | | | 08 | _ | | | _ | 95 | _ | 54 | _ | _ | | _ | | OCT 1986<br>07 | _ | _ | | | 110 | _ | 23 | _ | _ | _ | _ | | OCT 1987 | | | | | | | | | | | | | 09 | | _ | _ | _ | 110 | _ | 43 | _ | | _ | _ | | OCT 1988<br>13 | | | | | 100 | | 23 | | | _ | | | OCT 1989 | | | | | 100 | | 23 | | | | | | 05 | _ | | _ | _ | 180 | | 48 | | | - | | | OCT 1990 | | | | | | | | | | | | | 03<br>OCT 1991 | | | | | 100 | | 43 | | _ | _ | _ | | 03 | | | | _ | 150 | | 28 | | | _ | _ | | OCT 1992 | | | | | 200 | | | | | | | | 07 | | | _ | _ | 110 | _ | 36 | _ | _ | _ | _ | | OCT 1993 | | | | | | | | | | | | | 05<br>OCT 1994 | _ | | | | | | | | _ | _ | _ | | 25 | _ | | | | _ | | _ | | | _ | _ | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM, DIS- SCLVED (MG/L AS CA) (00915) | |----------------|------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------| | OCT 1981 | | | | | | | | | | | | 16<br>OCT 1982 | 0915 | _ | 191 | 7.2 | 9.0 | | 10.8 | 55 | _ | 17 | | 18<br>OCT 1983 | 0930 | 3.5 | 190 | 6.6 | 5.8 | _ | 10.2 | 73 | | 20 | | 18<br>OCT 1984 | 1045 | 2.6 | 195 | 7.5 | 13.0 | 1.0 | 8.6 | 81 | | 23 | | 05<br>OCT 1985 | 0900 | 4.0 | 200 | 7.7 | 9.5 | .60 | 10.7 | 77 | | 21 | | 08<br>OCT 1986 | 0815 | 5.1 | 212 | 7.4 | 6.0 | 1.1 | 11.0 | 72 | | 19 | | 07<br>OCT 1987 | 0900 | 2.1 | 195 | 7.6 | 10.0 | . 50 | 9.9 | 79 | _ | 22 | | 09<br>OCT 1988 | 1400 | 2.7 | 195 | 7.5 | 12.0 | . 70 | 10.7 | 76 | | 21 | | 13<br>OCT 1989 | 1000 | 2.7 | 201 | 7.6 | 8.0 | 1.6 | 11.8 | 80 | | 22 | | 05<br>OCT 1990 | 0915 | 7.3 | 195 | 7.3 | 10.5 | 1.1 | 10.6 | 74 | 28 | 20 | | 03<br>OCT 1991 | 1030 | 2.9 | 213 | 6.6 | 11.5 | 1.0 | 10.7 | 76 | 11 | 21 | | 03<br>OCT 1992 | 0900 | 1.9 | 211 | 7.2 | 16.0 | 1.4 | 9.1 | 78 | 24 | 22 | | 08<br>OCT 1993 | 0830 | 1.6 | 215 | 7.1 | 8.5 | . 60 | 11.5 | 84 | | 24 | | 07<br>OCT 1994 | 0900 | 2.5 | 220 | 7.3 | 10.5 | <del></del> - | 10.7 | _ | | | | 25 | 0945 | 4.3 | 224 | 7.0 | 10.5 | | 10.5 | | | _ | Table 3. Water-quality data from surface-water sites—Continued # 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2)—Continued | DATE | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | | DIS-<br>SOLVED<br>(MG/L<br>AS K) | UNFLTRD<br>FET | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO <sub>3</sub> ) (00419) | AS SO <sub>4</sub> ) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | DIS-<br>SOLVED | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/I.)<br>(70300) | |----------------|-----------------------------------------------------------------|---------------------------------------------------------|------------------------------|-----|----------------------------------|----------------|-----------------------------------------------------------------|----------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------|--------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | | 16 | 3.1 | 6.1 | 19 | 0.4 | 2.5 | _ | _ | 13 | 16 | <0.10 | 16 | 121 | | OCT 1982 | | | | | | | | | | | | | | 18 | 5.5 | 6.2 | 15 | .3 | 1.2 | 50 | | 15 | 12 | <.10 | 20 | 130 | | OCT 1983 | | | | _ | | | | | | | | | | 18 | 5.8 | 6.7 | 15 | .3 | 2.2 | 54 | | 16 | 17 | | 19 | 148 | | OCT 1984<br>05 | 6.0 | 8.1 | 18 | . 4 | 1.9 | 52 | | 16 | 16 | | 18 | 127 | | OCT 1985 | 6.0 | 0.1 | 10 | . 4 | 1.9 | 32 | | 16 | 10 | | 10 | 127 | | 08 | 6.0 | 7.2 | 17 | . 4 | 2.3 | 48 | | 20 | 12 | _ | 18 | 134 | | OCT 1986 | ••• | | | | | | | | | | | | | 07 | 5.9 | 7.4 | 16 | .4 | 2.2 | 56 | | 16 | 12 | _ | 21 | 146 | | OCT 1987 | | | | | | | | | | | | | | 09 | 5.8 | 8.5 | 19 | . 4 | 2.2 | 54 | | 14 | 16 | | 18 | 127 | | OCT 1988 | | | | | | | | | | | | | | 13 | 6.2 | 7.7 | 17 | . 4 | 1.7 | 56 | _ | 16 | 15 | _ | 17 | _ | | OCT 1989 | | | | | | | | | | | | | | 05 | 5.9 | 7.0 | 17 | . 4 | 1.9 | 46 | _ | 15 | 14 | | 17 | | | OCT 1990<br>03 | 5.7 | 7.4 | 17 | . 4 | 1.9 | 65 | | 14 | 17 | <.10 | 18 | | | OCT 1991 | 5.7 | 7.4 | 17 | . 4 | 1.9 | 65 | _ | 14 | 17 | V.10 | 10 | _ | | 03 | 5.5 | 7.1 | 16 | . 4 | 1.9 | 54 | | 14 | 17 | .20 | 17 | | | OCT 1992 | | | | • • | 2.5 | | | | | | | | | 08 | 5.9 | 7.1 | 15 | .3 | 1.8 | _ | 55 | 15 | 15 | .10 | 20 | _ | | OCT 1993 | | | | | | | | | | | | | | 07 | | | | | | | 52 | | _ | _ | | | | OCT 1994 | | | | | | | | | | | | | | 25 | _ | | _ | _ | _ | _ | 47 | _ | 19 | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16 | | 0.16 | | 1.70 | 1.70 | 7.5 | 0.010 | 1.70 | 0.020 | 0.03 | 0.23 | | OCT 1982 | | | | | | | | | | | | | 18 | 120 | .18 | 1.25 | | 2.20 | 9.7 | .020 | 2.20 | .030 | .04 | _ | | OCT 1983 | | | | | | | | | | | | | 18 | 133 | .20 | 1.04 | | 2.30 | 10 | .040 | 2.30 | .110 | .14 | | | OCT 1984 | | | | | | | | | | | | | 05 | 131 | .17 | 1.37 | | _ | | <.010 | 2.80 | .050 | .06 | _ | | OCT 1985 | 100 | 10 | 1 05 | | | | | | | | | | 08<br>OCT 1986 | 123 | .18 | 1.85 | | | | <.010 | 2.10 | .030 | .04 | _ | | 07 | 128 | . 20 | .83 | | 1.69 | 7.5 | .010 | 1.70 | .040 | . 05 | . 96 | | OCT 1987 | 120 | .20 | . 03 | | 1.69 | 7.5 | .010 | 1.70 | .040 | .05 | .90 | | 09 | 126 | .17 | . 93 | | | | <.010 | 1.70 | .020 | . 03 | . 38 | | OCT 1988 | 120 | , | . , , | | | | 1.010 | 1.70 | .020 | . 05 | . 30 | | 13 | 129 | .17 | . 94 | | | | <.010 | 2.10 | .030 | .04 | | | OCT 1989 | | | | | | | | | | | | | 05 | 120 | .16 | 2.36 | | 2.49 | 11 | .010 | 2.50 | .020 | .03 | .18 | | OCT 1990 | | | | | | | | | | | | | 03 | 133 | .18 | 1.03 | | | | <.010 | 2.00 | .020 | .03 | .38 | | OCT 1991 | | | | | | | | | | | | | 03 | 125 | .17 | . 66 | | _ | | <.010 | 1.80 | <.010 | | _ | | OCT 1992 | | | | | | | | | | | | | 08 | 132 | .18 | . 57 | _ | | _ | <.010 | 2.20 | .020 | .03 | _ | | OCT 1993 | | | | | | | | | | | | | 07 | | _ | | _ | | | <.010 | 2.10 | .020 | .03 | | | OCT 1994 | | | | | | | | | | | | | 25 | | | | | | | <.010 | 1.70 | <.015 | | _ | Table 3. Water-quality data from surface-water sites—Continued # 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>IIS-<br>SC'VED<br>(FG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16 | 0.27 | 0.28 | 0.29 | 2.0 | 2.0 | 0.020 | 0.06 | <0.010 | <0.010 | | 2 | | OCT 1982 | | | | | | | | | | | | | 18 | .07 | _ | .10 | | 2.3 | | | <.010 | .010 | 0.03 | 1 | | OCT 1983 | | | | | | | | | | | | | 18 | .49 | _ | . 60 | | 2.9 | .020 | .06 | .010 | .010 | .03 | | | OCT 1984 | 1.5 | | -00 | | 2.0 | 000 | | 010 | 010 | 0.2 | | | 05<br>OCT 1985 | .15 | | .20 | | 3.0 | .020 | _ | .010 | .010 | .03 | | | 08 | .37 | _ | .40 | | 2.5 | .020 | .06 | .020 | .020 | .06 | | | OCT 1986 | .57 | | .40 | | 2.3 | .020 | .00 | . 020 | .020 | .00 | | | 07 | _ | 1.0 | <.20 | 2.7 | | .010 | _ | .020 | <.010 | | | | OCT 197 | | | ***** | | | | | | | | | | 09 | | .40 | <.20 | 2.1 | | <.010 | | .010 | <.010 | | | | OCT 1988 | | | | | | | | | | | | | 13 | .17 | <.20 | .20 | | 2.3 | .010 | | .010 | <.010 | _ | | | OCT 1989 | | | | | | | | | | | | | 05 | .28 | .20 | .30 | 2.7 | 2.8 | .020 | - | .010 | <.010 | _ | _ | | OCT 1990 | | | | | | | | | | | | | 03 | .18 | .40 | .20 | 2.4 | 2.2 | .010 | | <.010 | <.010 | _ | | | OCT 1991 | | | | | | | | | | | | | 03 | _ | <.20 | | _ | | .030 | _ | <.010 | <.010 | | _ | | OCT 1992 | | - 20 | 4 00 | | | 020 | | - 010 | - 010 | | | | 08<br>OCT 1993 | _ | <.20 | <.20 | _ | _ | .030 | | <.010 | <.010 | _ | _ | | 07 | | _ | | _ | | _ | | | <.010 | | | | OCT 1994 | | | | | - | | | | | | | | 25 | | _ | _ | | _ | _ | | _ | <.010 | | | Table 3. Water-quality data from surface-water sites—Continued 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2)—Continued | DATE | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENG<br>BLUE<br>ACTIVE<br>SUP-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16<br>OCT 1982 | 1.0 | <1.0 | 2.0 | 4.0 | 110 | <1.0 | 20 | <0.1 | 3.0 | <10 | _ | | 18 | <1.0 | 1.0 | <1.0 | <1.0 | 80 | <1.0 | 15 | <.1 | 2.0 | <4.0 | 0.02 | | OCT 1983<br>18 | | | | | 78 | | 18 | _ | | | | | OCT 1984 | _ | | | | 76 | | 10 | | | | | | 05 | _ | | - | _ | 67 | _ | 33 | | _ | _ | | | OCT 1985<br>08 | _ | | _ | | 89 | | 34 | | | | | | OCT 1986 | | | | | 05 | | 34 | | | | | | 07 | _ | - | _ | _ | 110 | | 25 | _ | _ | | | | OCT 1987 | _ | | _ | | 120 | | 25 | _ | | | | | OCT 1988 | | | | | 220 | | | | | | | | 13 | _ | | _ | _ | 72 | _ | 17 | _ | _ | _ | | | OCT 1989<br>05 | _ | | | | 85 | | 32 | | | | | | OCT 1990 | | | | | | | | | | | | | 03<br>OCT 1991 | _ | | _ | | 78 | | 21 | _ | _ | | _ | | 03 | _ | | | _ | 85 | _ | 15 | | _ | _ | _ | | OCT 1992 | | | | | | | | | | | | | 08<br>OCT 1993 | _ | | | | 99 | | 20 | | _ | | _ | | 07 | _ | | _ | | | | _ | | | | <del></del> | | OCT 1994 | | | | | | | | | _ | | _ | | 25 | | | _ | | | | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN, DIS- SOLVED (MG/L) (00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | AS CA) | DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SCDIUM,<br>EIS-<br>SCLVED<br>(MG/L<br>AS NA)<br>(00930) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------|-----------------------------------|---------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | | 15 | 1415 | _ | 197 | 8.2 | 8.5 | | 12.4 | 57 | _ | 17 | 3.6 | €.7 | | OCT 1982 | | | | | | | | | | | | | | 18 | 1435 | 9.1 | 177 | 8.2 | 8.5 | | 12.4 | 71 | _ | 19 | 5.8 | €.8 | | OCT 1983 | | | - 0 = | | | | | | | | | | | 17<br>OCT 1984 | 1150 | 8.4 | 195 | 7.8 | 11.0 | <1.0 | 10.7 | 80 | _ | 22 | 6.1 | 7.1 | | 05 | 1500 | 14 | 175 | 7.9 | 11.0 | . 40 | 11.4 | 74 | _ | 20 | 5.9 | 8.3 | | OCT 1985 | 1300 | 14 | 1,0 | 7.5 | 11.0 | . 10 | 11.7 | , , | | 20 | 3.3 | | | 07 | 1300 | 15 | 195 | 7.6 | 7.5 | . 70 | 13.2 | 73 | _ | 19 | 6.1 | 0.3 | | OCT 1986 | | | | | | | | | | | | | | 08 | 0930 | 8.4 | 195 | 7.8 | 10.0 | . 40 | 10.2 | 82 | _ | 22 | 6.6 | 7.9 | | OCT 1987 | | | | | | | | | | | | | | 08 | 1400 | 9.2 | 195 | 7.6 | 12.0 | .70 | 11.5 | 75 | _ | 20 | 6.1 | 8.3 | | OCT 1988<br>14 | 0945 | 7.7 | 210 | 7.2 | 8.0 | 1.3 | 12.9 | 80 | | 21 | 6.6 | 7.7 | | OCT 1989 | 0943 | 7.7 | 210 | 1.2 | 6.0 | 1.3 | 12.9 | 80 | _ | 21 | 0.0 | 1.7 | | 04 | 1530 | 26 | 198 | 7.2 | 13.5 | .80 | 10.5 | 72 | 26 | 19 | 6.0 | 7.5 | | OCT 1990 | | | | | | | | | | | | | | 03 | 1230 | 9.7 | 218 | 6.0 | 12.5 | 1.0 | 11.0 | 78 | 5 | 21 | 6.2 | €.1 | | OCT 1991 | | | | | | | | | | | | | | 02 | 1145 | 7.2 | 217 | 8.2 | 15.5 | .70 | 12.0 | 80 | 22 | 22 | 6.2 | 7.7 | | OCT 1992 | | | | | | | | | | | | | | 07<br>OCT 1993 | 1230 | 6.2 | 124 | 7.1 | 9.5 | . 50 | 12.2 | 88 | _ | 24 | 6.9 | €.1 | | 06 | 1245 | 8.0 | 228 | 7.2 | 10.5 | _ | 11.3 | | | _ | | _ | | OCT 1994 | -2.0 | 0.0 | | | 10.0 | | 11.5 | | | | | | | 25 | 1430 | 13 | 219 | 7.5 | 11.5 | | 11.2 | - | _ | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3)—Continued | DATE | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>S (MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(7C301) | |----------------|------------------------------|---------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 20 | 0.4 | 2.0 | _ | _ | 15 | 17 | <0.10 | 15 | 117 | | | OCT 1982 | | | | | | | | | | | | | 18 | 17 | . 4 | 1.8 | 49 | | 16 | 14 | <.10 | 19 | 128 | 118 | | OCT 1983 | 1.0 | .3 | 1.0 | | | 1.7 | 17 | | 10 | 1.41 | 120 | | 17<br>OCT 1984 | 16 | .3 | 1.9 | 55 | | 17 | 17 | | 18 | 141 | 130 | | 05 | 19 | . 4 | 1.8 | 54 | _ | 17 | 16 | _ | 17 | 117 | 127 | | OCT 1985 | | | 2.0 | 0. | | | 10 | | | | 20. | | 07 | 19 | . 4 | 2.2 | 50 | _ | 19 | 15 | _ | 18 | 127 | 124 | | OCT 1986 | | | | | | | | | | | | | 08 | 17 | . 4 | 2.4 | 64 | | 17 | 16 | _ | 20 | 150 | 136 | | OCT 1987 | | | | | | | | | | | | | 08<br>OCT 1988 | 20 | . 4 | 2.7 | 50 | | 17 | 17 | _ | 16 | 129 | 123 | | 14 | 17 | . 4 | 1.8 | 63 | | 17 | 18 | _ | 18 | | 135 | | OCT 1989 | | • • | 2.0 | 00 | | | 10 | | 10 | | 100 | | 04 | 18 | . 4 | 2.2 | 46 | _ | 15 | 15 | _ | 17 | | 117 | | OCT 1990 | | | | | | | | | | | | | 03 | 18 | . 4 | 1.8 | 73 | _ | 14 | 19 | <.10 | 18 | | 139 | | OCT 1991 | | | | | | | | | | | | | 02 | 17 | . 4 | 1.8 | 58 | _ | 15 | 20 | .20 | 17 | _ | 131 | | OCT 1992<br>07 | 16 | . 4 | 1.9 | _ | 44 | 17 | 22 | .10 | 19 | | 132 | | OCT 1993 | 10 | 3 | 1.7 | | 22 | 1, | LL | .10 | 19 | | 102 | | 06 | _ | | | _ | 57 | | _ | | | | _ | | OCT 1994 | | | | | | | | | | | | | 25 | - | | _ | _ | 42 | _ | 20 | | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3)—Continued | DATE | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH4)<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRC-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/I.<br>AS N)<br>(00607) | |----------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 0.16 | | 1.09 | 1.09 | 4.8 | 0.010 | 1.10 | 0.020 | 0.03 | 0.17 | 0.21 | | OCT 1982 | | | | | | | | | | | | | 18 | .17 | 3.15 | 1.38 | 1.38 | 6.1 | .020 | 1.40 | .020 | .03 | _ | | | OCT 1983 | | | | | | | | | | | | | 17 | .19 | 3.20 | 1.65 | 1.65 | 7.3 | .050 | 1.70 | .170 | . 22 | | .13 | | OCT 1984 | | | | | | | | | | | | | 05 | .16 | 4.42 | 1.90 | | | <.010 | 1.90 | .070 | .09 | _ | .53 | | OCT 1985 | | _ | | | | | | | | | | | 07 | .17 | 5.14 | 1.50 | | _ | <.010 | 1.50 | .020 | .03 | .48 | .38 | | OCT 1986 | | 2.40 | | | | | 1 00 | | | 20 | | | 08<br>OCT 1987 | .20 | 3.40 | 1.20 | | | <.010 | 1.20 | <.010 | | .30 | _ | | 08 | .18 | 3.20 | 1.10 | | | <.010 | 1.10 | .030 | .04 | .37 | .37 | | OCT 1988 | .10 | 3.20 | 1.10 | | | 1.010 | 1.10 | .030 | .04 | | | | 14 | .18 | 2.80 | 1.50 | | | <.010 | 1.50 | .010 | .01 | .29 | _ | | OCT 1989 | | 2.00 | | | | | 2.00 | ,,,, | | | | | 04 | .16 | 8.22 | 1.70 | _ | | <.010 | 1.70 | .020 | .03 | | . 28 | | OCT 1990 | | | | | | | | | | | | | 03 | .19 | 3.62 | 1.50 | | | <.010 | 1.50 | .010 | .01 | .29 | .39 | | OCT 1991 | | | | | | | | | | | | | 02 | .18 | 2.55 | 1.40 | | | <.010 | 1.40 | <.010 | _ | | | | OCT 1992 | | | | | | | | | | | | | 07 | .18 | 2.20 | 1.40 | | _ | <.010 | 1.40 | .020 | .03 | _ | _ | | OCT 1993 | | | | | | | | | | | | | 06 | _ | _ | 1.60 | _ | | <.010 | 1.60 | .010 | .01 | <del></del> | | | OCT 1994 | | | | | | | | | | | | | 25 | | _ | 1.00 | | | <.010 | 1.00 | <.015 | | | _ | Table 3. Water-quality data from surface-water sites—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3)—Continued | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | DIS-<br>SOLVED<br>(MG/L | (MG/L<br>AS P) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC, DIS- SOLVED (µG/L AS AS) (01000) | CADMIUM, DIS- SOLVED (µG/L AS CD) (01025) | |----------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|----------------|-----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 0.22 | 0.23 | 1.3 | 1.3 | 0.020 | 0.06 | <0.010 | <0.010 | - | 2 | 1.0 | | OCT 1982 | | | | | | | | | | _ | | | 18<br>OCT 1983 | _ | <.10 | | | | | .050 | .020 | 0.06 | 1 | <1.0 | | 17 | _ | .30 | | 2.0 | .010 | .03 | .010 | <.010 | | | | | OCT 1984 | | | | 2.0 | .010 | | .010 | 1,010 | | | | | 05 | | .60 | _ | 2.5 | .030 | _ | <.010 | .020 | .06 | | | | OCT 1985 | | | | | | | | | | | | | 07 | . 50 | .40 | 2.0 | 1.9 | .020 | .06 | .020 | .010 | .03 | | _ | | OCT 1986<br>08 | .30 | .20 | 1.5 | 1.4 | .070 | | .010 | <.010 | | <1 | <1.0 | | OCT 1987 | .30 | .20 | 1.5 | 1.4 | .070 | | .010 | <.010 | | <b>\1</b> | <b>\1.0</b> | | 08 | .40 | .40 | 1.5 | 1.5 | .010 | | .010 | <.010 | _ | | | | OCT 1988 | | | | | | | | | | | | | 14 | .30 | <.20 | 1.8 | | .020 | | .010 | <.010 | | | | | OCT 1989 | | | | | | | | | | | | | 04<br>OCT 1990 | <.20 | .30 | | 2.0 | .030 | | .020 | .020 | .06 | | _ | | 03 | . 30 | . 40 | 1.8 | 1.9 | <.010 | | <.010 | <.010 | | _ | | | OCT 1991 | | | 2.0 | 1.5 | 1.010 | | 1,010 | 1.010 | | | | | 02 | <.20 | | | | .020 | | <.010 | .010 | .03 | | _ | | OCT 1992 | | | | | | | | | | | | | 07 | <.20 | <.20 | <del></del> | | .020 | _ | <.010 | <.010 | | | _ | | OCT 1993<br>06 | | | | | | | | <.010 | | | _ | | OCT 1994 | | | | | | | | ~.010 | | | | | 25 | | | | | | | | <.010 | _ | | | Table 3. Water-quality data from surface-water sites—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3)—Continued | DATE | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METFY-<br>LENF:<br>BLUF:<br>ACTIVE<br>SUF-<br>STANCE<br>(MG/L)<br>(38260) | |---------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------| | OCT 198 | | | | | | | | | | | | | 15<br>OCT 198 | | 2 | 3 | 100 | <1 | 10 | <0.1 | 2 | _ | 10 | _ | | 18<br>OCT 198 | <1 | <1 | <1 | 63 | <1 | 11 | <.1 | 2 | _ | <4 | 0.02 | | 17 | | _ | | 76 | _ | 15 | | _ | | _ | _ | | OCT 198 | 4 | | | | | | | | | | | | 05 | | _ | _ | 59 | _ | 18 | _ | _ | | _ | | | OCT 198 | | | | | | • | | | | | | | 07<br>OCT 198 | | _ | _ | 72 | _ | 22 | _ | | ******** | _ | | | 08<br>OCT 198 | <1 | _ | 1 | 84 | <5 | 10 | _ | 2 | <1.0 | <3 | | | 08 | | | _ | 79 | | 13 | | _ | | _ | _ | | OCT 198 | | | | - | | | | | | | | | 14 | _ | _ | _ | 63 | _ | 10 | | _ | | _ | | | OCT 198 | | | | | | | | | | | | | 04<br>OCT 199 | | | | 130 | _ | 25 | _ | _ | | _ | _ | | 03 | | _ | | 67 | _ | 14 | _ | | | | _ | | OCT 199 | | | | • | | | | | | | | | 02 | | | _ | 180 | _ | 14 | _ | _ | | _ | _ | | OCT 199 | | | | | | | | | | | | | 07 | | | | 77 | | 17 | _ | | | _ | | | OCT 199 | | | | | | | | | | | | | 06<br>OCT 199 | | | | | <del></del> | | _ | | | | | | 25 | _ | | | _ | _ | | _ | | | _ | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 0930 | _ | 200 | 7.9 | 7.5 | _ | 13.0 | 59 | _ | 17 | 4.0 | | OCT 1982<br>19 | 1345 | 13 | 192 | 7.5 | 9.5 | _ | 11.4 | 79 | _ | 21 | 6.4 | | OCT 1983<br>17 | 0850 | 11 | 185 | 8.1 | 13.0 | <1.0 | 1.5 | 81 | _ | 22 | 6.3 | | OCT 1984 | | | | | | | | | | | | | 09 | 0930 | 17 | 190 | 8.0 | 12.0 | .50 | 1.8 | 75 | _ | 20 | 6.1 | | OCT 1985<br>07 | 0845 | 22 | 205 | 7.4 | 4.0 | 1.0 | 12.7 | 73 | _ | 19 | 6.2 | | OCT 1986 | 00.0 | | 200 | | | 2.0 | | | | | · · - | | 06 | 0930 | 11 | 210 | 7.6 | 15.5 | .80 | 8.7 | 83 | | 22 | 6.7 | | OCT 1987 | | | | | | | | | | | | | 08 | 0930 | 13 | 200 | 7.3 | 11.0 | .70 | 11.4 | 76 | | 20 | 6.4 | | OCT 1988 | | | | | | | | | | | | | 12 | 0930 | 11 | 220 | 7.1 | 1.5 | 1.2 | 11.6 | 80 | _ | 21 | 6.7 | | OCT 1989 | 1105 | 33 | 202 | 7.6 | 10 5 | | 10 5 | 72 | 24 | 19 | 6.1 | | 04<br>OCT 1990 | 1105 | 33 | 202 | 7.6 | 12.5 | 1.3 | 10.5 | 73 | 24 | 19 | 0.1 | | 02 | 0930 | 13 | 189 | 7.5 | 13.5 | .40 | 10.4 | 82 | 30 | 22 | 6.5 | | OCT 1991 | •••• | | | | | | | | | | | | 02 | 0830 | 8.1 | 218 | 7.6 | 14.5 | 1.0 | 9.6 | 80 | 17 | 22 | 6.2 | | OCT 1992 | | | | | | | | | | | | | 06 | 1000 | 7.6 | 222 | 6.9 | 9.5 | .40 | 12.4 | 84 | | 23 | 6.5 | | OCT 1993 | | | | | | | | | | | | | 06 | 0900 | 10 | 232 | 7.3 | 9.5 | _ | 11.2 | _ | | _ | _ | | OCT 1994 | | | | | | | | | | | | | 26 | 1245 | 15 | 230 | 7.1 | 9.5 | _ | 11.9 | | | | | Table 3. Water-quality data from surface-water sites—Continued 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDA,<br>RESIDTE<br>AT 181<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/I)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 7.0 | 20 | 0.4 | 1.9 | _ | | 16 | 18 | 0.10 | 14 | 165 | | OCT 1982 | 2 - | 1.0 | | | 40 | | 1.6 | 10 | . 10 | 20 | 100 | | 19<br>OCT 1983 | 7.5 | 17 | . 4 | 1.5 | 49 | | 16 | 18 | <.10 | 20 | 126 | | 17 | 7.6 | 17 | . 4 | 2.0 | 54 | _ | 18 | 19 | | 18 | 132 | | OCT 1984 | | | | | | | | | | | | | 09 | 9.0 | 20 | .5 | 1.7 | 52 | _ | 17 | 17 | | 17 | 121 | | OCT 1985<br>07 | 8.0 | 19 | . 4 | 2.2 | 50 | _ | 20 | 16 | | 18 | 125 | | OCT 1986 | 6.0 | 13 | • • | 2.2 | 50 | _ | 20 | 10 | | 10 | 125 | | 06 | 8.7 | 18 | . 4 | 2.7 | 58 | | 18 | 17 | _ | 20 | 156 | | OCT 1987 | | | | | | | | | | | | | 08 | 8.5 | 19 | . 4 | 2.8 | 53 | _ | 17 | 18 | _ | 18 | 130 | | OCT 1988<br>12 | 7.9 | 17 | . 4 | 2.0 | 66 | | 17 | 18 | | 17 | _ | | OCT 1989 | ,., | Δ, | • • | 2.0 | 00 | | -, | 10 | | Δ, | | | 04 | 8.1 | 19 | . 4 | 2.2 | 49 | | 15 | 15 | _ | 18 | | | OCT 1990 | | | | | | | | | | | | | 02<br>OCT 1991 | 9.0 | 19 | . 4 | 2.0 | 52 | _ | 21 | 20 | <.10 | 18 | _ | | 02 | 8.0 | 17 | . 4 | 1.8 | 63 | | 16 | 22 | .20 | 18 | | | OCT 1992 | | | | | | | | | | | | | 06 | 8.4 | 17 | . 4 | 1.9 | | 46 | 17 | 22 | .10 | 18 | _ | | OCT 1993<br>06 | | | _ | | | 54 | | | | | | | OCT 1994 | _ | _ | | | | 34 | | _ | _ | _ | _ | | 26 | _ | _ | _ | _ | | 44 | | 21 | _ | | | Table 3. Water-quality data from surface-water sites—Continued 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | | 0.22 | _ | 0.980 | 0.990 | 4.4 | 0.010 | 1.00 | 0.020 | 0.03 | 0.11 | | OCT 1982 | | | | | | | | | | | | | 19 | 127 | .17 | 4.35 | 1.49 | 1.49 | 6.6 | .010 | 1.50 | <.010 | .01 | | | OCT 1983 | 122 | 10 | 2 00 | 1.50 | 1 50 | <i>c</i> 0 | .040 | 1.60 | .120 | 15 | | | 17<br>OCT 1984 | 133 | .18 | 3.92 | 1.56 | 1.56 | 6.9 | .040 | 1.00 | .120 | .15 | <del></del> | | 001 1904 | 128 | .16 | 5.55 | 1.90 | _ | | <.010 | 1.90 | .080 | .10 | | | OCT 1985 | | | 0.00 | 2.50 | | | | | | | | | 07 | 126 | .17 | 7.43 | 1.40 | _ | | <.010 | 1.40 | .030 | .04 | _ | | OCT 1986 | | | | | | | | | | | | | 06 | 134 | .21 | 4.63 | . 960 | . 960 | 4.2 | .010 | . 970 | <.010 | _ | .50 | | OCT 1987 | | | | | | | | | | | | | 08 | 128 | .18 | 4.56 | 1.30 | _ | | <.010 | 1.30 | .020 | .03 | . 48 | | OCT 1988<br>12 | 135 | .18 | 4.02 | 1.40 | _ | | <.010 | 1.40 | .010 | .01 | _ | | OCT 1989 | 133 | .10 | 4.02 | 1.40 | | | V.010 | 1.40 | .010 | .01 | | | 04 | 120 | .16 | 1.7 | 1.50 | _ | | <.010 | 1.50 | .020 | .03 | . 28 | | OCT 1990 | | | | | | | | | | | | | 02 | 136 | .19 | 4.64 | 1.50 | _ | | <.010 | 1.50 | .040 | .05 | . 26 | | OCT 1991 | | | | | | | | | | | | | 02 | 138 | .19 | 3.02 | 1.40 | | | <.010 | 1.40 | <.010 | _ | _ | | OCT 1992 | 120 | 1.0 | 0 67 | 1 00 | | | - 010 | 1 00 | 010 | 01 | | | 06<br>OCT 1993 | 130 | .18 | 2.67 | 1.20 | | | <.010 | 1.20 | .010 | .01 | _ | | 06 | _ | _ | _ | 1.50 | _ | _ | <.010 | 1.50 | .020 | .03 | _ | | OCT 1994 | | | | | | | | | | | | | 26 | _ | _ | _ | 1.10 | _ | _ | <.010 | 1.10 | <.015 | | _ | Table 3. Water-quality data from surface-water sites—Continued 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(C1000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | _ | 0.20 | <0.10 | 1.2 | | 0.010 | 0.03 | <0.010 | <0.010 | | 3 | | OCT 1982 | | | | | | | | | | | | | 19<br>OCT 1983 | | <del></del> | . 90 | | 2.4 | | _ | .010 | <.010 | | 1 | | 17 | 0.28 | | .40 | | 2.0 | .010 | .03 | .020 | <.010 | | | | OCT 1984 | 0.20 | | . 10 | | 2.0 | .010 | .03 | .020 | 1.010 | | | | 09 | .22 | _ | .30 | | 2.2 | .020 | | .010 | .020 | 0.06 | | | OCT 1985 | | | | | | | | | | | | | 07 | .47 | | .50 | | 1.9 | .020 | .06 | .020 | .020 | .06 | | | OCT 1986 | | | 4 20 | | | 000 | | 000 | 010 | 0.2 | | | 06<br>OCT 1987 | _ | . 50 | <.20 | 1.5 | | .020 | | .020 | .010 | .03 | | | 08 | | .50 | <.20 | 1.8 | | .010 | | .010 | <.010 | | | | OCT 1988 | | | | | | | | | | | | | 12 | | <.20 | <.20 | | | .020 | | .010 | <.010 | | | | OCT 1989 | | | | | | | | | | | | | 04 | .38 | .30 | .40 | 1.8 | 1.9 | .030 | | .010 | .010 | .03 | | | OCT 1990<br>02 | .26 | .30 | .30 | 1.8 | 1.8 | .010 | | .010 | <.010 | | | | OCT 1991 | .20 | .50 | . 30 | 1.0 | 1.0 | .010 | | .010 | 7.010 | | | | 02 | | <.20 | | | | .030 | | <.010 | <.010 | | | | OCT 1992 | | | | | | | | | | | | | 06 | | <.20 | <.20 | | | .010 | | .010 | <.010 | | | | OCT 1993 | | | | | | | | | | | | | 06<br>OCT 1994 | | | <del></del> | | | _ | | | <.010 | | | | 26 | _ | _ | | | | | | _ | <.010 | | | Table 3. Water-quality data from surface-water sites—Continued 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15<br>OCT 1982 | 1.0 | <1 | 2 | 3 | 80 | <1 | 20 | <0.1 | 2 | 10 | _ | | 19<br>OCT 1983 | <1.0 | <1 | 2 | 1 | 67 | <1 | 16 | _ | 1 | <4 | 0.05 | | 17 | _ | _ | _ | _ | 92 | _ | 21 | _ | _ | | _ | | OCT 1984 | | | | | | | | | | | | | 09<br>OCT 1985 | _ | _ | _ | | 59 | | 16 | _ | | | _ | | 07 | _ | | _ | | 84 | | 16 | _ | | _ | _ | | OCT 1986<br>06 | _ | _ | | | 170 | | 28 | | | _ | _ | | OCT 1987 | | | | | 170 | | | | | | | | 08<br>OCT 1988 | _ | _ | _ | - | 86 | _ | 15 | | _ | | _ | | 12 | | _ | | | 62 | _ | 12 | _ | _ | | _ | | OCT 1989 | | | | | | | | | | | | | 04<br>OCT 1990 | _ | _ | _ | | 140 | - | 22 | | | _ | _ | | 02 | _ | _ | | | 70 | _ | 21 | _ | _ | | | | OCT 1991<br>02 | | | | | 68 | _ | 18 | | | | | | OCT 1992 | | | | | 00 | | 10 | | | | | | 06 | _ | | | _ | 82 | - | 19 | _ | | _ | _ | | OCT 1993<br>06 | _ | | | | _ | _ | _ | | | _ | | | OCT 1994 | | | | | | | | | | | | | 26 | _ | _ | _ | | _ | | _ | _ | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 1130 | | 201 | 8.1 | 7.0 | | 13.3 | 51 | - | 15 | 3.2 | | NOV 1982 | | | | | | | | | | | | | 02 | 0845 | 16 | 194 | 7.6 | 13.0 | | 9.9 | 80 | | 21 | €.6 | | OCT 1983 | 0000 | | 000 | 2.5 | 10.5 | 41.0 | | 0.5 | | 23 | 6.2 | | 18<br>OCT 1984 | 0830 | | 202 | 7.5 | 12.5 | <1.0 | 9.9 | 85 | | 23 | €.7 | | 22 | 0930 | 23 | 206 | 7.8 | 16.0 | .50 | 9.3 | 83 | | 22 | €.7 | | OCT 1985 | 0300 | | 200 | ,,, | 10.0 | | 3.0 | • | | | • • • • | | 08 | 1430 | 22 | 205 | 7.8 | 8.0 | .80 | 10.5 | 74 | | 19 | €.4 | | OCT 1986 | | | | | | | | | | | | | 06 | 1400 | 11 | 215 | 8.1 | 15.0 | .50 | 9.8 | 83 | | 22 | €.9 | | OCT 1987 | | | 225 | | | 50 | | | | 01 | | | 13<br>OCT 1988 | 1345 | 11 | 205 | 7.8 | 10.5 | .50 | 12.3 | 80 | | 21 | €.7 | | 12 | 1400 | 11 | 225 | 7.8 | 10.5 | . 60 | 12.4 | 85 | | 22 | 7.2 | | OCT 1989 | 1100 | | 220 | , | 10.0 | | | • | | | | | 06 | 1530 | 35 | 215 | 7.5 | 15.5 | .70 | 7.4 | 76 | 19 | 20 | 6.4 | | OCT 1990 | | | | | | | | | | | | | 12 | 0815 | 14 | 272 | 6.8 | 18.5 | 2.9 | 9.3 | 86 | 12 | 23 | 7.0 | | OCT 1991 | | | | | | | | | | | | | 07<br>OCT 1992 | 0845 | 10 | 245 | 7.0 | 12.5 | .70 | 10.6 | 86 | 28 | 23 | 7.0 | | 06 | 0745 | 7.1 | 225 | 7.3 | 9.0 | .40 | 11.8 | 89 | | 24 | 7.0 | | OCT 1993 | 0743 | ,.1 | 223 | 7.3 | 3.0 | .40 | 11.0 | 3,5 | | | 7.0 | | 07 | 1215 | 12 | 230 | 7.4 | 12.0 | | 11.7 | | | | | | OCT 1994 | | | | | | | | | | | | | 26 | 0945 | 18 | 232 | 8.1 | 8.5 | | 12.0 | _ | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L<br>AS CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DES. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15<br>NOV 1982 | 7.2 | 23 | 0.4 | 2.1 | | _ | 16 | 18 | <0.10 | 14 | 139 | | 02<br>OCT 1983 | 7.6 | 17 | . 4 | 2.2 | 52 | | 18 | 16 | <.10 | 17 | 127 | | 18 | 8.5 | 17 | . 4 | 2.0 | 48 | _ | 19 | 19 | _ | 18 | 148 | | OCT 1984<br>22 | 7.8 | 17 | . 4 | 2.3 | 56 | | 18 | 20 | | 17 | 126 | | OCT 1985 | 7.8 | 17 | .4 | 2.3 | 36 | _ | 18 | 20 | | 17 | 126 | | 08 | 8.2 | 19 | . 4 | 2.3 | 54 | _ | 21 | 16 | | 18 | 131 | | OCT 1986<br>06 | 8.9 | 18 | . 4 | 2.7 | 68 | | 19 | 16 | | 20 | 152 | | OCT 1987 | 0.9 | 10 | • • | 2.7 | 00 | | 19 | 10 | | 20 | 132 | | 13 | 8.9 | 19 | . 4 | 2.2 | 50 | _ | 17 | 18 | | 18 | 135 | | OCT 1988<br>12 | 8.8 | 18 | . 4 | 2.1 | 60 | | 19 | 19 | | 17 | _ | | OCT 1989 | 0.0 | 10 | • • | | 00 | | 13 | | | -, | | | 06 | 8.2 | 18 | . 4 | 2.2 | 57 | _ | 17 | 16 | _ | 18 | _ | | OCT 1990<br>12 | 9.3 | 18 | . 4 | 3.1 | 74 | _ | 18 | 20 | <.10 | 19 | _ | | OCT 1991 | | | | | | | | | | | | | 07 | 8.7 | 17 | . 4 | 2.5 | 58 | _ | 18 | 19 | <.10 | 17 | _ | | OCT 1992<br>06 | 8.6 | 17 | . 4 | 2.0 | | 43 | 18 | 21 | .10 | 18 | | | OCT 1993 | | | | | | | | | | | | | 07<br>OCT 1994 | _ | _ | | _ | | 58 | | | | | _ | | 26 | _ | | | _ | | 71 | | 22 | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-GEN, ORGANIC TOTAL (MG/L AS N) (00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | _ | 0.19 | | 0.880 | 0.900 | 4.0 | 0.010 | 0.910 | 0.050 | 0.06 | 0.31 | | NOV 1982 | | | | | | | | | | | | | 02 | 125 | .17 | 5.49 | 1.10 | | _ | <.010 | 1.10 | <.010 | .01 | | | OCT 1983 | | | | | | | | | | | | | 18<br>OCT 1984 | 132 | .20 | | 1.46 | 1.46 | 6.5 | .040 | 1.50 | .140 | .18 | | | 22 | 133 | .17 | 7.82 | 1.16 | 1.16 | 5.1 | .040 | 1.20 | . 070 | . 09 | | | OCT 1985 | 133 | .17 | 7.02 | 1.10 | 1.10 | 3.1 | .040 | 1.20 | .070 | .03 | | | 08 | 130 | .18 | 7.78 | 1.50 | | - | <.010 | 1.50 | .020 | .03 | . 48 | | OCT 1986 | | | | | | | | | | | | | 06 | 140 | .21 | 4.51 | .840 | | | <.010 | .840 | <.010 | | | | OCT 1987 | | | | | | | | | | | | | 13 | 128 | .18 | 4.01 | 1.30 | | | <.010 | 1.30 | .010 | .01 | .49 | | OCT 1988 | | | | | | | | | | | | | 12 | 137 | .19 | 4.07 | 1.30 | | | <.010 | 1.30 | <.010 | | .20 | | OCT 1989<br>06 | 130 | .18 | 12.3 | 1.80 | | | <.010 | 1.80 | .020 | .03 | .48 | | OCT 1990 | 130 | .10 | 12.3 | 1.00 | | | <.010 | 1.00 | .020 | .03 | .40 | | 12 | 148 | . 20 | 5.47 | . 900 | | | <.010 | . 900 | .020 | .03 | .38 | | OCT 1991 | | | | | | | | | | | | | 07 | 135 | .18 | 3.75 | 1.10 | | _ | <.010 | 1.10 | <.010 | | | | OCT 1992 | | | | | | | | | | | | | 06 | 130 | .18 | 2.49 | 1.20 | | | <.010 | 1.20 | <.010 | | _ | | OCT 1993 | | | | | | | | | | | | | 07 | _ | | | 1.50 | _ | | <.010 | 1.50 | .010 | .01 | | | OCT 1994<br>26 | | | | .980 | | _ | <.010 | .980 | <.015 | | | | 20 | - | | | . 300 | | | V.010 | . 300 | 1.013 | | | Table 3. Water-quality data from surface-water sites—Continued 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO4)<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARTENIC,<br>DIS-<br>SOLVED<br>(TG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 0.07 | 0.37 | 0.12 | 1.3 | 1.0 | <0.010 | | <0.010 | <0.010 | _ | 2 | | NOV 1982 | | | | | | | | | | | _ | | 02 | | _ | .80 | | 1.9 | _ | | .020 | <.010 | _ | 1 | | OCT 1983<br>18 | .26 | | .40 | | 1.9 | .020 | 0.06 | .010 | <.010 | _ | | | OCT 1984 | .20 | | . 40 | | *., | .020 | 0.00 | .010 | 1,010 | | | | 22 | .13 | | .20 | | 1.4 | <.010 | _ | .040 | .010 | 0.03 | _ | | OCT 1985 | | | | | | | | | | | | | 08 | . 48 | .50 | .50 | 2.0 | 2.0 | .020 | .06 | .020 | .010 | .03 | _ | | OCT 1986 | | | 4.0 | | | 222 | | 200 | 010 | | | | 06<br>OCT 1987 | _ | <.20 | .40 | _ | 1.2 | .030 | _ | .020 | .010 | .03 | | | 13 | | .50 | <.20 | 1.8 | | <.010 | | <.010 | <.010 | | | | OCT 1988 | | | | | | | | | .,., | | | | 12 | | .20 | .20 | 1.5 | 1.5 | .010 | | .010 | <.010 | | | | OCT 1989 | | | | | | | | | | | | | 06 | | .50 | <.20 | 2.3 | | .030 | | .010 | .010 | .03 | _ | | OCT 1990<br>12 | .18 | .40 | .20 | 1.3 | 1.1 | .040 | | .010 | <.050 | | | | OCT 1991 | .10 | .40 | .20 | 1.3 | 1.1 | .040 | _ | .010 | 1.030 | | | | 07 | | <.20 | | _ | - | .020 | _ | <.010 | <.010 | _ | _ | | OCT 1992 | | | | | | | | | | | | | 06 | | <.20 | <.20 | | | <.010 | _ | .020 | <.010 | _ | _ | | OCT 1993 | | | | | | | | | | | | | 07 | _ | | _ | | | _ | | | <.010 | _ | | | OCT 1994<br>26 | _ | _ | _ | | _ | | | | <.010 | | | | 20 | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued ## 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5)—Continued | DATE | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY DIS- SOLVED (μG/L AS HG) (71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 15 | 1.0 | <1 | 2 | 3 | 70 | <1 | 10 | <0.1 | 5 | 2 | | | NOV 1982 | | | | | | | | | | | | | 02 | <1.0 | <1 | <1 | 1 | 54 | <1 | 4 | <.1 | <1 | <4 | 0.03 | | OCT 1983 | | | | | | | | | | | | | 18 | | - | | | 53 | | 6 | _ | | | _ | | OCT 1984 | | | | | | | | | | | | | 22 | | _ | | | 48 | _ | 3 | | | _ | | | OCT 1985 | | | | | | | | | | | | | 08 | | | | _ | 53 | | 6 | _ | | _ | _ | | OCT 1986 | | | | | | | _ | | | | | | 06 | | | | _ | 100 | | 7 | _ | | _ | | | OCT 1987<br>13 | | | | _ | 57 | | 4 | _ | | | | | OCT 1988 | | | | _ | 51 | | 4 | _ | | | | | 12 | | | | | 43 | | 3 | _ | | _ | _ | | OCT 1989 | | | | | 13 | | 3 | | | | | | 06 | | | | _ | 91 | | 8 | _ | | | _ | | OCT 1990 | | | | | 7. | | • | | | | | | 12 | | | | | 47 | _ | 7 | _ | | | | | OCT 1991 | | | | | | | · | | | | | | 07 | | | | | 49 | | 7 | _ | | | | | OCT 1992 | | | | | | | | | | | | | 06 | | | | _ | 55 | | 7 | | _ | _ | _ | | OCT 1993 | | | | | | | | | | | | | 07 | | _ | | | _ | _ | | _ | _ | | | | OCT 1994 | | | | | | | | | | | | | 26 | | | | | | | - | _ | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01473167 - Little Valley Creek at Howellville, Pa. (Site 49) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | |----------------|------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 16 | 1515 | | 533 | 8.6 | 14.0 | | 13.4 | 210 | _ | 56 | | OCT 1982 | | | | | | | | | | | | 15 | 0930 | 4.8 | 466 | 8.2 | 12.2 | | 10.4 | 210 | | 56 | | OCT 1983<br>21 | 0900 | 4.0 | 503 | 7.8 | 9.0 | <1.0 | 10.7 | 230 | | 59 | | OCT 1984 | 0900 | 4.0 | 503 | 7.0 | 9.0 | <b>\1.0</b> | 10.7 | 230 | | 39 | | 09 | 1500 | 6.0 | 480 | 8.8 | 14.0 | .40 | 10.9 | 210 | | 56 | | OCT 1985 | | | | 0.0 | | | | | | | | 09 | 0830 | 5.9 | 515 | 7.5 | 7.2 | . 40 | 12.0 | 240 | | 63 | | NOV 1986 | | | | | | | | | | | | 07 | 0900 | 7.1 | 480 | 7.9 | 9.3 | 1.0 | 11.5 | 230 | _ | 58 | | NOV 1987 | | | | | | | | | | | | 16 | 1330 | 9.6 | 495 | 8.1 | 11.5 | .20 | 12.0 | 220 | | 58 | | OCT 1988<br>26 | 0930 | 4.6 | 550 | 7.7 | 10.0 | 1.3 | 11.8 | 230 | _ | 60 | | NOV 1989 | 0330 | 4.0 | 330 | | 10.0 | 1.3 | 11.0 | 230 | | (.,) | | 06 | 0945 | 8.4 | 530 | 7.8 | 11.0 | . 30 | 11.4 | 220 | 59 | 57 | | NOV 1990 | | | | | | | | | | | | 14 | 0900 | 5.5 | 510 | 6.9 | 6.5 | . 30 | 12.7 | 220 | 51 | 58 | | OCT 1991 | | | | | | | | | | | | 28 | 0915 | | 570 | 7.6 | 13.0 | . 60 | 10.8 | 240 | 59 | €4 | | OCT 1992 | | | | | | | | | | | | 05 | 0910 | 3.1 | 279 | 7.2 | 12.0 | .20 | 10.8 | 240 | _ | €3 | | NOV 1993<br>18 | 0915 | 4.4 | 520 | 8.1 | 10.5 | | 11.4 | | | | | NOV 1994 | 0313 | 7.7 | 320 | 0.1 | 10.5 | _ | 11.4 | | | | | 07 | 0900 | 3.5 | 650 | 7.9 | 10.5 | | 11.2 | | | | Table 3. Water-quality data from surface-water sites—Continued 01473167 - Little Valley Creek at Howellville, Pa. (Site 49)—Continued | DATE | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM, DIS- SOLVED (MG/L AS NA) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ANC WATER UNFLTRD FET FIELD (MG/L AS CACO <sub>3</sub> ) (00410) | IT<br>FIELD | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-RIDE,<br>DIS-SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 181<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |---------|-----------------------------------------------------------------|----------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-------------|------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 198 | 31 | | | | | | | | | | | | | 16 | 18 | 24 | 19 | 0.7 | 2.4 | | _ | 39 | 45 | 0.20 | 5.6 | 298 | | OCT 198 | | | | | | | | | | | | | | 15 | | 23 | 19 | . 7 | 1.5 | 170 | _ | 34 | 44 | .20 | 7.5 | 323 | | OCT 198 | | 24 | 19 | . 7 | 2.2 | 200 | | 34 | 47 | _ | 7.5 | 342 | | OCT 198 | | 24 | 19 | • , | 2.2 | 200 | _ | 34 | 4/ | | 7.3 | 742 | | 09 | | 25 | 20 | . 7 | 2.1 | 174 | | 34 | 41 | | 7.6 | 297 | | OCT 198 | 35 | | | | | | | | | | | | | 20 | | 26 | 19 | . 7 | 2.1 | 176 | _ | 35 | 50 | _ | 8.2 | 313 | | NOV 198 | | 25 | 19 | . 7 | 2.2 | 178 | | 32 | 44 | | 7.9 | 316 | | NOV 198 | | 23 | 19 | ., | 2.2 | 170 | | 32 | 77 | | 7.3 | 310 | | 16 | | 26 | 20 | . 8 | 2.3 | 178 | | 35 | 48 | _ | 7.5 | 302 | | OCT 198 | | | | | | | | | | | | | | 26 | | 26 | 19 | . 7 | 2.4 | 178 | _ | 33 | 47 | - | 8.3 | _ | | NOV 198 | | 26 | 20 | . 8 | 2.0 | 162 | | 31 | 44 | | 6.8 | _ | | NOV 199 | | 20 | 20 | . 0 | 2.0 | 102 | <del></del> | 31 | 77 | | 0.0 | | | 14 | | 23 | 18 | . 7 | 2.3 | 168 | _ | 29 | 45 | <.10 | 7.7 | | | OCT 199 | | | | | | | | | | | | | | 28 | | 26 | 19 | . 7 | 2.4 | 183 | | 35 | 49 | .10 | 7.4 | _ | | OCT 199 | 92<br>. 20 | 25 | 18 | . 7 | 2.2 | _ | 248 | 33 | 50 | .10 | 7.3 | | | NOV 199 | | 23 | 10 | • / | 2.2 | | 240 | 33 | 30 | .10 | 7.3 | | | 18 | | | | _ | - | _ | 155 | 29 | 42 | .10 | _ | | | NOV 199 | | | | | | | | | | | | | | 07 | . – | _ | | _ | _ | | 175 | - | 53 | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01473167 - Little Valley Creek at Howeliville, Pa. (Site 49)—Continued | DATE | DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GFN,<br>ORGANIC<br>IIS-<br>SCLVED<br>(MG/L<br>AS N)<br>(00607) | |--------------|--------------------------|----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------| | OCT 19 | 81 | | | | | | | | | | | | | 16 | . – | 0.41 | _ | 2.30 | 2.3 | 0 10 | 0.01 | 0 2.30 | 0.020 | 0.03 | 0.26 | 0.30 | | OCT 19 | | | | | | | | | | | | | | 15<br>OCT 19 | | . 44 | 4.16 | | 2.6 | 0 12 | .02 | 0 2.60 | .060 | .08 | _ | .04 | | 21 | | . 47 | 3.69 | | 2.4 | 0 10 | .04 | 0 2.40 | <.010 | _ | | | | OCT 19 | | | 3.03 | | 2., | .0 10 | | 2.40 | 1.010 | | | | | 09 | | .40 | 4.81 | | _ | | <.01 | 0 2.70 | .030 | .04 | | .27 | | OCT 19 | | | | | | | | | | | | | | 09 | | .43 | 4.99 | _ | | <del></del> | <.01 | 0 2.70 | .030 | .04 | .87 | .17 | | NOV 19 | | . 43 | 6.06 | | | | <.01 | 0 2.20 | .010 | .01 | | . 59 | | NOV 19 | | . 45 | 0.00 | | | | 1.01 | 2.20 | .010 | .01 | | .05 | | 16 | | .41 | 7.83 | | | - | <.01 | 0 2.50 | <.010 | _ | | _ | | OCT 19 | | | | | | | | | | | | | | 26 | | . 43 | 3.90 | | _ | <del></del> | <.01 | 0 2.40 | .020 | .03 | | _ | | NOV 19 | | .40 | 6.67 | | | | <.01 | 0 2.50 | .020 | .03 | | _ | | NOV 19 | | . 40 | 0.07 | | | | 1.01 | 2.50 | .020 | .00 | | | | 14 | . 295 | .40 | 4.37 | | _ | | <.01 | 0 2.40 | .050 | .06 | _ | _ | | OCT 19 | | | | | | | | | | | | | | 28 | | . 44 | _ | - | _ | - | <.01 | 0 1.90 | .020 | .03 | | _ | | OCT 19 | | . 49 | 3.00 | | | | <.01 | 0 2.10 | <.010 | | | _ | | NOV 19 | | . 43 | 3.00 | | | | 1.01 | 0 2.10 | 1.010 | | | | | 18 | | _ | | _ | - | | - <.0 | 10 2.0 | 0 .02 | .03 | _ | _ | | NOV 19 | | | | | | | | | | | | | | 07 | . – | _ | - | | - | | <.0 | 10 1.9 | 0 <.01 | 5 — | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01473167 - Little Valley Creek at Howellville, Pa. (Site 49)—Continued | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO4)<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>NIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | |---------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------| | OCT 198 | 1 | | | | | | | | | | | | | 16 | 0.31 | 0.32 | 2.6 | 2.6 | 0.030 | 0.09 | 0.010 | <0.010 | _ | 3 | 1.0 | <1.0 | | OCT 198 | 2 | | | | | | | | | | | | | 15 | | .10 | _ | 2.7 | _ | _ | <.010 | .010 | 0.03 | 1 | <1.0 | 1.0 | | OCT 1983 | 3 | | | | | | | | | _ | | | | 21<br>OCT 198 | | .30 | | 2.7 | .030 | .09 | .020 | .020 | .06 | 1 | <1.0 | <1.0 | | 09 | * | . 30 | | 3.0 | .050 | | .020 | .020 | .06 | <1 | <1.0 | <1.0 | | OCT 198 | | .50 | | 3.0 | .030 | | .020 | .020 | .00 | | 11.0 | 71.0 | | 09 | .90 | .20 | 3.6 | 2.9 | .020 | .06 | .010 | .010 | .03 | <1 | <1.0 | <1.0 | | NOV 198 | 6 | | | | | | | | | | | | | 07 | <.20 | . 60 | _ | 2.8 | .020 | _ | .010 | <.010 | _ | <1 | <1.0 | <1.0 | | NOV 198 | | | | | | | | | | | | | | 16 | <.20 | <.20 | | _ | .020 | _ | <.010 | <.010 | | <1 | <1.0 | <1.0 | | OCT 198 | s<br><.20 | <.20 | | | .020 | | .020 | .010 | .03 | <1 | <1.0 | <5.0 | | NOV 198 | | 1.20 | | | .020 | _ | .020 | .010 | .03 | ~1 | <b>\1.0</b> | <b>\3.0</b> | | 06 | <.20 | <.20 | | | .010 | | <.010 | .010 | .03 | <1 | 1.0 | <5.0 | | NOV 199 | | | | | | | | | | | | | | 14 | <.20 | <.20 | | _ | <.010 | | <.010 | <.010 | | <1 | <1.0 | <5.0 | | OCT 199 | | | | | | | | | | | | | | 28 | <.20 | <.20 | | _ | <.010 | _ | <.010 | <.010 | | 1 | <1.0 | <5.0 | | OCT 199 | | | | | | | | | | | | 45.0 | | 05<br>NOV 199 | <.20 | <.20 | | _ | <.010 | | <.010 | <.010 | _ | <1 | <1.0 | <5.0 | | 18 | <i></i> | | | | | | | <.010 | | | _ | | | NOV 199 | 4 | | | | | | | | | | | | | 07 | _ | _ | _ | _ | | _ | _ | <.010 | _ | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued 01473167 - Little Valley Creek at Howellville, Pa. (Site 49)—Continued | DATE | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | 16<br>OCT 1982 | 2.0 | 6.0 | 110 | <1.0 | 30 | 0.1 | 3.0 | <10 | 0.00 | | 15<br>OCT 1983 | <1.0 | 2.0 | 9.0 | <1.0 | 4.0 | <.1 | 3.0 | <4.0 | .04 | | 21 | | 1.0 | 9.0 | 3.0 | 5.0 | .1 | 1.0 | 9.0 | | | OCT 1984<br>09 | | 1.0 | 9.0 | 4.0 | 7.0 | <.1 | 1.0 | <3.0 | | | OCT 1985 | | 2.0 | 5.0 | 4.0 | 5.0 | <.1 | <1.0 | 6.0 | _ | | NOV 1986<br>07 | - | 3.0 | 8.0 | <5.0 | 8.0 | .7 | 3.0 | <3.0 | | | NOV 1987<br>16 | _ | 2.0 | 4.0 | <5.0 | 4.0 | <.1 | <1.0 | <3.0 | | | OCT 1988<br>26<br>NOV 1989 | <3.0 | <10 | 9.0 | <10 | 5.0 | .2 | <10 | <3.0 | _ | | 06<br>NOV 1990 | <3.0 | <10 | 4.0 | <10 | 6.0 | <.1 | <10 | 6.0 | | | 14<br>OCT 1991 | <3.0 | <10 | 9.0 | <10 | 5.0 | <.1 | <10 | 4.0 | | | 28<br>OCT 1992 | <3.0 | <10 | 6.0 | 10 | 5.0 | <.1 | <10 | 5.0 | | | 05<br>NOV 1993 | <3.0 | <10 | <3.0 | <10 | <1.0 | <.1 | <10 | <3.0 | | | 18<br>NOV 1994 | _ | ***** | | | _ | | | - | _ | | 07 | | | | | | _ | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01473168 - Valley Creek near Valley Forge, Pa. (Site 50) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------------------|------|-------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 16 | 1400 | _ | 615 | 8.4 | 12.5 | | 12.3 | 260 | _ | 47 | 35 | | OCT 1982<br>15<br>OCT 1983 | 1200 | 18 | 498 | 8.3 | 12.0 | | 10.5 | 230 | _ | 45 | 29 | | 21 | 1100 | 3.2 | 538 | 8.2 | 10.0 | 4.0 | 10.8 | 240 | _ | 47 | 30 | | OCT 1984 | | | | | | | | | | | | | 09<br>OCT 1985 | 1630 | 17 | 535 | 9.2 | 14.0 | .70 | 11.1 | 240 | | 46 | 30 | | 09 | 1030 | 10 | 550 | 7.8 | 9.0 | 1.0 | 12.0 | 250 | | 49 | 30 | | NOV 1986 | 1200 | 15 | 400 | 0.2 | 0.0 | | 11 6 | 240 | | 46 | 31 | | 07<br>NOV 1987 | 1300 | 15 | 498 | 8.3 | 9.0 | 1.1 | 11.6 | 240 | | 46 | 31 | | 16 | 1000 | 13 | 515 | 7.9 | 9.0 | .20 | 12.6 | 250 | | 48 | 31 | | OCT 1988 | 1245 | 0.0 | E10 | 7.0 | 0.5 | 2.2 | 10.1 | 250 | | 47 | 20 | | 26<br>NOV 1989 | 1345 | 9.8 | 518 | 7.9 | 9.5 | 2.2 | 12.1 | 250 | <del></del> | 47 | 32 | | 06 | 1445 | 17 | 585 | 8.2 | 11.5 | . 60 | 11.9 | 250 | 39 | 50 | 31 | | NOV 1990<br>14 | 1130 | 12 | 595 | 6.9 | 6.5 | 2.5 | 13.2 | 250 | 65 | 50 | 31 | | OCT 1991 | 1130 | 12 | 393 | 0.9 | 0.5 | 2.5 | 13.2 | 250 | 63 | 30 | 31 | | 28 | 1200 | 8.2 | 562 | 8.1 | 14.0 | 2.0 | 11.0 | 250 | 27 | 49 | 32 | | OCT 1992<br>05 | 1015 | 0.0 | 308 | 7.0 | 10 5 | 20 | 11.6 | 250 | | 47 | 31 | | NOV 1993 | 1215 | 9.3 | 300 | 7.2 | 12.5 | . 30 | 11.6 | 250 | | 41 | 31 | | 18 | 1230 | 11 | 602 | 8.3 | 11.0 | | 11.8 | _ | _ | _ | | | NOV 1994 | 1130 | 1.4 | 500 | 7.0 | 11 5 | | 11 1 | | | | | | 07 | 1130 | 14 | 580 | 7.9 | 11.5 | _ | 11.1 | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01473168 - Valley Creek near Valley Forge, Pa. (Site 50)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 16 | 26 | 18 | 0.7 | 3.1 | _ | _ | 37 | 39 | <0.10 | 6.6 | | OCT 1982 | 0.7 | | • | | 222 | | 25 | | | | | 15<br>OCT 1983 | 27 | 20 | . 8 | 2.4 | 200 | _ | 35 | 41 | <.10 | 8.0 | | 21 | 25 | 18 | . 7 | 2.9 | 212 | | 31 | 42 | | 7.7 | | OCT 1984 | | | | | | | | | | | | 09 | 29 | 21 | . 8 | 3.0 | 214 | _ | 31 | 42 | _ | 7.7 | | OCT 1985 | | | | | | | | | | | | 09<br>NOV 1986 | 25 | 18 | . 7 | 3.0 | 216 | _ | 30 | 43 | _ | 8.0 | | 07 | 23 | 17 | . 6 | 3.0 | 200 | | 33 | 36 | | 8.2 | | NOV 1987 | 20 | | •• | 0.0 | 200 | | ••• | | | 0.5 | | 16 | 25 | 18 | . 7 | 3.5 | 211 | _ | 30 | 42 | _ | 6.9 | | OCT 1988 | | | | | | | | | | | | 26 | 26 | 18 | . 7 | 3.4 | 214 | _ | 31 | 43 | _ | 8.1 | | NOV 1989<br>06 | 27 | 19 | . 7 | 3.1 | 214 | | 29 | 39 | | 6.5 | | NOV 1990 | 2, | 10 | • • | 3.1 | 2.4.3 | | 2,5 | 33 | | 0.5 | | 14 | 26 | 18 | . 7 | 3.5 | 188 | _ | 28 | 45 | <.10 | 8.0 | | OCT 1991 | | | | | | | | | | | | 28 | 26 | 18 | . 7 | 3.6 | 227 | _ | 30 | 41 | .10 | 7.2 | | OCT 1992 | 23 | 17 | . 6 | 2.0 | | 103 | 28 | 45 | 10 | 7.8 | | 05<br>NOV 1993 | 23 | 17 | . 0 | 3.2 | | 183 | 20 | 40 | .10 | 7.0 | | 18 | _ | _ | _ | | | 214 | 26 | 41 | <.10 | _ | | NOV 1994 | | | | | | | | | | | | 07 | _ | | | | _ | 192 | | 46 | | | Table 3. Water-quality data from surface-water sites—Continued 01473168 - Valley Creek near Valley Forge, Pa. (Site 50)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> ) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | I'ITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>IS N) | |----------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------| | | (70300) | (70301) | (70303) | (70302) | (00620) | (00618) | (71851) | (00613) | (00631) | (00608) | | | | | | | | | | | | | | OCT 1981<br>16 | 309 | | 0.42 | _ | 1.78 | 1.68 | 7.4 | 0.020 | 1.70 | 0.080 | | OCT 1982 | 309 | <del></del> | 0.42 | _ | 1.70 | 1.00 | 7.4 | 0.020 | 1.70 | 0.080 | | 15 | 311 | 316 | .42 | 15.3 | 1.87 | 1.87 | 8.3 | .030 | 1.90 | .050 | | OCT 1983 | | | | | | | | | | | | 21 | 325 | 321 | . 44 | 2.81 | 1.75 | 1.75 | 7.7 | .050 | 1.80 | <.010 | | OCT 1984 | | | | | | | | | | | | 09 | 311 | 327 | . 42 | 14.3 | 2.17 | 2.17 | 9.6 | .030 | 2.20 | .050 | | OCT 1985<br>09 | 315 | 328 | .43 | 8.51 | 2.17 | 2.17 | 9.6 | .030 | 2.20 | .050 | | NOV 1986 | 313 | 320 | .43 | 6.51 | 2.11 | 2.11 | 5.0 | .030 | 2.20 | .030 | | 07 | 305 | 310 | .41 | 12.4 | 2.08 | 2.08 | 9.2 | .020 | 2.10 | .070 | | NOV 1987 | | | | | | | | | | | | 16 | 313 | 323 | .43 | 11.0 | 2.20 | | | <.010 | 2.20 | <.010 | | OCT 1988 | | | | | | | | | | | | 26<br>NOV 1989 | _ | 330 | . 45 | 8.72 | 2.37 | 2.37 | 10 | .030 | 2.40 | .070 | | 06 | | 326 | . 44 | 14.9 | 2.58 | 2.58 | 11 | .020 | 2.60 | .020 | | NOV 1990 | | 020 | | 21,7 | 2.00 | 2.00 | | | 2.00 | | | 14 | _ | 317 | . 43 | 1.3 | 2.78 | 2.78 | 12 | .020 | 2.80 | .110 | | OCT 1991 | | | | | | | | | | | | 28 | | 334 | .45 | 7.39 | 1.90 | | | <.010 | 1.90 | .020 | | OCT 1992 | | 204 | | | | | | . 010 | | 210 | | 05<br>NOV 1993 | | 304 | . 41 | 7.63 | 2.00 | | | <.010 | 2.00 | .010 | | 18 | _ | _ | _ | | 2.18 | 2.18 | 9.6 | .020 | 2.20 | .030 | | NOV 1994 | | | | | | | 2.0 | | | | | 07 | | | _ | | 1.90 | _ | | <.010 | 1.90 | <.015 | Table 3. Water-quality data from surface-water sites—Continued 01473168 - Valley Creek near Valley Forge, Pa. (Site 50)—Continued | | NITRO- | | NITRO- | NITRO- | NITRO- | | | | | 21104 | |----------|---------|-------------|---------|----------|----------|---------|---------|---------|----------------------|---------| | | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | WIEDO | NITRO- | DIIOG | Durod | PI'OS- | | | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | | | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | | DATE | (MG/L (1°3/L | | | AS NH4) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | | | (71846) | (00605) | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (00666) | | OCT 1981 | | | | | | | | | | | | 16 | 0.10 | 0.35 | 0.03 | 0.50 | 0.11 | 2.3 | 1.8 | 0.020 | 0.06 | 0.010 | | OCT 1982 | | | | | | | | | | | | 15 | .06 | | . 35 | _ | . 40 | | 2.3 | | | .010 | | OCT 1983 | | | | | | | | | | | | 21 | | | | _ | .20 | | 2.0 | .030 | .09 | .010 | | OCT 1984 | | | | | | | | | | | | 09 | .06 | | .25 | _ | .30 | _ | 2.5 | .020 | | .010 | | OCT 1985 | | | | | | | | | | | | 09 | .06 | _ | . 35 | _ | .40 | | 2.6 | .030 | .09 | .020 | | NOV 1986 | | | | | | | | | | | | 07 | .09 | . 43 | . 43 | .50 | .50 | 2.6 | 2.6 | .020 | | .020 | | NOV 1987 | | | | | | | | | | | | 16 | _ | . 40 | | . 40 | <.20 | 2.6 | | .020 | | <.010 | | OCT 1988 | | | | | | | | | | | | 26 | .09 | .13 | . 33 | .20 | .40 | 2.6 | 2.8 | .030 | | .020 | | NOV 1989 | | | | | | | | | | | | 06 | .03 | . 48 | .18 | .50 | .20 | 3.1 | 2.8 | <.010 | | <.010 | | NOV 1990 | | | | | | | | | | | | 14 | .14 | .49 | .49 | .60 | . 60 | 3.4 | 3.4 | .040 | | .020 | | OCT 1991 | | | | | | | | | | | | 28 | . 03 | _ | _ | <.20 | <.20 | | | .030 | | <.010 | | OCT 1992 | | | | | | | | | | | | 05 | .01 | <del></del> | | <.20 | <.20 | | | <.010 | _ | .020 | | NOV 1993 | | | | | | | | | | | | 18 | .04 | _ | _ | _ | _ | _ | _ | _ | | _ | | NOV 1994 | | | | | | | | | | | | 07 | | | | _ | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01473168 - Valley Creek near Valley Forge, Pa. (Site 50)—Continued | DATE | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | |----------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------| | OCT 1981 | | | | | | | | | | | | 16 | <0.010 | _ | 3 | _ | _ | 1.0 | <1 | 2 | 3 | 110 | | OCT 1982 | | | _ | | | | _ | | | | | 15 | .020 | 0.06 | 1 | _ | _ | <1.0 | <1 | <1 | <1 | 14 | | OCT 1983<br>21 | .010 | .03 | 1 | | | <1.0 | 1 | | 1 | 7 | | OCT 1984 | .010 | .03 | - | | | 11.0 | - | | • | , | | 09 | .020 | .06 | <1 | | _ | <1.0 | 2 | _ | 1 | 7 | | OCT 1985 | | | | | | | | | | | | 09 | .010 | .03 | <1 | | _ | <1.0 | 2 | _ | 1 | 5 | | NOV 1986 | | | | | | | | | | • | | 07<br>NOV 1987 | <.010 | | <1 | | | <1.0 | <1 | _ | 4 | 8 | | 16 | <.010 | | <1 | | | <1.0 | 1 | | <1 | 6 | | OCT 1988 | 1.010 | | `` | | | 11.0 | - | | `` | • | | 26 | <.010 | | <1 | 25 | <0.5 | <1.0 | <5 | <3 | <10 | 20 | | NOV 1989 | | | | | | | | | | | | 06 | <.010 | _ | <1 | 28 | <.5 | <1.0 | <5 | <3 | <10 | 9 | | NOV 1990 | | | | | | | | | | • | | 14<br>OCT 1991 | <.010 | | <1 | 27 | <.5 | <1.0 | <5 | <3 | <10 | 8 | | 28 | .020 | .06 | <1 | 27 | <.5 | <1.0 | <5 | <3 | <10 | 13 | | OCT 1992 | | | | | | -2.0 | | | | | | 05 | <.010 | | <1 | 24 | <.5 | <1.0 | <5 | <3 | <10 | 5 | | NOV 1993 | | | | | | | | | | | | 18 | <.010 | _ | _ | | _ | | _ | | _ | _ | | NOV 1994 | | | | | | | | | | | | 07 | <.010 | | | | | | _ | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued 01473168 - Valley Creek near Valley Forge, Pa. (Site 50)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 16 | <1 | | 30 | <0.1 | 4 | | | | 10 | 0.0 | | OCT 1982 | | 100 | | | | | | | | 0.2 | | 15<br>OCT 1983 | <1 | 100 | 14 | <.1 | 4 | | | | <4 | .03 | | 21 | 2 | 80 | 13 | .1 | 1 | <1.0 | | | 11 | | | OCT 1984 | _ | | | •- | - | 12.0 | | | | | | 09 | 1 | 100 | 9 | <.1 | 1 | <1.0 | | | <3 | | | OCT 1985 | | | | | | | | | | | | 09 | 5 | 98 | 9 | .2 | 4 | <1.0 | | | 57 | | | NOV 1986 | | | 10 | | _ | | | | 40 | | | 07<br>NOV 1987 | <5 | 44 | 12 | .2 | 3 | <1.0 | | | 42 | | | 16 | <5 | 54 | 15 | <.1 | 1 | <1.0 | | | <3 | | | OCT 1988 | | • • | | | _ | 12.0 | | | | | | 26 | <10 | 49 | 17 | .2 | <10 | 3.0 | 58 | <6 | <3 | | | NOV 1989 | | | | | | | | | | | | 06 | <10 | 98 | 11 | .3 | <10 | 3.0 | 76 | <6 | 6 | | | NOV 1990<br>14 | <10 | 57 | 14 | <.1 | <10 | <1.0 | 63 | <6 | <3 | | | OCT 1991 | <10 | 37 | 14 | <b>\.</b> 1 | <10 | <b>\1.0</b> | 63 | <b>\</b> 0 | <b>\</b> 3 | | | 28 | <10 | 37 | 10 | <.1 | <10 | <1.0 | 56 | <6 | 4 | | | OCT 1992 | | | | | | | | | | | | 05 | <10 | 28 | 8 | <.1 | <10 | <1.0 | 57 | <6 | <3 | | | NOV 1993 | | | | | | | | | | | | 18 | _ | _ | | | | | | | | | | NOV 1994<br>07 | | | | _ | | | _ | | | | | 07 | | _ | _ | <del></del> | | | | <del></del> | | | Table 3. Water-quality data from surface-water sites—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE -<br>SIUM,<br>DIS -<br>SOLVED<br>(MG/L<br>AS M3)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 19 | 1530 | _ | 230 | 7.0 | 10.0 | _ | 10.0 | 93 | _ | 22 | 9.3 | | OCT 1982 | | | | | | | | | | | | | 13 | 0915 | 2.8 | 266 | 6.9 | 13.0 | _ | 9.5 | 99 | _ | 23 | 10 | | OCT 1983<br>27 | 1430 | 3.8 | 235 | 7.5 | 10.0 | 1.3 | 9.5 | 99 | | 24 | 9.5 | | OCT 1984 | 1430 | 3.6 | 233 | 7.3 | 10.0 | 1.3 | 9.3 | 22 | _ | 24 | 9.5 | | 15 | 1000 | 3.0 | 250 | 7.5 | 12.5 | . 40 | 10.0 | 100 | | 24 | 10 | | OCT 1985 | | | | | | | | | | | | | 31 | 1400 | 2.2 | 272 | 7.4 | 10.5 | .40 | 11.0 | 99 | _ | 23 | 10 | | NOV 1986 | | | | | | | | | | | | | 14 | 1400 | 3.5 | 235 | 7.7 | 4.5 | 6.9 | 12.1 | 97 | _ | 23 | 9.6 | | OCT 1987<br>15 | 1100 | 2.5 | 190 | 7.5 | 10.5 | .40 | 12.1 | 95 | | 22 | 9.8 | | OCT 1988 | 1100 | 2.5 | 190 | 7.3 | 10.5 | .40 | 12.1 | 90 | _ | 22 | 9.0 | | 18 | 1500 | 3.0 | 267 | 7.1 | 14.5 | 1.0 | 9.9 | 96 | | 22 | 10 | | OCT 1989 | | | | | | | | | | | | | 25 | 1745 | 5.6 | 258 | 7.4 | 13.0 | .80 | 9.6 | 96 | 30 | 22 | 10 | | NOV 1990 | | | | | | | | | | | | | 02 | 1245 | 2.7 | 262 | 6.7 | 12.5 | . 60 | 11.8 | 97 | 33 | 23 | 9.6 | | OCT 1991<br>29 | 1200 | 4.3 | 280 | 7.1 | 12.5 | 1.2 | 10.1 | 100 | 29 | 24 | 10 | | OCT 1992 | 1200 | 4.3 | 280 | 7.1 | 12.5 | 1.2 | 10.1 | 100 | 29 | 24 | 10 | | 21 | 1150 | 4.2 | 278 | 7.3 | 10.0 | 2.5 | 11.6 | 100 | | 25 | 10 | | OCT 1993 | | | | | | | = | | | | | | 18 | 1130 | 3.8 | 302 | 7.4 | 14.0 | _ | 10.1 | | | _ | | | OCT 1994 | | | | | | | | | | | | | 04 | 1300 | 5.4 | 315 | 7.9 | 13.5 | _ | 10.0 | | | | | Table 3. Water-quality data from surface-water sites—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17)—Continued | DATE | SODIUM, DIS- SOLVED (MG/L AS NA) (00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | DIS-<br>SOLVED<br>(MG/L<br>AS K) | ANC WATER UNFLTRD FET FIELD (MG/L AS CACO <sub>3</sub> ) (00410) | ANC WATER UNFLTRD IT FIELD (MG/L A) CACO <sub>3</sub> ) (00419) | SULFATE,<br>DIS-<br>SOLVED<br>S (MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLID?,<br>RESIDTE<br>AT 187<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(7030?) | |----------------------------|------------------------------------------|------------------------------|-------------------------------------|----------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | ост 1981 | | | | | | | | | | | | | 19 | 13 | 23 | 0.6 | 2.7 | | _ | 17 | 21 | <0.10 | 10 | 135 | | OCT 1982<br>13<br>OCT 1983 | 12 | 21 | . 6 | 1.2 | 72 | _ | 20 | 21 | <.10 | 14 | 167 | | 27 | 10 | 18 | . 4 | 2.2 | 68 | _ | 23 | 19 | | 14 | 153 | | OCT 1984 | | | | | | | | | | | | | 15 | 11 | 19 | . 5 | 1.9 | 74 | | 20 | 22 | | 14 | 153 | | OCT 1985 | | | | | | | | | | | | | 31<br>NOV 1986 | 14 | 23 | .7 | 2.1 | 82 | _ | 21 | 27 | _ | 16 | 132 | | 14 | 10 | 18 | . 4 | 2.3 | 74 | | 23 | 15 | | 15 | 154 | | OCT 1987 | 10 | 20 | • • | 2.0 | | | | | | | | | 15 | 12 | 21 | . 5 | 2.2 | 73 | | 19 | 20 | | 15 | 148 | | OCT 1988 | | | _ | | | | | | | | | | 18<br>OCT 1989 | 12 | 21 | .5 | 1.9 | 76 | | 19 | 23 | | 14 | _ | | 25 | 12 | 21 | . 5 | 2.3 | 66 | | 18 | 20 | | 16 | _ | | NOV 1990 | | | | | | | | | | | | | 02 | 12 | 21 | . 5 | 2.4 | 64 | | 21 | 24 | <.10 | 17 | _ | | OCT 1991 | | | _ | | | | | | | | | | 29<br>OCT 1992 | 13 | 21 | . 6 | 2.5 | 72 | _ | 22 | 27 | .10 | 14 | _ | | 21 | 14 | 22 | . 6 | 2.2 | | 110 | 18 | 26 | .10 | 14 | | | OCT 1993 | | | | | | | | | * | | | | 18 | _ | _ | _ | _ | _ | 75 | | _ | _ | _ | _ | | OCT 1994 | | | | | | | | | | | | | 04 | | _ | _ | | | 76 | _ | 32 | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 19 | - | 0.18 | _ | 1.30 | 5.8 | 0.010 | 1.30 | 0.040 | 0.05 | 0.68 | 0.54 | | OCT 1982 | | • | | | - 4 | | | | | | | | 13<br>OCT 1983 | 152 | . 23 | 1.26 | 1.60 | 7.1 | .020 | 1.60 | .020 | .03 | | .08 | | 27 | 150 | .21 | 1.57 | _ | _ | <.010 | 1.60 | <.010 | | _ | | | OCT 1984 | 200 | | 1107 | | | 1.020 | 1.00 | 1.010 | | | | | 15 | 154 | .21 | 1.24 | 1.37 | 6.1 | .030 | 1.40 | .060 | .08 | | .14 | | OCT 1985 | | | | | | | | | | | | | 31 | 169 | .18 | .78 | 1.39 | 6.2 | .010 | 1.40 | .020 | .03 | .38 | .28 | | NOV 1986 | | | | | | | | | | | | | 14<br>OCT 1987 | 149 | .21 | 1.46 | _ | | <.010 | 1.50 | .050 | .06 | . 55 | .55 | | 15 | 151 | .20 | 1.00 | | _ | <.010 | 1.70 | .020 | .03 | .28 | .18 | | OCT 1988 | 101 | .20 | 1.00 | | | V.010 | 1.70 | .020 | .03 | .20 | .10 | | 18 | 153 | .21 | 1.24 | | | <.010 | 1.30 | <.010 | | | | | OCT 1989 | | | | | | | | | | | | | 25 | 140 | .20 | 2.24 | _ | _ | <.010 | 1.80 | .020 | .03 | .28 | .28 | | NOV 1990 | | | | | | | | | | | | | 02<br>OCT 1991 | 155 | .21 | 1.13 | 1.58 | 7.0 | .020 | 1.60 | <.010 | | | | | 29 | 162 | . 22 | 1.88 | _ | | <.010 | 1.30 | <.010 | | _ | _ | | OCT 1992 | -02 | | 1.00 | | | 1.010 | 1.50 | 1.010 | | | | | 21 | 182 | . 25 | 2.06 | _ | _ | <.010 | 1.50 | <.010 | | | | | OCT 1993 | | | | | | | | | | | | | 18 | | | | _ | | <.010 | 1.70 | .020 | .03 | _ | _ | | OCT 1994 | | | | | | | | | | | | | 04 | _ | _ | | 1.89 | 8.4 | .010 | 1.90 | .020 | .03 | <del></del> | | Table 3. Water-quality data from surface-water sites—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17)—Continued | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS DIS- SOLVED (MG/L AS P) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> ) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | |----------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 19 | 0.70 | 0.58 | 2.0 | 1.9 | 0.110 | 0.34 | 0.040 | 0.030 | 0.09 | 1 | <1.0 | | OCT 1982<br>13 | _ | .10 | _ | 1.7 | | | .030 | .020 | .06 | 1 | <1.0 | | OCT 1983 | | - | | | | | | | | | | | 27 | _ | .50 | _ | 2.1 | .030 | .09 | .020 | .010 | .03 | _ | | | OCT 1984 | | | | | | | | | | | | | 15 | _ | .20 | | 1.6 | .010 | _ | .010 | .020 | .06 | _ | _ | | OCT 1985 | | | | | | | | | | | | | 31 | .40 | .30 | 1.8 | 1.7 | .030 | .09 | .020 | .010 | .03 | _ | _ | | NOV 1986<br>14 | . 60 | . 60 | 2.1 | 2.1 | .070 | _ | .020 | .010 | .03 | | | | OCT 1987 | | . 00 | 4 | 2.1 | .070 | | .020 | .010 | .05 | | | | 15 | .30 | .20 | 2.0 | 1.9 | .010 | | <.010 | <.010 | _ | | _ | | OCT 1988 | | | | | | | | | | | | | 18 | .40 | . 40 | 1.7 | 1.7 | .020 | _ | .020 | <.010 | _ | - | _ | | OCT 1989 | | | | | | | | | | | | | 25 | .30 | . 30 | 2.1 | 2.1 | .030 | _ | .030 | .020 | .06 | _ | _ | | NOV 1990 | 40 | 40 | | | 000 | | | 000 | 0.0 | | | | 02<br>OCT 1991 | .40 | . 40 | 2.0 | 2.0 | .020 | | <.010 | .020 | .06 | _ | _ | | 29 | .20 | <.20 | 1.5 | | .030 | | .010 | <.010 | _ | _ | | | OCT 1992 | .20 | 1.20 | 1.0 | | .000 | | .010 | 1.010 | | | | | 21 | .20 | <.20 | 1.7 | | .040 | | .010 | <.010 | _ | _ | | | OCT 1993 | | | | | | | | | | | | | 18 | | _ | _ | _ | _ | _ | | .010 | .03 | | _ | | OCT 1994 | | | | | | | | | | | | | 04 | _ | | | | | _ | _ | .010 | .03 | | | Table 3. Water-quality data from surface-water sites—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17)—Continued | DATE | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(μG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I)<br>(38260) | |----------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 19 | 1.0 | <1.0 | 4.0 | 200 | 2.0 | 23 | <.1 | <1.0 | <4.0 | | | OCT 1982<br>13<br>OCT 1983 | <1.0 | <1.0 | 2.0 | 160 | <1.0 | 14 | <.1 | 4.0 | <4.0 | 0.02 | | 27 | _ | | | 110 | | 18 | | | | | | OCT 1984 | | | | | | | | | | | | 15 | - | _ | | 63 | _ | 10 | | _ | | | | OCT 1985<br>31 | | | | 53 | | 10 | | | | | | NOV 1986 | | | | 33 | | 10 | | | | | | 14 | | | | 110 | | 28 | | | | | | OCT 1987 | | | | | | | | | | | | 15 | _ | _ | | 45 | _ | 10 | | | | | | OCT 1988<br>18 | | | | 36 | | 9.0 | | | | | | OCT 1989 | | | | 30 | | 3.0 | | | | | | 25 | _ | | | 120 | | 17 | | | | | | NOV 1990 | | | | | | | | | | | | 02<br>OCT 1991 | | | _ | 50 | _ | 8.0 | _ | | | | | 29 | | | _ | 36 | | 8.0 | | | | | | OCT 1992 | | | | | | | | | | | | 21 | | _ | | 41 | - | 11 | _ | | - | | | OCT 1993<br>18 | | | | | | | | _ | | _ | | OCT 1994 | | | | | | _ | | _ | | _ | | 04 | _ | | _ | | | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01475840 - Crum Creek at Whitehorse, Pa. (Site 19) | OCT 1981 26 1200 — 164 7.0 9.5 — 11.5 63 — 13 7.5 CCT 1982 13 1230 4.0 163 7.6 13.0 — 10.4 63 — 13 7.4 CCT 1983 27 1300 4.2 159 7.4 9.0 <1.0 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1982 13 1230 4.0 163 7.6 13.0 — 10.4 63 — 13 7.4 CCT 1983 27 1300 4.2 159 7.4 9.0 C.1.0 11.0 67 — 14 7.8 CCT 1984 25 071 1985 15 0900 4.5 178 7.2 11.0 060 10.6 65 — 13 8.0 CCT 1986 09 1530 2.7 172 7.6 16.5 09 1000 4.6 168 7.4 11.0 0.20 11.6 68 — 14 8.1 CCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 CCT 1988 18 1000 9.6 189 7.4 14.0 1.7 10.4 68 — 14 8.0 CCT 1989 18 1000 9.6 189 7.4 14.0 1.7 10.4 68 — 14 8.0 CCT 1999 02 0930 4.6 190 6.7 11.5 4.0 11.7 70 17 15 8.0 CCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 11.8 68 — 14 8.1 CCT 1992 21 0915 3.5 180 7.3 8.0 7.3 8.0 7.0 11.0 — 9.5 — — — — — — — — — — — — — — — — — — — | OCT 1981 | | | | | | | | | | | | | 13 1230 4.0 163 7.6 13.0 — 10.4 63 — 13 7.4 OCT 1983 27 1300 4.2 159 7.4 9.0 <1.0 11.0 67 — 14 7.8 OCT 1984 25 1000 6.3 150 7.7 12.0 .50 10.2 68 — 14 8.0 OCT 1985 15 0900 4.5 178 7.2 11.0 .60 10.6 65 — 13 8.0 OCT 1986 09 1530 2.7 172 7.6 16.5 .20 10.2 67 — 14 7.8 NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 1.7 10.4 68 — 14 8.0 OCT 1991 18 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 — 14 8.1 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — — OCT 1994 OCT 1994 | 26 | 1200 | | 164 | 7.0 | 9.5 | | 11.5 | 63 | _ | 13 | 7.5 | | OCT 1983 27 1300 4.2 159 7.4 9.0 <1.0 11.0 67 — 14 7.8 OCT 1984 25 1000 6.3 150 7.7 12.0 .50 10.2 68 — 14 8.0 OCT 1985 15 0900 4.5 178 7.2 11.0 .60 10.6 65 — 13 8.0 OCT 1986 09 1530 2.7 172 7.6 16.5 .20 10.2 67 — 14 7.8 NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | | | | | | | | | | | | | 27 1300 4.2 159 7.4 9.0 <1.0 | | 1230 | 4.0 | 163 | 7.6 | 13.0 | | 10.4 | 63 | | 13 | 7.4 | | CCT 1984 25 1000 6.3 150 7.7 12.0 .50 10.2 68 — 14 8.0 OCT 1985 15 0900 4.5 178 7.2 11.0 .60 10.6 65 — 13 8.0 OCT 1986 09 1530 2.7 172 7.6 16.5 .20 10.2 67 — 14 7.8 NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — OCT 1994 | | 1200 | 4.3 | 150 | 7.4 | 0.0 | -1 0 | 11 0 | 67 | | 1.4 | 7 0 | | 25 1000 6.3 150 7.7 12.0 .50 10.2 68 — 14 8.0 OCT 1985 15 0900 4.5 178 7.2 11.0 .60 10.6 65 — 13 8.0 OCT 1986 09 1530 2.7 172 7.6 16.5 .20 10.2 67 — 14 7.8 NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | 1300 | 4.2 | 139 | 7.4 | 9.0 | <1.0 | 11.0 | 67 | _ | 14 | 7.0 | | OCT 1985 15 0900 4.5 178 7.2 11.0 .60 10.6 65 — 13 8.0 OCT 1986 09 1530 2.7 172 7.6 16.5 .20 10.2 67 — 14 7.8 NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | 1000 | 6.3 | 150 | 7.7 | 12.0 | . 50 | 10.2 | 68 | | 14 | 8.0 | | OCT 1986 09 1530 2.7 172 7.6 16.5 .20 10.2 67 — 14 7.8 NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | | | | | | | | • • | | | | | 09 1530 2.7 172 7.6 16.5 .20 10.2 67 — 14 7.8 NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 | 15 | 0900 | 4.5 | 178 | 7.2 | 11.0 | . 60 | 10.6 | 65 | | 13 | 8.0 | | NOV 1987 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | OCT 1986 | | | | | | | | | | | | | 02 1000 4.6 168 7.4 11.0 .20 11.6 68 — 14 8.1 OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — OCT 1994 | | 1530 | 2.7 | 172 | 7.6 | 16.5 | . 20 | 10.2 | 67 | | 14 | 7.8 | | OCT 1988 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | | | | | | | | | | | | | 18 1030 2.7 180 7.1 14.0 1.7 10.4 68 — 14 8.0 OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | 1000 | 4.6 | 168 | 7.4 | 11.0 | . 20 | 11.6 | 68 | | 14 | 8.1 | | OCT 1989 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | 1020 | 2 7 | 100 | 7 1 | 14.0 | 1 7 | 10.4 | 60 | | 1.4 | 9.0 | | 18 1000 9.6 189 7.4 14.0 .60 9.4 72 19 15 8.3 NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | 1030 | 2.1 | 100 | ,.1 | 14.0 | 1.7 | 10.4 | 00 | _ | 14 | 0.0 | | NOV 1990 02 0930 4.6 190 6.7 11.5 .40 11.7 70 17 15 8.0 OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — | | 1000 | 9.6 | 189 | 7.4 | 14.0 | .60 | 9.4 | 72 | 19 | 15 | 8.3 | | OCT 1991 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — — OCT 1994 | | | | | | | | | | | | | | 29 0915 4.4 182 7.3 10.0 1.4 10.7 68 1 14 7.9 OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — OCT 1994 | 02 | 0930 | 4.6 | 190 | 6.7 | 11.5 | . 40 | 11.7 | 70 | 17 | 15 | 8.0 | | OCT 1992 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — OCT 1994 | OCT 1991 | | | | | | | | | | | | | 21 0915 3.5 180 7.3 8.0 .70 11.8 68 — 14 8.1 OCT 1993 28 0945 4.4 191 7.1 11.0 — 9.5 — — — OCT 1994 | | 0915 | 4.4 | 182 | 7.3 | 10.0 | 1.4 | 10.7 | 68 | 1 | 14 | 7.9 | | OCT 1993<br>28 0945 4.4 191 7.1 11.0 9.5 OCT 1994 | | | | | | | | | | | | | | 28 0945 4.4 191 7.1 11.0 9.5 OCT 1994 | | 0915 | 3.5 | 180 | 7.3 | 8.0 | .70 | 11.8 | 68 | _ | 14 | 8.1 | | OCT 1994 | | 0045 | 4.4 | 1.01 | 7 1 | 11 0 | | 0.5 | | | | | | | | 0343 | 4.4 | 131 | 7.1 | 11.0 | | 9.3 | | | | _ | | | 03 | 1030 | 4.2 | 196 | 6.8 | 11.5 | | 10.4 | | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01475840 - Crum Creek at Whitehorse, Pa. (Site 19)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | WAT WH<br>TOT FET<br>FIELD | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 26<br>OCT 1982 | 7.1 | 19 | 0.4 | 2.1 | | _ | 12 | 9.6 | <0.10 | 16 | 97 | | 13 | 6.6 | 18 | . 4 | . 90 | 50 | | 10 | 9.9 | <.10 | 17 | 111 | | OCT 1983<br>27 | 7.0 | 18 | . 4 | 1.8 | 42 | _ | 18 | 12 | | 17 | 113 | | OCT 1984 | | | | | | | | | | | | | 25 | 7.5 | 19 | . 4 | 2.2 | 56 | _ | 12 | 11 | _ | 16 | 109 | | OCT 1985 | | | | | | | | | | | | | 15 | 7.4 | 19 | . 4 | 1.9 | 54 | | 14 | 13 | _ | 15 | 108 | | OCT 1986 | | | | | | | | | | | | | 09 | 7.0 | 18 | . 4 | 1.9 | 54 | _ | 12 | 11 | _ | 18 | 136 | | NOV 1987 | 7.2 | 18 | . 4 | 2.0 | 72 | | 13 | | | 1.7 | 110 | | 02<br>OCT 1988 | 1.2 | 18 | . 4 | 2.0 | 73 | | 13 | 15 | _ | 17 | 110 | | 18 | 7.4 | 19 | . 4 | 1.7 | 59 | | 12 | 13 | | 15 | _ | | OCT 1989 | | | | | | | | | | | | | 18 | 8.6 | 20 | . 4 | 2.7 | 53 | | 12 | 14 | | 16 | | | NOV 1990 | | | | | | | | | | | | | 02 | 7.6 | 19 | . 4 | 1.8 | 53 | | 11 | 14 | .10 | 17 | | | OCT 1991 | | | | | | | | | | | | | 29 | 7.0 | 18 | . 4 | 2.3 | 67 | | 11 | 18 | .20 | 16 | _ | | OCT 1992 | | | | | | 4- | | | | | | | 21<br>OCT 1993 | 7.0 | 18 | . 4 | 1.9 | _ | 47 | 10 | 15 | .10 | 17 | | | 28 | | | | | _ | 48 | | _ | | | | | OCT 1994 | _ | | - <del></del> - | | | 40 | | <del></del> | | | | | 03 | _ | _ | | | _ | 30 | | 17 | | | | Table 3. Water-quality data from surface-water sites—Continued 01475840 - Crum Creek at Whitehorse, Pa. (Site 19)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>O'GANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 26 | | 0.13 | | 1.08 | | _ | <0.010 | 1.10 | 0.020 | 0.03 | 0.28 | | OCT 1982 | | | | | | | | | | | | | 13 | 101 | .15 | 1.18 | 1.40 | _ | | <.010 | 1.40 | .020 | .03 | | | OCT 1983<br>27 | 109 | .15 | 1.28 | 1.40 | | | <.010 | 1.40 | <.010 | _ | | | OCT 1984 | 103 | .13 | 1.20 | 1.40 | | | 1.010 | 1.40 | 1.010 | | | | 25 | 108 | .15 | 1.85 | .860 | | | <.010 | .860 | .020 | .03 | | | OCT 1985 | | | | | | | | | | | | | 15 | 111 | .15 | 1.31 | 1.50 | - | | <.010 | 1.50 | .020 | .03 | | | OCT 1986 | | | | | | | | | | | | | 09 | 109 | .18 | .99 | .990 | 0.990 | 4.4 | .010 | 1.00 | <.010 | | | | NOV 1987<br>02 | 126 | .15 | 1.37 | 1.20 | | | <.010 | 1.20 | .030 | .04 | . 47 | | OCT 1988 | 120 | .13 | 1.37 | 1.20 | | | 7.010 | 1.20 | .030 | .04 | | | 18 | 113 | .15 | . 82 | 1.40 | | | <.010 | 1.40 | <.010 | | .40 | | OCT 1989 | | | | | | | | | | | | | 18 | 115 | .16 | 2.98 | 1.39 | 1.39 | 6.2 | .010 | 1.40 | .020 | .03 | . 38 | | NOV 1990 | | | | | | | | | | | | | 02 | 113 | .15 | 1.41 | 1.50 | _ | | <.010 | 1.50 | .020 | . 03 | . 58 | | OCT 1991<br>29 | 120 | .16 | 1.43 | .830 | _ | | <.010 | .830 | .020 | .03 | .18 | | OCT 1992 | 120 | .10 | 1.43 | .630 | | _ | <.010 | .630 | .020 | .03 | .10 | | 21 | 107 | .15 | 1.01 | 1.19 | 1.19 | 5.3 | .010 | 1.20 | .010 | .01 | .19 | | OCT 1993 | | | | | | | | | | | | | 28 | | | _ | 1.20 | _ | | <.010 | 1.20 | .010 | .01 | | | OCT 1994 | | | | | | | | | | | | | 03 | _ | | | 1.40 | | | <.010 | 1.40 | <.015 | | | Table 3. Water-quality data from surface-water sites—Continued ## 01475840 - Crum Creek at Whitehorse, Pa. (Site 19)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>LIS-<br>SCLVED<br>(µG/L<br>AS AS)<br>(C1000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 26 | 0.95 | 0.30 | 0.97 | 1.4 | 2.1 | 0.030 | 0.09 | 0.030 | 0.010 | 0.03 | 1 | | OCT 1982 | | | | | | | | | | | | | 13<br>OCT 1983 | .18 | | . 20 | _ | 1.6 | _ | | .060 | .020 | .06 | 1 | | 27 | | | . 90 | | 2.3 | .030 | .09 | .010 | <.010 | | | | OCT 1984 | | | .,, | | 2.0 | .050 | ,.05 | .010 | 1.010 | | | | 25 | .18 | | . 20 | — | 1.1 | <.010 | | <.010 | <.010 | | | | OCT 1985 | | | | | | | | | | | | | 15 | . 38 | _ | . 40 | _ | 1.9 | .010 | .03 | .010 | .010 | .03 | _ | | OCT 1986<br>09 | | <.20 | <.20 | | | .020 | | .020 | .010 | .03 | | | NOV 1987 | | 1.20 | 1.20 | _ | _ | .020 | | .020 | .010 | .03 | | | 02 | | .50 | <.20 | 1.7 | _ | .010 | - | .010 | .010 | .03 | _ | | OCT 1988 | | | | | | | | | | | | | 18 | _ | .40 | . 40 | 1.8 | 1.8 | .010 | _ | .010 | <.010 | | _ | | OCT 1989 | .28 | 40 | 20 | | | 222 | | | | | | | 18<br>NOV 1990 | .20 | .40 | .30 | 1.8 | 1.7 | .030 | | .030 | .020 | .06 | _ | | 02 | . 38 | .60 | .40 | 2.1 | 1.9 | .030 | _ | . 020 | .030 | .09 | _ | | OCT 1991 | | | | | | | | | | | | | 29 | _ | .20 | <.20 | 1.0 | - | .010 | | <.010 | .020 | .06 | _ | | OCT 1992 | | | | | | | | | | | | | 21<br>OCT 1993 | .29 | .20 | . 30 | 1.4 | 1.5 | .030 | | .020 | .020 | .06 | _ | | 28 | | | | | | | | _ | <.010 | | _ | | OCT 1994 | | | | | | | | | | | | | 03 | _ | | | _ | | _ | _ | _ | <.010 | | _ | Table 3. Water-quality data from surface-water sites—Continued 01475840 - Crum Creek at Whitehorse, Pa. (Site 19)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>SIANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 26 | 3.0 | 2 | <1 | 4 | 110 | 4 | 16 | <0.1 | 4 | 8 | ND | | OCT 1982 | 0 | _ | | • | | | _ | | | -4 | | | 13<br>OCT 1983 | <1.0 | 1 | <1 | 2 | 94 | <1 | 9 | <.1 | 3 | <4 | | | 27 | | | | | 91 | | 13 | | | | | | OCT 1984 | | | | | | | | | | | | | 25 | | _ | | | 120 | | 9 | _ | | _ | | | OCT 1985 | | | | | | | | | | | | | 15 | | | _ | | 43 | | 4 | | | | | | OCT 1986 | | | | | | | - | | | | | | 09<br>NOV 1987 | | | | | 59 | | 7 | | | _ | | | 02 | | | | | 71 | | 11 | | | | _ | | OCT 1988 | | | | | | | | | | | | | 18 | | | _ | | 36 | | 7 | - | | | | | OCT 1989 | | | | | | | | | | | | | 18 | | | | | 140 | | 22 | | | _ | | | NOV 1990<br>02 | | | | | 61 | | 6 | | | | | | OCT 1991 | | | | | 01 | | · · | | | | | | 29 | _ | | | | 83 | | 6 | | | | | | OCT 1992 | | | | | | | | | | | | | 21 | | _ | _ | | 72 | | 6 | | _ | | _ | | OCT 1993 | | | | | | | | | | | | | 28 | | | | | | | | | | | _ | | OCT 1994<br>03 | | | | | | | | | | _ | | | 03 | | _ | <del></del> | | | | _ | | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01476430 - Ridley Creek at Goshenville, Pa. (Site 20) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> ) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | 1445 | _ | 168 | 7.7 | 10.0 | _ | 11.2 | 63 | | 13 | 7.4 | | OCT 1982 | | | | | | | | | | | | | 14<br>OCT 1983 | 1000 | 2.0 | 194 | 7.5 | 13.0 | _ | 9.1 | 63 | | 13 | 7.4 | | 27 | 1045 | 3.1 | 196 | 6.7 | 9.0 | 4.2 | 10.5 | 70 | | 15 | 8.0 | | OCT 1984 | 2010 | | | • • • • • • • • • • • • • • • • • • • • | 3.0 | | 20.5 | | | 10 | 0.0 | | 25 | 1400 | 2.7 | 199 | 7.5 | 14.0 | .50 | 8.8 | 72 | | 15 | 8.3 | | OCT 1985 | | | | | | | | | | | | | 15 | 1230 | 3.3 | 205 | 7.2 | 12.0 | 1.5 | 11.9 | 69 | | 14 | 8.2 | | OCT 1986<br>09 | 1230 | 1.5 | 235 | 7.8 | 16.0 | .40 | 10.0 | 85 | | 18 | 9.8 | | OCT 1987 | 1230 | 1.5 | 233 | 7.6 | 10.0 | .40 | 10.0 | 65 | | 10 | 9.0 | | 26 | 1100 | 2.6 | 315 | 7.5 | 10.5 | . 60 | 10.5 | 100 | _ | 21 | 12 | | OCT 1988 | | | | | | | | | | | | | 25 | 0930 | 3.5 | 224 | 7.4 | 10.0 | 2.8 | 10.5 | 77 | _ | 16 | 9.1 | | NOV 1989<br>14 | 0900 | 5.4 | 231 | 7.5 | 10.5 | 0.0 | 10.0 | 76 | 25 | 15 | 0.1 | | OCT 1990 | 0900 | 5.4 | 231 | 7.5 | 10.5 | . 80 | 12.2 | 75 | 25 | 15 | 9.1 | | 30 | 0900 | 2.4 | 249 | 6.4 | 7.0 | .50 | 12.0 | 89 | 37 | 19 | 10 | | NOV 1991 | | | | | | | | | | | | | 06 | 0915 | 2.3 | 237 | 7.4 | 5.0 | . 70 | 13.2 | 86 | 17 | 18 | 10 | | OCT 1992 | -0 | | | | | | | | | | | | 20<br>OCT 1993 | 0845 | 2.2 | 250 | 6.6 | 7.5 | 2.0 | 10.4 | 84 | | 17 | 10 | | 25 | 1210 | 2.9 | 252 | 7.2 | 11.5 | | 9.8 | | | _ | | | OCT 1994 | | , | | | | | 3.0 | | | | | | 07 | 1300 | 2.2 | 242 | 7.7 | 12.5 | | 10.6 | _ | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476430 - Ridley Creek at Goshenville, Pa. (Site 20)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | 10 | 25 | 0.5 | 1.7 | | | 15 | 16 | <0.10 | 12 | 105 | | OCT 1982 | | | _ | | | | | | | | | | 14 | 11 | 27 | . 6 | 1.8 | 38 | _ | 14 | 17 | <.10 | 9.7 | 119 | | OCT 1983<br>27 | 12 | 26 | . 6 | 2.2 | 40 | _ | 20 | 19 | _ | 10 | 126 | | OCT 1984 | 12 | 20 | .0 | 2.2 | 40 | | 20 | 19 | | 10 | 120 | | 25 | 11 | 24 | . 6 | 2.2 | 48 | _ | 17 | 18 | _ | 11 | 128 | | OCT 1985 | | | | | | | | | | | | | 15 | 11 | 25 | . 6 | 1.8 | 42 | | 18 | 21 | | 9.3 | 115 | | OCT 1986 | | | | | | | | | | | | | 09 | 13 | 24 | . 6 | 1.9 | 58 | _ | 16 | 22 | _ | 11 | 140 | | OCT 1987<br>26 | 26 | 34 | 1 | 4.4 | 85 | _ | 24 | 35 | | 10 | 200 | | OCT 1988 | 20 | 34 | | 4.4 | 0.5 | | 24 | 33 | | 10 | 200 | | 25 | 12 | 25 | . 6 | 2.3 | 57 | | 16 | 20 | | 9.4 | | | NOV 1989 | | | | | | | | | | | | | 14 | 12 | 25 | . 6 | 1.6 | 50 | | 14 | 21 | _ | 8.9 | | | OCT 1990 | | | _ | | | | | | | | | | 30<br>NOV 1991 | 14 | 25 | . 6 | 2.2 | 52 | _ | 17 | 25 | <.10 | 9.8 | | | 06 | 14 | 26 | .7 | 2.0 | 69 | | 18 | 29 | .10 | 10 | | | OCT 1992 | 1.1 | 20 | • • | 2.0 | 03 | | 10 | 23 | .10 | 10 | | | 20 | 14 | 26 | .7 | 2.0 | _ | 59 | 15 | 25 | <.10 | 9.7 | | | OCT 1993 | | | | | | | | | | | | | 25 | _ | | _ | | | 57 | _ | _ | _ | | _ | | OCT 1994 | | | | | | | | | | | | | 07 | _ | | | | | 53 | _ | 32 | | | | Table 3. Water-quality data from surface-water sites—Continued 01476430 - Ridley Creek at Goshenville, Pa. (Site 20)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEI <sup>1</sup> ,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | _ | 0.14 | _ | 2.10 | _ | | <0.010 | 1.90 | <0.010 | 0.01 | 0.36 | | OCT 1982<br>14<br>OCT 1983 | 109 | .16 | 0.64 | 2.58 | 2.58 | 11 | .020 | 2.60 | .100 | .13 | _ | | 27 | 121 | .17 | 1.05 | 2.40 | _ | | <.010 | 2.40 | <.010 | | _ | | OCT 1984 | | | | | | | | | | | | | 25<br>OCT 1985 | 119 | .17 | . 93 | 1.70 | _ | | <.010 | 1.70 | .050 | .06 | | | 15 | 120 | .16 | 1.02 | 2.59 | 2.59 | 11 | .010 | 2.60 | .010 | .01 | .39 | | OCT 1986 | | | | | | | | | | | | | 09 | 134 | .19 | .57 | 1.59 | 1.59 | 7.0 | .010 | 1.60 | <.010 | _ | .30 | | OCT 1987<br>26 | 193 | .27 | 1.40 | 1.69 | 1.69 | 7.5 | 010 | 1.70 | 020 | .04 | . \$7 | | OCT 1988 | 193 | .21 | 1.40 | 1.69 | 1.09 | 7.5 | .010 | 1.70 | .030 | .04 | . \$ / | | 25<br>NOV 1989 | 129 | .17 | 1.22 | 2.08 | 2.08 | 9.2 | .020 | 2.10 | .050 | .06 | .35 | | 14<br>OCT 1990 | 125 | .17 | 1.82 | 2.99 | 2.99 | 13 | .010 | 3.00 | .020 | .03 | .59 | | 30<br>NOV 1991 | 140 | .19 | .90 | 2.47 | 2.47 | 11 | .030 | 2.50 | .020 | .03 | .78 | | 06<br>OCT 1992 | 154 | .21 | . 95 | 2.50 | | | <.010 | 2.50 | .010 | .01 | _ | | 20 | 139 | .19 | .82 | 2.28 | 2.28 | 10 | .020 | 2.30 | .010 | .01 | .19 | | OCT 1993<br>25 | | | _ | 2.08 | 2.08 | 9.2 | .020 | 2.10 | .030 | .04 | _ | | OCT 1994 | | | | 2.00 | 2.00 | 3.2 | .020 | 2.10 | .030 | .04 | _ | | 07 | | | | 2.60 | _ | | <.010 | 2.60 | <.015 | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476430 - Ridley Creek at Goshenville, Pa. (Site 20)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | APSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | | 0.36 | 0.35 | 2.5 | 2.3 | 0.070 | 0.21 | 0.070 | 0.050 | 0.15 | ND | | OCT 1982 | | | | | | | | | | | | | 14 | 0.30 | | .40 | | 3.0 | | _ | .100 | .080 | .25 | 1 | | OCT 1983 | | | 1.0 | | 3.6 | .130 | .40 | .100 | .110 | 24 | | | 27<br>OCT 1984 | | | 1.2 | | 3.0 | .130 | .40 | .100 | .110 | . 34 | _ | | 25 | . 35 | _ | .40 | | 2.1 | .080 | | .050 | .050 | .15 | | | OCT 1985 | | | | | | | | | | | | | 15 | .19 | .40 | .20 | 3.0 | 2.8 | .080 | .25 | .070 | .060 | .18 | | | OCT 1986 | | | | | | | | | | | | | 09 | | .30 | <.20 | 1.9 | _ | .060 | | .050 | .040 | .12 | _ | | OCT 1987 | . 27 | 1.0 | .30 | 2.7 | 2.0 | .740 | | 010 | . 680 | 2.1 | | | 26<br>OCT 1988 | .21 | 1.0 | . 30 | 2.1 | 2.0 | . /40 | _ | .810 | . 680 | 2.1 | _ | | 25 | . 35 | .40 | .40 | 2.5 | 2.5 | .060 | | .040 | .040 | .12 | | | NOV 1989 | | | | | | | | | | | | | 14 | .28 | .40 | .30 | 3.4 | 3.3 | .060 | | .030 | .040 | .12 | | | OCT 1990 | | | | | | | | | | | | | 30 | . 48 | .80 | .50 | 3.3 | 3.0 | .080 | | .070 | .090 | .28 | | | NOV 1991<br>06 | | <.20 | <.20 | | | .060 | | .050 | .050 | .15 | | | OCT 1992 | | V.20 | <.20 | | _ | .000 | | .050 | .030 | .13 | | | 20 | .19 | .20 | .20 | 2.5 | 2.5 | .080 | | .110 | .060 | .18 | | | OCT 1993 | | | | | | | | | | | | | 25 | | _ | | | | | | | .050 | .15 | | | OCT 1994 | | | | | | | | | | | | | 07 | | | _ | | | _ | | | .040 | .12 | _ | Table 3. Water-quality data from surface-water sites—Continued 01476430 - Ridley Creek at Goshenville, Pa. (Site 20)—Continued | | | | | | | | | | | | MFTHY- | |----------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | MFTHI-<br>LFNE<br>BIJE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | | NOV 1981 | | | | | | | | | | | | | 05<br>OCT 1982 | <1.0 | <1 | 2 | <1 | 97 | <1 | 22 | 0.1 | 2 | <4 | ND | | 14 | <1.0 | <1 | <1 | 1 | 51 | 1 | 11 | <.1 | 5 | <4 | 0.03 | | OCT 1983 | | | | | | | | | | | | | 27 | _ | _ | _ | _ | 82 | | 28 | | _ | | | | OCT 1984<br>25 | | _ | | | 100 | | 19 | | _ | | | | OCT 1985 | _ | <del></del> | _ | <del></del> | 100 | <del></del> | 19 | | <del>_</del> | | | | 15 | _ | _ | | | 44 | _ | 13 | | _ | _ | | | OCT 1986 | | | | | | | | | | | | | 09 | _ | | | | 39 | _ | 11 | | _ | | | | OCT 1987 | | | | | | | | | | | | | 26 | _ | | | | 39 | | 25 | - | | | _ | | OCT 1988<br>25 | | | | | 93 | | 23 | | | | | | NOV 1989 | _ | _ | | <del></del> | 93 | <del></del> | 23 | _ | <del></del> | | _ | | 14 | | | | | 63 | | 29 | _ | | | _ | | OCT 1990 | | | | | | | | | | | | | 30 | _ | | | - | 58 | | 23 | | _ | _ | | | NOV 1991 | | | | | | | | | | | | | 06 | | _ | | _ | 54 | _ | 16 | _ | _ | | _ | | OCT 1992<br>20 | | | | | 66 | | 21 | | | | | | 20<br>OCT 1993 | | _ | | | 00 | _ | 21 | | | | _ | | 25 | | | | | | | | | _ | _ | _ | | OCT 1994 | | | | | | | | | | | | | 07 | | | | | | | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | FAGNE-<br>SIUM,<br>DIS-<br>SCLVED<br>(MG/L<br>AS MG)<br>(C0925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | 1300 | _ | 165 | 7.8 | 9.5 | _ | 11.4 | 63 | _ | 13 | 7.4 | | OCT 1982 | | | | | | | | | | | | | 14 | 1330 | 4.9 | 180 | 8.1 | 15.0 | | 10.4 | 58 | | 12 | 6.8 | | OCT 1983 | | | 4.05 | 7.0 | | | | - | | | | | 27<br>OCT 1984 | 0900 | 11 | 187 | 7.2 | 7.0 | 1.9 | 10.7 | 67 | | 14 | 7.8 | | 15 | 1330 | 8.7 | 185 | 8.4 | 13.0 | .70 | 12.7 | 64 | | 13 | 7.6 | | OCT 1985 | 1330 | 0.7 | 103 | 0.4 | 13.0 | . 70 | 12.7 | 04 | | 13 | 7.0 | | 15 | 1430 | 10 | 190 | 7.6 | 12.5 | 1.2 | 12.2 | 65 | | 13 | 7.9 | | OCT 1986 | | | | | | | | • | | | | | 09 | 0900 | 5.7 | 215 | 7.5 | 13.5 | . 70 | 8.8 | 81 | | 17 | 9.3 | | OCT 1987 | | | | | | | | | | | | | 15 | 1430 | 7.8 | 218 | 7.9 | 12.5 | .70 | 13.2 | 74 | *************************************** | 15 | 8.8 | | OCT 1988 | | | | | | | | | | | | | 25 | 1430 | 5.0 | 231 | 7.3 | 11.5 | 1.9 | 11.0 | 77 | | 16 | 9.0 | | NOV 1989 | | | | | 40 - | | | | | | | | 14<br>OCT 1990 | 1345 | 12 | 220 | 7.8 | 13.5 | 3. <b>4</b> | 12.5 | 70 | 24 | 14 | 8.4 | | 30 | 1145 | 6.2 | 251 | 6.6 | 8.5 | 1.1 | 12.3 | 83 | 17 | 18 | 9.3 | | NOV 1991 | 1143 | 0.2 | 231 | 0.0 | 0.5 | 1.1 | 12.3 | 0.5 | 1, | 10 | 9.5 | | 06 | 1215 | 4.9 | 252 | 7.4 | 6.0 | 1.3 | 13.5 | 70 | 6 | 20 | 4.9 | | OCT 1992 | | | | | • • • | | | . • | • | | | | 20 | 1215 | 5.0 | 254 | 6.7 | 8.5 | . 80 | 12.8 | 82 | | 17 | 9.7 | | OCT 1993 | | | | | | | | | | | | | 25 | 0930 | 7.8 | 270 | 7.4 | 9.5 | | 10.5 | | - | _ | _ | | OCT 1994 | | | | | | | | | | | | | 07 | 0900 | 5.0 | 265 | 7.4 | 10.0 | | 10.8 | | - | | | Table 3. Water-quality data from surface-water sites—Continued 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | TOT FET<br>FIELD | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | 9.2 | 24 | 0.5 | 1.6 | | | 13 | 14 | <0.10 | 15 | 103 | | OCT 1982 | | | | | | | | | | | | | 14 | 9.2 | 25 | .5 | 1.8 | 36 | _ | 13 | 15 | <.10 | 13 | 118 | | OCT 1983<br>27 | 10 | 24 | .5 | 2.2 | 46 | | 19 | 16 | | 14 | 123 | | OCT 1984 | 10 | 24 | .5 | 2.2 | 40 | | 19 | 10 | _ | 14 | 123 | | 15 | 9.2 | 23 | .5 | 1.5 | 44 | | 15 | 17 | | 12 | 115 | | OCT 1985 | | | | 2.0 | | | | ~. | | | | | 15 | 10 | 24 | .5 | 1.8 | 46 | _ | 17 | 17 | | 13 | 116 | | OCT 1986 | | | | | | | | | | | | | 09 | 13 | 25 | .6 | 2.0 | 54 | | 16 | 17 | | 15 | 152 | | OCT 1987 | | | | | | | | | | | | | 15 | 14 | 29 | .7 | 2.1 | 55 | | 15 | 20 | _ | 12 | 129 | | OCT 1988 | | | _ | | | | | | | | | | 25 | 14 | 28 | .7 | 2.6 | 53 | _ | 15 | 19 | | 13 | | | NOV 1989<br>14 | 12 | 27 | . 6 | 1.8 | 46 | | 14 | 18 | | 12 | | | OCT 1990 | 12 | 2, | . 0 | 1.0 | 40 | | 1.7 | 10 | | 12 | | | 30 | 15 | 27 | .7 | 2.3 | 66 | | 15 | 22 | . 30 | 14 | | | NOV 1991 | | | | | | | | | | | | | 06 | 9.8 | 23 | . 5 | 1.5 | 64 | | 16 | 25 | .10 | 26 | _ | | OCT 1992 | | | | | | | | | | | | | 20 | 16 | 29 | .8 | 2.6 | | 61 | 15 | 24 | <.10 | 14 | | | OCT 1993 | | | | | | | | | | | | | 25 | | | _ | | _ | 65 | _ | | _ | | _ | | OCT 1994 | | | | | 53 | 53 | | 28 | | | | | 07 | | | | | 53 | 53 | | 28 | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | | 0.14 | _ | 2.28 | 2.28 | 10 | 0.020 | 2.30 | <0.010 | 0.01 | 0.36 | | OCT 1982 | 100 | | | 0.00 | 0.00 | 10 | 010 | 0.20 | 000 | 02 | | | 14<br>OCT 1983 | 103 | .16 | 1.56 | 2.29 | 2.29 | 10 | .010 | 2.30 | .020 | .03 | _ | | 27 | 122 | .17 | 3.65 | 2.40 | | | <.010 | 2.40 | <.010 | | | | OCT 1984 | | | | | | | | | | | | | 15 | 113 | .16 | 2.70 | 2.57 | 2.57 | 11 | .030 | 2.60 | .070 | .09 | | | OCT 1985 | | | | | | | | | | | | | 15 | 120 | .16 | 3.13 | 2.89 | 2.89 | 13 | .010 | 2.90 | .010 | .01 | . 59 | | OCT 1986 | 100 | | 0.24 | 0.50 | | | - 010 | 0.50 | <.010 | | . 50 | | 09<br>OCT 1987 | 133 | .21 | 2.34 | 2.50 | | _ | <.010 | 2.50 | <.010 | _ | . 50 | | 15 | 138 | .18 | 2.72 | 3.90 | | | <.010 | 3.90 | .020 | .03 | . 58 | | OCT 1988 | | , , , | | 0.00 | | | | | | | | | 25 | 138 | .19 | 1.86 | 3.70 | | | <.010 | 3.70 | .050 | .06 | . 35 | | NOV 1989 | | | | | | | | | | | | | 14 | 124 | .17 | 4.01 | 3.49 | 3.49 | 15 | .010 | 3.50 | .010 | .01 | .49 | | OCT 1990 | 155 | 21 | 2.58 | 4.08 | 4.08 | 18 | .020 | 4.10 | .030 | .04 | .87 | | 30<br>NOV 1991 | 155 | .21 | 2.30 | 4.00 | 4.00 | 10 | .020 | 4.10 | .030 | .04 | .07 | | 06 | 159 | . 22 | 2.10 | 3.70 | | | <.010 | 3.70 | .020 | .03 | .18 | | OCT 1992 | | | | • | | | | | | | | | 20 | 153 | .21 | 2.06 | 3.79 | 3.79 | 17 | .010 | 3.80 | <.010 | - | .30 | | OCT 1993 | | | | | | | | | | | | | 25 | | _ | _ | 2.98 | 2.98 | 13 | .020 | 3.00 | .060 | .08 | | | OCT 1994 | | | | 2 40 | | | - 010 | 2.40 | - 015 | | | | 07 | _ | | | 3.40 | _ | | <.010 | 3.40 | <.015 | _ | | Table 3. Water-quality data from surface-water sites—Continued 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-PHORUS,<br>TOTAL (MG/L<br>AS P) (00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | | 0.36 | 0.39 | 2.7 | 2.7 | 0.050 | 0.15 | 0.050 | 0.030 | 0.09 | 1 | | OCT 1982<br>14 | 0.28 | _ | .30 | _ | 2.6 | | | .040 | .070 | .21 | 1 | | OCT 1983 | 0.20 | | ,,,, | | 2.0 | | | | | | - | | 27 | | _ | . 50 | | 2.9 | .070 | .21 | .050 | .050 | .15 | | | OCT 1984 | | | | | | | | | | | | | 15 | .23 | _ | .30 | _ | 2.9 | .030 | | .030 | .030 | .09 | | | OCT 1985 | 10 | 60 | 20 | 2 5 | 2 1 | 110 | 24 | 100 | 000 | 20 | | | 15<br>OCT 1986 | .19 | . 60 | .20 | 3.5 | 3.1 | .110 | . 34 | .100 | .090 | .28 | _ | | 09 | | .50 | <.20 | 3.0 | | .150 | | .140 | .130 | . 40 | | | OCT 1987 | | | | • • • | | | | | | | | | 15 <i>.</i> | .38 | . 60 | .40 | 4.5 | 4.3 | .290 | | .270 | .250 | .77 | | | OCT 1988 | | | | | | | | | | | | | 25 | .35 | . 40 | . 40 | 4.1 | 4.1 | . 350 | | .330 | .310 | .95 | _ | | NOV 1989<br>14 | .29 | . 50 | . 30 | 4.0 | 3.8 | .200 | _ | .140 | .140 | . 43 | | | OCT 1990 | , 23 | . 30 | . 30 | 4.0 | 3.6 | .200 | | .140 | .140 | .45 | | | 30 | .57 | . 90 | . 60 | 5.0 | 4.7 | .280 | | .260 | .270 | .83 | | | NOV 1991 | | | | | | | | | | | | | 06 | | .20 | <.20 | 3.9 | - | .340 | | .360 | .290 | .89 | _ | | OCT 1992 | | | | | | | | | | | | | 20 | | . 30 | .20 | 4.1 | 4.0 | .370 | | .330 | . 320 | . 98 | _ | | OCT 1993<br>25 | | | | | | | | _ | .190 | .58 | | | OCT 1994 | | | | | | | | | | | | | 07 | _ | | _ | _ | | _ | _ | _ | .220 | . 67 | | Table 3. Water-quality data from surface-water sites—Continued 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | <1.0 | <1 | <1 | <1 | 100 | <1 | 27 | 0.1 | 2 | <4 | ND | | OCT 1982<br>14 | <1.0 | 4 | <1 | <1 | 86 | <1 | 18 | <.1 | 5 | <4 | 0.04 | | OCT 1983 | | - | | | | | | | • | | | | 27 | | | _ | | 98 | | 42 | | | _ | | | OCT 1984 | | | | | | | | | | | | | 15 | _ | _ | _ | _ | 79 | | 19 | _ | | _ | | | OCT 1985 | | | | | | | | | | | | | 15 | | | | | 45 | | 18 | _ | _ | | | | OCT 1986 | | | | | | | | | | | | | 09 | | _ | | | 68 | _ | 26 | _ | | | | | OCT 1987 | | | | | 4.0 | | | | | | | | 15 | _ | | | | 40 | | 21 | _ | | _ | | | OCT 1988<br>25 | | | | | 100 | | 36 | | | | | | NOV 1989 | _ | | | | 100 | _ | 36 | _ | | _ | | | 14 | | | | | 66 | _ | 25 | | | | | | OCT 1990 | | | | | 00 | | 23 | | | | | | 30 | | | | <del></del> | 55 | | 27 | | | _ | | | NOV 1991 | | | | | | | | | | | | | 06 | | _ | | _ | 30 | | 32 | _ | | _ | | | OCT 1992 | | | | | | | | | | | | | 20 | | _ | | | 65 | | 26 | | | | | | OCT 1993 | | | | | | | | | | | | | 25 | _ | | _ | | _ | _ | _ | _ | _ | _ | _ | | OCT 1994 | | | | | | | | | | | | | 07 | | _ | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27<br>OCT 1982 | 0915 | _ | 180 | 6.8 | 12.5 | _ | 8.2 | 55 | <del></del> | 11 | 6.7 | | 15<br>OCT 1983 | 1430 | 0.51 | 172 | 7.3 | 12.5 | _ | 8.9 | 56 | _ | 11 | 7.0 | | 26<br>OCT 1984 | 0900 | .80 | 198 | 6.6 | 11.0 | <1.0 | 9.2 | 59 | - | 12 | 7.0 | | 11<br>OCT 1985 | 0900 | 1.1 | 215 | 7.1 | 11.5 | .60 | 10.2 | 63 | - | 13 | 7.5 | | 16<br>OCT 1986 | 0930 | .91 | 215 | 6.6 | 8.0 | 3.0 | 10.8 | 63 | - | 12 | 8.0 | | 15<br>NOV 1987 | 0900 | . 52 | 210 | 7.0 | 11.5 | .20 | 8.8 | 57 | _ | 11 | 7.1 | | 09<br>NOV 1988 | 0930 | .72 | 228 | 6.8 | 13.0 | .20 | 10.1 | 70 | _ | 14 | 8.4 | | 02<br>OCT 1989 | 0900 | .77 | 303 | 7.0 | 9.0 | 2.0 | 10.5 | 95 | _ | 20 | 11 | | 26<br>OCT 1990 | 1540 | 3.8 | 317 | 6.9 | 14.5 | .90 | 9.4 | 95 | 53 | 20 | 11 | | 05 | 1100 | .74 | 328 | 6.8 | 14.0 | 7.6 | 9.6 | 100 | 45 | 22 | 12 | | 09<br>OCT 1991 | 0840 | _ | 310 | 6.8 | 12.5 | _ | 9.2 | _ | _ | | _ | | 21<br>OCT 1992 | 1249 | .40 | 321 | 7.2 | 11.5 | .40 | 10.6 | 100 | 23 | 22 | 12 | | 22<br>OCT 1993 | 1345 | . 59 | 330 | 7.0 | 11.5 | .70 | 10.4 | 130 | _ | 28 | 14 | | 28<br>OCT 1994 | 1240 | .76 | 475 | 7.0 | 11.5 | | 9.0 | | | <del></del> | | | 17 | 1300 | .71 | 419 | 6.8 | 11.5 | _ | 9.7 | _ | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | 14 | 35 | 0.8 | 1.6 | | | 15 | 23 | <0.10 | 7.9 | 107 | | OCT 1982<br>15 | 13 | 33 | . 8 | 0.70 | 20 | _ | 12 | 25 | <.10 | 7.9 | 131 | | OCT 1983 | 13 | 33 | .0 | 0.70 | 20 | | 12 | 23 | 1.10 | 7.5 | 101 | | 26 | 14 | 34 | .8 | 1.3 | 20 | _ | 14 | 28 | _ | 7.9 | 127 | | OCT 1984 | | | | | | | 4.0 | | | | 100 | | 11<br>OCT 1985 | 15 | 33 | . 8 | 1.2 | 24 | _ | 13 | 31 | _ | 7.5 | 128 | | 16 | 15 | 34 | . 8 | 1.3 | 22 | | 15 | 30 | | 8.0 | 124 | | OCT 1986 | | | | | | | | | | | | | 15<br>NOV 1987 | 15 | 36 | . 9 | 1.6 | 22 | | 12 | 30 | | 7.9 | 150 | | 09 | 17 | 34 | . 9 | 1.5 | 24 | | 11 | 34 | _ | 7.8 | 141 | | NOV 1988 | | | | | | | | | | | | | 02 | 19 | 30 | . 8 | 1.8 | 56 | | 15 | 50 | _ | 8.2 | | | OCT 1989<br>26 | 18 | 29 | . 8 | 1.4 | 42 | _ | 16 | 43 | _ | 7.9 | _ | | OCT 1990 | 10 | 23 | | 1.4 | | | 10 | 43 | | 7.5 | | | 05 | 17 | 26 | .7 | 1.8 | 59 | _ | 17 | 47 | <.10 | 7.6 | | | 09 | _ | _ | _ | _ | _ | | _ | _ | - | | _ | | OCT 1991<br>21 | 18 | 27 | . 8 | 1.6 | 81 | | 16 | 42 | .10 | 7.2 | | | OCT 1992 | 10 | 21 | | 1.0 | 01 | | 10 | 72 | .10 | 7.2 | | | 22 | 26 | 30 | 1 | 1.7 | _ | 50 | 14 | 73 | <.10 | 7.6 | _ | | OCT 1993 | | | | | | 64 | | | | | | | 28<br>OCT 1994 | | | _ | | | 64 | | | _ | | _ | | 17 | | | _ | | | 60 | | 68 | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00695) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | | 0.15 | | 4.60 | | _ | <0.010 | 4.60 | 0.010 | 0.01 | 0.59 | | OCT 1982 | | | | | | | | | | | | | 15 | 113 | .18 | 0.18 | 5.38 | 5.38 | 24 | .020 | 5.40 | .020 | .03 | | | OCT 1983 | | | | | | | | | | | | | 26 | 119 | .17 | .27 | 5.01 | 5.01 | 22 | .090 | 5.10 | <.010 | _ | | | OCT 1984<br>11 | 125 | .17 | .38 | 5.00 | _ | | <.010 | 5.00 | .030 | .04 | | | OCT 1985 | 123 | .17 | . 30 | 3.00 | | _ | V.010 | 3.00 | .030 | .04 | | | 16 | 127 | .17 | .30 | 5.49 | 5.49 | 24 | .010 | 5.50 | .020 | .03 | .28 | | OCT 1986 | | | | | | | | | | | | | 15 | 123 | .20 | .21 | 5.80 | | | <.010 | 5.80 | <.010 | | . 70 | | NOV 1987 | | | | | | | | | | | | | 09 | 132 | .19 | .27 | 5.30 | | _ | <.010 | 5.30 | .020 | .03 | .58 | | NOV 1988 | 180 | 24 | 27 | 4 00 | | | 4 010 | 4 00 | | | 40 | | 02<br>OCT 1989 | 180 | .24 | . 37 | 4.80 | | | <.010 | 4.80 | <.010 | | . 40 | | 26 | 164 | .22 | 1.68 | 4.70 | _ | | <.010 | 4.70 | .040 | .05 | .36 | | OCT 1990 | | | 2.00 | | | | ***** | | | ,,,, | | | 05 | 179 | .24 | . 36 | 4.30 | | _ | <.010 | 4.30 | .040 | .05 | .26 | | 09 | | _ | | | | | | | - | _ | | | OCT 1991 | | | | | | | | | | | | | 21 | 187 | .25 | .20 | 4.30 | | | <.010 | 4.30 | .020 | .03 | | | OCT 1992 | | | | | | | | | | | | | 22 | 213 | .29 | . 34 | 4.28 | 4.28 | 19 | .020 | 4.30 | <.010 | _ | | | OCT 1993<br>28 | | _ | | 3.80 | | | <.010 | 3.80 | .010 | .01 | | | OCT 1994 | _ | | | 3.80 | | | ₹.010 | 3.80 | .010 | .01 | | | 17 | | | | 4.00 | | | <.010 | 4.00 | .020 | .03 | | Table 3. Water-quality data from surface-water sites—Continued 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | 0.69 | 0.60 | 0.70 | 5.2 | 5.3 | 0.020 | 0.06 | <0.010 | 0.010 | 0.03 | 1 | | OCT 1982<br>15 | . 18 | _ | .20 | | 5.6 | | | .050 | <.010 | | <1 | | OCT 1983 | .10 | _ | . 20 | | 3.6 | | | .050 | <.010 | | <b>&lt;</b> 1 | | 26 | | _ | .40 | _ | 5.5 | .040 | .12 | .040 | .040 | .12 | _ | | OCT 1984 | | | | | | | | | | | | | 11 | .17 | _ | .20 | _ | 5.2 | .020 | _ | .020 | .010 | .03 | _ | | OCT 1985 | . 28 | .30 | .30 | 5.8 | 5.8 | <.010 | | <.010 | .010 | .03 | | | 16<br>OCT 1986 | . 20 | .30 | . 30 | 5.6 | 3.6 | <.010 | _ | ₹.010 | .010 | .03 | <del></del> | | 15 | | . 70 | .90 | 6.5 | 6.7 | .030 | _ | .020 | <.010 | | - | | NOV 1987 | | | | | | | | | | | | | 09 | _ | . 60 | <.20 | 5.9 | _ | .010 | _ | <.010 | <.010 | _ | | | NOV 1988<br>02 | | . 40 | .40 | 5.2 | 5.2 | .010 | _ | <.010 | <.010 | _ | _ | | OCT 1989 | | . 10 | . 10 | 3.2 | 3.2 | .010 | | 1.010 | 1.010 | | | | 26 | .76 | .40 | .80 | 5.1 | 5.5 | .020 | | .010 | .020 | .06 | | | OCT 1990 | | | | | | | | | | | | | 05 | . 36 | .30 | .40 | 4.6 | 4.7 | .020 | _ | .020 | .020 | .06 | _ | | 09<br>OCT 1991 | _ | | | | _ | _ | _ | | _ | _ | <del></del> | | 21 | | <.20 | <.20 | | | <.010 | _ | <.010 | .020 | .06 | _ | | OCT 1992 | | | | | | | | | | | | | 22 | | <.20 | <.20 | _ | | .030 | | .020 | .010 | .03 | _ | | OCT 1993<br>28 | | | | _ | _ | | _ | | <.010 | | | | 28<br>OCT 1994 | | _ | <del></del> | | _ | _ | | | <.010 | _ | _ | | 17 | _ | _ | _ | | _ | _ | _ | _ | .020 | .06 | _ | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued ### 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22)—Continued | DATE | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STINCE<br>(MG/L)<br>(38260) | |----------------|------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | 2.0 | 3 | <1 | 2 | 32 | <1 | 20 | 0.2 | 2 | 8 | ND | | OCT 1982<br>15 | <1.0 | 1 | <1 | <1 | 8 | <1 | 8 | <.1 | 5 | 5 | 0.05 | | OCT 1983 | 11.0 | • | ~- | ~- | U | ~- | U | | J | J | 0.05 | | 26 | | | | | 23 | | 18 | | | _ | _ | | OCT 1984 | | | | | | | | | | | | | 11<br>OCT 1985 | _ | | _ | _ | 13 | _ | 10 | | _ | _ | | | 16 | | | _ | | 13 | | 16 | | _ | _ | _ | | OCT 1986 | | | | | | | | | | | | | 15 | | _ | _ | | 17 | | 12 | | | | _ | | NOV 1987 | | | | | | | _ | | | | | | 09<br>NOV 1988 | | | _ | | 15 | _ | 9 | | _ | _ | _ | | 02 | | | | | 25 | | 13 | | _ | _ | | | OCT 1989 | | | | | 20 | | | | | | | | 26 | _ | | _ | | 24 | | 170 | | | | _ | | OCT 1990 | | | | | | | | | | | | | 05 | | | | _ | 5 | | 67 | | _ | _ | _ | | 09<br>OCT 1991 | | | | | | | | _ | _ | _ | _ | | 21 | | | | _ | 10 | | 170 | | | _ | | | OCT 1992 | | | | | | | | | | | | | 22 | _ | - | | - | 6 | | 17 | | _ | <del></del> | _ | | OCT 1993 | | | | | | | | | | | | | 28 | _ | | | _ | | | | _ | | | | | OCT 1994<br>17 | | | _ | | _ | _ | | | | | _ | | 17 | | _ | | | _ | _ | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27<br>OCT 1982 | 1100 | | 223 | 7.3 | 13.5 | | 9.4 | 87 | _ | 19 | 9.5 | | 22 | 1030 | 1.4 | 256 | 7.5 | 9.5 | | 11.4 | 96 | | 22 | 10 | | OCT 1983 | | | | | | | | | | | | | 26 | 1100 | 1.9 | 235 | 7.1 | 12.0 | 1.2 | 10.7 | 100 | | 23 | 11 | | OCT 1984 | | | | | | | | | | | | | 11 | 1100 | 3.7 | 268 | 7.9 | 15.0 | .60 | 11.1 | 100 | | 23 | 11 | | OCT 1985 | 1000 | | 050 | | | | | | | | •• | | 16<br>OCT 1986 | 1300 | 4.2 | 250 | 7.4 | 12.5 | .70 | 11.2 | 96 | | 22 | 10 | | 15 | 1330 | 1.7 | 240 | 7.5 | 15.0 | 2.6 | 9.6 | 94 | | 21 | 10 | | NOV 1987 | 1330 | 2.7 | 240 | 7.5 | 13.0 | 2.0 | 3.0 | 24 | | 2.1 | 10 | | 09 | 1245 | 2.5 | 262 | 7.3 | 13.0 | .50 | 11.4 | 110 | | 23 | 12 | | NOV 1988 | | | | | | | | | | | | | 02 | 1330 | 7.6 | 280 | 7.7 | 8.5 | 1.5 | 11.8 | 100 | | 22 | 11 | | OCT 1989 | | | | | | | | | | | | | 26 | 1300 | 6.3 | 281 | 7.3 | 14.0 | 3.0 | 9.9 | 100 | 41 | 23 | 11 | | OCT 1990 | | | | | | | | | | | | | 05 | 0830 | 2.1 | 324 | 6.8 | 13.5 | 1.0 | 9.0 | 120 | 29 | 27 | 13 | | OCT 1991 | | | | | | | | | | | | | 21 | 1430 | 2.5 | 298 | 7.4 | 11.0 | 2.9 | 11.7 | 110 | 30 | 27 | 11 | | OCT 1992<br>23 | 0945 | 2.5 | 314 | 7.6 | 8.5 | .70 | 11.8 | 120 | | 28 | 13 | | 23<br>OCT 1993 | 0943 | 2.5 | 314 | 7.6 | 0.3 | . 70 | 11.0 | 120 | _ | 20 | 13 | | 26 | 1415 | 2.1 | 315 | 7.4 | 12.0 | | 10.8 | | _ | | | | OCT 1994 | | | | | 0 | | | | | | | | 21 | 1400 | 4.0 | 302 | 7.0 | 15.0 | | 10.4 | | | | | Table 3. Water-quality data from surface-water sites—Continued # 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23)—Continued | | | | | | ALKA- | ALKA- | | | | | SOLIDS, | |----------|---------|---------|---------|---------|---------------------|---------------------|----------------------|---------|--------------|--------------------|---------| | | | | | POTAS- | LINITY | LINITY | | CHLO- | FLUO- | SILICA, | RESIDUE | | | SODIUM, | | SODIUM | SIUM, | WAT WH | WAT WH | SULFATE, | RIDE, | RIDE, | DIS- | AT 180 | | | DIS- | | AD- | DIS- | TOT FET | TOT IT | DIS- | DIS- | DIS- | SOLVED | DEG. C | | | SOLVED | | SORP- | SOLVED | FIELD | FIELD | SOLVED | SOLVED | SOLVED | (MG/L | DIS- | | DATE | (MG/L | SODIUM | TION | (MG/L | (MG/L AS | (MG/L AS | (MG/L | (MG/L | (MG/L | AS | SOLVED | | | AS NA) | PERCENT | RATIO | AS K) | CACO <sub>3</sub> ) | CACO <sub>3</sub> ) | AS SO <sub>4</sub> ) | AS CL) | AS F) | SIO <sub>2</sub> ) | (MG/L) | | | (00930) | (00932) | (00931) | (00935) | (00410) | (00419) | (00945) | (00940) | (00950) | (00955) | (70300) | | OCT 1981 | | | | | | | | | | | | | 27 | 11 | 21 | 0.5 | 3.8 | | _ | 26 | 21 | <0.10 | 12 | 13€ | | OCT 1982 | 11 | 21 | 0.5 | 3.0 | | | 20 | 2.1 | <b>VO.10</b> | 12 | 130 | | 22 | 8.1 | 15 | . 4 | 2.7 | 68 | | 18 | 17 | <.10 | 19 | 151 | | OCT 1983 | 0.1 | 10 | | 2.,, | 00 | | | | 11.10 | | 101 | | 26 | 8.8 | 15 | . 4 | 3.2 | 66 | | 25 | 17 | | 18 | 161 | | OCT 1984 | | | | | | | | | | | | | 11 | 11 | 18 | .5 | 2.9 | 72 | | 21 | 24 | | 14 | 15€ | | OCT 1985 | | | | | | | | - | | | | | 16 | 11 | 19 | .5 | 2.6 | 58 | | 21 | 21 | | 12 | 144 | | OCT 1986 | | | | | | | | | | | | | 15 | 8.5 | 16 | . 4 | 4.9 | 72 | | 22 | 19 | | 17 | 17ε | | NOV 1987 | | | | | | | | | | | | | 09 | 11 | 18 | . 5 | 2.6 | 74 | | 19 | 27 | | 12 | 165 | | NOV 1988 | | | | | | | | | | | | | 02 | 13 | 21 | . 6 | 2.7 | 76 | | 24 | 31 | | 6.5 | | | OCT 1989 | | | | | | | | | | | | | 26 | 11 | 18 | .5 | 2.4 | 62 | | 20 | 26 | | 13 | | | OCT 1990 | | | | | | | | | | | | | 05 | 13 | 19 | . 5 | 2.6 | 92 | | 21 | 35 | <.10 | 13 | | | OCT 1991 | | | | | | | | | | | | | 21 | 9.3 | 14 | . 4 | 5.2 | 83 | _ | 34 | 18 | .10 | 15 | | | OCT 1992 | | | | | | | | | | | | | 23 | 13 | 18 | .5 | 2.3 | | 68 | 21 | 36 | .10 | 14 | | | OCT 1993 | | | | | | | | | | | | | 26 | _ | | | | | 72 | _ | | - | - | - | | OCT 1994 | | | | | | | | | | | | | 21 | _ | | | | | 65 | _ | 44 | | _ | _ | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>CRGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | | 0.18 | | 1.17 | | | <0.010 | 1.50 | 0.080 | 0.10 | 0.49 | | OCT 1982 | | 01 | 0.57 | 0.00 | 0.00 | 0.0 | 010 | 0.10 | . 010 | 01 | | | 22<br>OCT 1983 | 147 | . 21 | 0.57 | 2.09 | 2.09 | 9.3 | .010 | 2.10 | <.010 | .01 | | | 26 | 156 | .22 | .83 | 2.20 | | | <.010 | 2.20 | <.010 | | | | OCT 1984 | | | | | | | | | | | | | 11 | 162 | .21 | 1.56 | 2.58 | 2.58 | 11 | .020 | 2.60 | .020 | .03 | _ | | OCT 1985 | | | | | | | | | | | | | 16 | 144 | .20 | 1.63 | 2.16 | 2.16 | 9.6 | .040 | 2.20 | .030 | .04 | .47 | | OCT 1986<br>15 | 154 | .24 | .82 | 1.79 | 1.79 | 7.9 | .010 | 1.80 | <.010 | _ | 1.0 | | NOV 1987 | | , | | 2 | 2.,, | | .010 | 2.00 | 1,010 | | | | 09 | 160 | . 22 | 1.11 | 2.10 | | | <.010 | 2.10 | .030 | .04 | .37 | | NOV 1988 | | | | | | | | | | | | | 02 | 163 | . 22 | 3.34 | 1.58 | 1.58 | 7.0 | .020 | 1.60 | .040 | .05 | .56 | | OCT 1989<br>26 | 156 | .21 | 2.65 | 2.68 | 2.68 | 12 | .020 | 2.70 | .030 | .04 | .57 | | OCT 1990 | 130 | | 2.00 | 2.00 | 2.00 | | .020 | 2.10 | | | | | 05 | 189 | .26 | 1.05 | 1.98 | 1.98 | 8.8 | .020 | 2.00 | .020 | .03 | .38 | | OCT 1991 | | | | | | | | | | | | | 21 | 181 | .25 | 1.22 | 2.48 | 2.48 | 11 | .020 | 2.50 | .020 | .03 | | | OCT 1992<br>23 | 178 | .24 | 1.20 | 2.08 | 2.08 | 9.2 | .020 | 2.10 | <.010 | | .30 | | OCT 1993 | 176 | .24 | 1.20 | 2.08 | 2.06 | 9.2 | .020 | 2.10 | V.010 | _ | . 30 | | 26 | | | | 3.10 | | | <.010 | 3.10 | .020 | .03 | | | OCT 1994 | | | | | | | | | | | | | 21 | | _ | | 1.70 | - | _ | <.010 | 1.70 | .020 | .03 | | Table 3. Water-quality data from surface-water sites—Continued ## 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORU:<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>S, DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | AFSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(C1000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | 0.43 | 0.55 | 0.51 | 1.7 | 2.0 | 0.060 | 0.18 | 0.020 | <0.010 | | 1 | | OCT 1982 | | | | | | | | | | | _ | | 22 | | | 2.3 | | 4.4 | | | .030 | .010 | 0.03 | 1 | | OCT 1983 | | | • • | | | 0.50 | • • | 000 | 050 | | | | 26 | | | 1.3 | | 3.5 | .060 | .18 | .030 | .050 | . 15 | | | OCT 1984<br>11 | .28 | | . 30 | | 2.9 | . 020 | | .020 | .010 | .03 | | | OCT 1985 | .28 | | . 30 | | 2.9 | . 020 | _ | .020 | .010 | .03 | _ | | 16 | . 27 | .50 | . 30 | 2.7 | 2.5 | .020 | .06 | .010 | .010 | .03 | | | OCT 1986 | | | | | 2.0 | .020 | | .010 | .010 | | | | 15 | | 1.0 | . 90 | 2.8 | 2.7 | .070 | _ | .040 | .020 | .06 | | | NOV 1987 | | | | | | | | | | | | | 09 | . 27 | .40 | . 30 | 2.5 | 2.4 | .020 | _ | .020 | .010 | .03 | | | NOV 1988 | | | | | | | | | | | | | 02 | .56 | . 60 | . 60 | 2.2 | 2.2 | .030 | _ | .010 | <.010 | | | | OCT 1989 | | | | | | | | | | | | | 26 | . 37 | . 60 | . 40 | 3.3 | 3.1 | .050 | | <.010 | <.010 | _ | - | | OCT 1990 | | | | | | | | | | | | | 05 | .38 | . 40 | . 40 | 2.4 | 2.4 | <.020 | _ | <.010 | <.010 | | _ | | OCT 1991 | | | | | | 000 | | | 000 | | | | 21 | | <.20 | <.20 | | | .020 | | <.010 | .030 | .09 | | | OCT 1992<br>23 | | .30 | <.20 | 2.4 | | . 020 | | .020 | <.010 | | | | OCT 1993 | | . 30 | 1.20 | ۷.4 | | . 020 | <del></del> | .020 | V.010 | _ | | | 26 | | _ | | | | _ | | _ | .020 | .06 | | | OCT 1994 | | | | | | | | | | | | | 21 | | | | | | | | | .020 | .06 | | Table 3. Water-quality data from surface-water sites—Continued ## 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23)—Continued | DĀTE | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | 3.0 | <1 | <1 | 2 | 380 | <1 | 40 | <0.1 | 2 | <4 | 0.0 | | OCT 1982<br>22<br>OCT 1983 | <1.0 | <1 | 1 | 1 | 45 | <1 | 33 | _ | <1 | <4 | .03 | | 26 | | _ | | | 110 | | 49 | _ | | | | | OCT 1984 | | | | | | | | | | | | | 11 | _ | _ | | | 57 | | 24 | | _ | <del></del> | | | OCT 1985<br>16 | | | | | 50 | | 20 | | _ | | | | OCT 1986 | | | | | 50 | _ | 20 | _ | _ | <del></del> | | | 15 | | | | | 79 | | 40 | | | _ | | | NOV 1987 | | | | | | | | | | | | | 09<br>NOV 1988 | | _ | | | 61 | | 19 | | | <del></del> | | | 02 | _ | | | _ | 58 | | 25 | | | | | | OCT 1989 | | | | | | | 20 | | | | | | 26 | _ | | _ | | 59 | | 40 | | _ | | - | | OCT 1990 | | | | | | | | | | | | | 05<br>OCT 1991 | _ | | | | 34 | _ | 22 | | | _ | | | 21 | | | | | 71 | | 37 | | _ | | | | OCT 1992 | | | | | | | | | | | | | 23 | | - | | | 34 | | 13 | _ | _ | _ | | | OCT 1993 | | | | | | | | | | | | | 26<br>OCT 1994 | | _ | | | | | | | _ | | _ | | 21 | _ | | | _ | | | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGTE-<br>SIUT,<br>DIS-<br>SOLVTD<br>(MG/L<br>AS 173)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27 | 1215 | _ | 226 | 7.5 | 13.5 | _ | 10.3 | 85 | _ | 19 | 9.1 | | OCT 1982 | | | 204 | | | | | | | 22 | 10 | | 22<br>OCT 1983 | 1315 | 2.8 | 284 | 7.1 | 9.5 | | 10.5 | 99 | | 23 | 10 | | 26 | 1300 | 5.3 | _ | | _ | 2.9 | _ | 85 | _ | 20 | 8.6 | | OCT 1984 | | | | | | | | | | | | | 11 | 1400 | 6.0 | 280 | 7.8 | 16.0 | . 90 | 10.0 | 99 | _ | 23 | 10 | | OCT 1985 | | | | | | | | | | | | | 16 | 1530 | 5.9 | 270 | 7.3 | 13.0 | 1.2 | 9.8 | 100 | _ | 23 | 11 | | OCT 1986<br>16 | 0900 | 3.9 | 250 | 7.5 | 10.0 | 2.0 | 9.5 | 96 | | 22 | 9.9 | | NOV 1987 | 0300 | 3.3 | 230 | 7.5 | 10.0 | 2.0 | 7.5 | 30 | | 22 | 3.5 | | 05 | 0930 | 5.7 | 280 | 7.1 | 13.5 | .40 | 10.2 | 110 | | 25 | 12 | | NOV 1988 | | | | | | | | | | | | | 03 | 0845 | 6.3 | 280 | 7.5 | 8.0 | 3.1 | 11.4 | 100 | _ | 22 | 11 | | OCT 1989 | 221- | | | | | | | | 0.7 | | | | 26<br>OCT 1990 | 0915 | 13 | 296 | 7.3 | 11.5 | 1.0 | 11.0 | 99 | 37 | 23 | 10 | | 25 | 1330 | 7.6 | 298 | 6.8 | 14.0 | 4.0 | 10.0 | 110 | 38 | 24 | 11 | | OCT 1991 | | , | | • • • • | | | | | • • • | | | | 22 | 1130 | 4.5 | 321 | 7.4 | 10.0 | 2.0 | 10.4 | 110 | 45 | 25 | 11 | | OCT 1992 | | | | | | | | | | | | | 22 | 1130 | 3.8 | 330 | 7.2 | 9.5 | 5.1 | 10.8 | 110 | | 25 | 12 | | OCT 1993<br>26 | 1200 | 6.6 | 302 | 7.2 | 12.0 | | 9.7 | _ | | | | | OCT 1994 | 1200 | 3.0 | 302 | 1.2 | 12.0 | | 3.1 | | | | | | 21 | 0900 | 5.0 | 260 | 7.1 | 12.5 | | 8.6 | _ | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SIMICA,<br>DIS-<br>SOWVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 27 | 12 | 23 | 0.6 | 3.5 | _ | | 27 | 21 | 0.10 | 14 | | OCT 1982 | 12 | 00 | | 0.7 | 60 | | 00 | 22 | - 10 | 1.5 | | 22<br>OCT 1983 | 13 | 22 | .6 | 2.7 | 69 | | 23 | 22 | <.10 | 17 | | 26 | 11 | 21 | .5 | 3.5 | | | 26 | 19 | _ | 13 | | OCT 1984 | | | | | | | | | | | | 11 | 13 | 22 | . 6 | 3.2 | 64 | | 24 | 25 | _ | 14 | | OCT 1985 | 12 | 01 | _ | 3.4 | 60 | | 24 | 24 | | 17 | | 16<br>OCT 1986 | 13 | 21 | . 6 | 3.4 | 60 | | 24 | 24 | | 17 | | 16 | 13 | 22 | . 6 | 3.9 | 68 | | 23 | 23 | | 15 | | NOV 1987 | | | | | | | | | | | | 05 | 13 | 20 | . 5 | 3.3 | 74 | _ | 21 | 28 | | 13 | | NOV 1988<br>03 | 12 | 20 | .5 | 3.1 | 68 | | 24 | 26 | | 13 | | OCT 1989 | 12 | 20 | .5 | 3.1 | 00 | <del></del> | 24 | 20 | | 13 | | 26 | 11 | 19 | . 5 | 2.9 | 62 | | 21 | 27 | | 15 | | OCT 1990 | | | | | | | | | | | | 25 | 13 | 20 | . 6 | 3.7 | 67 | | 17 | 26 | .30 | 15 | | OCT 1991<br>22 | 14 | 21 | . 6 | 3.4 | 63 | | 23 | 33 | .10 | 14 | | OCT 1992 | 1.3 | 21 | . 0 | 3.4 | 05 | | 23 | 33 | .10 | <b>4</b> 7 | | 22 | 13 | 20 | .5 | 3.0 | | 64 | 22 | 35 | .10 | 15 | | OCT 1993 | | | | | | | | | | | | 26 | | | | | | 65 | | | | | | OCT 1994<br>21 | | _ | | | | 66 | | 43 | | | | 21 | | | | | | 00 | | -1-0 | | | Table 3. Water-quality data from surface-water sites—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24)—Continued | | SOLIDS, | SOLIDS, | | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | |----------------|-------------|---------|---------|---------|---------|---------|----------------------|---------|---------------|---------| | | RESIDUE | SUM OF | SOLIDS, | SOLIDS, | NITRO- | GEN, | GEN, | GEN, | GEN, | GEN, | | | AT 180 | CONSTI- | DIS- | DIS- | GEN, | NITRATE | NITRATE | NITRITE | $NO_2 + NO_3$ | AMMONIA | | | DEG. C | TUENTS, | SOLVED | SOLVED | NITRATE | DIS- | DIS- | DIS- | DIS- | DIS- | | | DIS- | DIS- | (TONS | (TONS | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | SOLVED | SOLVED | PER | PER | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | | (MG/L) | (MG/L) | AC-FT) | DAY) | AS N) | AS N) | AS NO <sub>3</sub> ) | As N) | AS N) | AS N) | | | (70300) | (70301) | (70303) | (70302) | (00620) | (00618) | (71851) | (00613) | (00631) | (00608) | | OCT 1981 | | | | | | | | | | | | 27 | 141 | | 0.19 | | 1.80 | | | <0.010 | 1.70 | 0.020 | | OCT 1982 | | | | | | | | | | | | 22 | 153 | 164 | .21 | 1.14 | 2.47 | 2.47 | 11 | .030 | 2.50 | .100 | | OCT 1983 | | | | | | | | | | | | 26 | 150 | | | _ | | | | | _ | | | OCT 1984 | | | | | | | | | | | | 11 | 165 | 165 | .22 | 2.67 | 2.89 | 2.89 | 13 | .010 | 2.90 | . 080 | | OCT 1985 | | | | | | | | | | | | 16 | 160 | 167 | .22 | 2.55 | 3.27 | 3.27 | 14 | .030 | 3.30 | .11.0 | | OCT 1986 | | | | | | | | | | | | 16 | 183 | 161 | .25 | 1.93 | 2.08 | 2.08 | 9.2 | .020 | 2.10 | .040 | | NOV 1987 | | | | | | | | | | | | 05 | 174 | 173 | .24 | 2.68 | 2.69 | 2.69 | 12 | .010 | 2.70 | .080 | | NOV 1988 | | 1.50 | .22 | 0.76 | 0.10 | | | - 010 | 0 10 | 070 | | 03<br>OCT 1989 | <del></del> | 162 | . 22 | 2.76 | 2.10 | | | <.010 | 2.10 | . 070 | | 26 | | 162 | .22 | 5.67 | 3.09 | 3.09 | 14 | .010 | 3.10 | .020 | | OCT 1990 | | 102 | | 3.07 | 3.03 | 3.03 | 14 | .010 | 3.10 | .020 | | 25 | | 163 | .22 | 3.34 | 2.57 | 2.57 | 11 | .030 | 2.60 | .090 | | OCT 1991 | | 200 | | | | 2.0. | | | | | | 22 | | 175 | .24 | 2.13 | 2.89 | 2.89 | 13 | .010 | 2.90 | .030 | | OCT 1992 | | | | | | | | | | | | 22 | | 177 | .24 | 1.82 | 2.89 | 2.89 | 13 | .010 | 2.90 | .010 | | OCT 1993 | | | | | | | | | | | | 26 | | _ | | | 3.90 | | | <.010 | 3.90 | .030 | | OCT 1994 | | | | | | | | | | | | 21 | _ | _ | _ | | 2.30 | _ | | <.010 | 2.30 | <.015 | Table 3. Water-quality data from surface-water sites—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24)—Continued | DATE | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHOPUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00566) | |----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 27 | 0.03 | 0.86 | 0.66 | 0.90 | 0.68 | 2.7 | 2.4 | 0.280 | 0.86 | 0.250 | | OCT 1982 | | | | | | | | | | | | 22<br>OCT 1983 | .13 | | . 60 | | . 70 | _ | 3.2 | | _ | .100 | | 26 | | | | _ | | | | _ | | | | OCT 1984 | | | | | | | | | | | | 11 | .10 | | .22 | | .30 | _ | 3.2 | .390 | | .370 | | OCT 1985 | | | | | | | | | | | | 16 | .14 | . 59 | .59 | .70 | .70 | 4.0 | 4.0 | .460 | 1.4 | .410 | | OCT 1986 | | | | | | | | | | | | 16 | .05 | . 66 | .36 | .70 | . 40 | 2.8 | 2.5 | .300 | | .280 | | NOV 1987<br>05 | .10 | . 42 | . 52 | .50 | . 60 | 3.2 | 3.3 | .260 | _ | .250 | | NOV 1988 | .10 | . 72 | . 52 | .50 | .00 | 3.2 | 3.3 | .200 | | .230 | | 03 | .09 | .43 | . 43 | .50 | . 50 | 2.6 | 2.6 | .200 | | .170 | | OCT 1989 | | | | | | | | | | | | 26 | .03 | .28 | .28 | .30 | .30 | 3.4 | 3.4 | .190 | _ | .160 | | OCT 1990 | 10 | 7. | <b>61</b> | 00 | 70 | 2.4 | 2.2 | 270 | | 210 | | 25<br>OCT 1991 | .12 | .71 | . 61 | .80 | .70 | 3.4 | 3.3 | .270 | | .210 | | 22 | .04 | . 47 | .17 | .50 | .20 | 3.4 | 3.1 | . 340 | | .260 | | OCT 1992 | | | , | | | • • • | | | | | | 22 | .01 | .89 | . 39 | .90 | .40 | 3.8 | 3.3 | .370 | _ | .250 | | OCT 1993 | | | | | | | | | | | | 26 | .04 | | | _ | | _ | | | _ | _ | | OCT 1994 | | | | | | | | | | | | 21 | | | _ | | _ | | _ | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24)—Continued | DATE | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | |----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 27 | 0.230 | 0.71 | 1 | | | 3.0 | <1 | <1 | 4 | 330 | | OCT 1982<br>22 | .070 | .21 | 1 | | | <1.0 | <1 | 1 | 2 | 59 | | OCT 1983 | .070 | .21 | 1 | | | <b>\1.0</b> | <b>~1</b> | 1 | 2 | 39 | | 26 | _ | | 1 | | | <1.0 | <1 | | 4 | 66 | | OCT 1984 | | | | | | | | | | | | 11 | .360 | 1.1 | <1 | _ | _ | <1.0 | <1 | _ | <1 | 55 | | OCT 1985 | 200 | | | | | | | | • | 25 | | 16<br>OCT 1986 | .390 | 1.2 | <1 | | _ | <1.0 | <1 | _ | 2 | 35 | | 16 | .270 | .83 | <1 | | _ | 1.0 | <1 | | 3 | 75 | | NOV 1987 | | | | | | | | | | | | 05 | . 220 | . 67 | <1 | | _ | <1.0 | <1 | _ | 2 | 78 | | NOV 1988 | | | | | | | | | -4.0 | | | 03<br>OCT 1989 | .160 | . 49 | <1 | 46 | <0.5 | <1.0 | <5 | <3 | <10 | 130 | | 26 | .140 | .43 | <1 | 50 | <.5 | <1.0 | <5 | <3 | <10 | 97 | | OCT 1990 | | | | | | | | _ | | | | 25 | .210 | . 64 | <1 | 47 | <.5 | <1.0 | <5 | <3 | <10 | 63 | | OCT 1991 | 222 | | | | | | | | | | | 22<br>OCT 1992 | .230 | .71 | <1 | 47 | <.5 | <1.0 | <5 | <3 | <10 | 87 | | 22 | .200 | . 61 | | 53 | <.5 | <1.0 | <5 | <3 | <10 | 83 | | OCT 1993 | | | | | | | | | | | | 26 | .330 | 1.0 | _ | _ | _ | - | _ | | _ | _ | | OCT 1994 | | | | | | | | | | | | 21 | .140 | .43 | | | _ | | _ | | | | Table 3. Water-quality data from surface-water sites—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>STB-<br>STANCE<br>(M <sup>2</sup> /L)<br>(38?60) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 27 | <1 | | 56 | 0.2 | 2 | | _ | | <4 | N. | | OCT 1982 | | | 100 | | _ | | | | | 2 24 | | 22<br>OCT 1983 | <1 | | 100 | . 4 | 3 | | _ | | <4 | 0.04 | | 26 | 2 | | 69 | .1 | 2 | <1.0 | | | 6 | | | OCT 1984 | _ | | | | _ | | | | | | | 11 | 2 | | 29 | <.1 | 3 | <1.0 | _ | _ | <3 | | | OCT 1985 | | | | _ | | | | | | | | 16<br>OCT 1986 | <1 | | 33 | <.1 | <1 | <1.0 | | | 15 | | | 16 | <5 | | 54 | <1.0 | 2 | <1.0 | | | <3 | | | NOV 1987 | | | | 12.0 | ~ | 12.0 | | | | | | 05 | <5 | | 41 | <.1 | <1 | <1.0 | | | 4 | | | NOV 1988 | | | | | | | | | | | | 03 | <10 | 6 | 39 | . 6 | <10 | <1.0 | 120 | <6 | 5 | | | OCT 1989<br>26 | <10 | 5 | 45 | .2 | <10 | <1.0 | 120 | <6 | 14 | | | OCT 1990 | <b>\10</b> | 3 | 43 | . 2 | <b>~10</b> | 11.0 | 120 | ~0 | | | | 25 | <10 | 6 | 39 | <.1 | <10 | <1.0 | 130 | <6 | 5 | | | OCT 1991 | | | | | | | | | | | | 22 | <10 | 7 | 46 | <.1 | <10 | <1.0 | 130 | <6 | 9 | | | OCT 1992 | 410 | | 47 | . 1 | <10 | <1.0 | 150 | <6 | 8 | | | 22<br>OCT 1993 | <10 | <4 | 47 | <.1 | <10 | <1.U | 130 | <b>\</b> 0 | 0 | _ | | 26 | _ | | | | | | _ | _ | | _ | | OCT 1994 | | | | | | | | | | | | 21 | _ | | | | | | | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01476840 - Goose Creek Tributary to East Branch Chester Creek near West Chester, Pa. (Site 25) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN, DIS- SOLVED (MG/L) (00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARI<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | DIS-<br>SOLVED | ris-<br>scu <b>v</b> ed | |----------------|-----------|-------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 27<br>OCT 1982 | 1445 | | 935 | 7.3 | 17.0 | <del></del> | 5.1 | 140 | _ | 35 | 13 | | 22<br>NOV 1988 | 1445 | 7.9 | 1,180 | 7.2 | 12.5 | | 7.1 | 160 | _ | 38 | 15 | | 04<br>OCT 1989 | 0900 | 12 | 1,060 | 7.4 | 15.0 | 4.5 | 8.9 | 180 | | 44 | 16 | | 25 | 1315 | 14 | 950 | 7.4 | 16.5 | 1.7 | 9.4 | 160 | 79 | 41 | 15 | | OCT 1990<br>25 | 1045 | 12 | 850 | 7.0 | 15.5 | 2.2 | 9.4 | 170 | _ | 43 | 15 | | NOV 1991<br>04 | 0945 | 10 | 680 | 7.5 | 11.0 | 2.5 | 10.8 | 160 | 49 | 42 | 14 | | OCT 1992<br>23 | 1145 | 10 | 625 | 7.8 | 13.0 | 3.5 | 10.7 | 160 | _ | 42 | 1.4 | | NOV 1993 | | | | | | 3.3 | | 100 | | 72 | | | 19<br>OCT 1994 | 0900 | 10 | 660 | 7.5 | 13.5 | | 9.8 | | _ | | | | 21 | 1145 | 11 | 484 | 7.3 | 15.5 | _ | 9.1 | | | | | | | DATE | | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS- I<br>SIUM, W<br>DIS- I<br>SOLVED<br>(MG/L (<br>AS K) | ALKA-<br>INITY<br>(AT WH<br>OT FET<br>FIELD<br>MG/L AS<br>CACO <sub>3</sub> )<br>00410) | TOT IT<br>FIELD | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | (MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | | | 1981<br>' | 120 | 58 | 4 | 36 | _ | _ | _ | 140 | 0.20 | 22 | | | 1982 | 110 | 53 | 4 | 43 | 130 | | 130 | 160 | .10 | 23 | | NOV | 1988<br> | 130 | 56 | | 39 | 106 | | 180 | 110 | _ | 21 | | OCT | 1989 | | | | | | | | | | | | | 1990 | 85 | 43 | 3 | 64 | 85 | | 160 | 84 | <del></del> | 21 | | | 1991 | 80 | 44 | 3 | 41 | 73 | _ | 120 | 86 | .30 | 20 | | 04 | 1992 | 63 | 44 | 2 | 9.6 | 114 | _ | 50 | 94 | .40 | 17 | | 23 | 3 | 45 | 36 | 2 | 9.4 | _ | 82 | 41 | 82 | .50 | 17 | | | 1993<br> | _ | _ | _ | _ | _ | 73 | 47 | 83 | .40 | | | | 1994 | _ | | _ | | | 67 | | 96 | | | Table 3. Water-quality data from surface-water sites—Continued 01476840 - Goose Creek Tributary to East Branch Chester Creek near West Chester, Pa. (Site 25)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMCNIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 27<br>OCT 1982 · | 761 | _ | 1.03 | | 6.66 | 6.36 | 28 | 0.340 | 6.70 | 8.50 | | 22 | 586 | 676 | .80 | 12.4 | 7.30 | 7.30 | 32 | .200 | 7.50 | 23.0 | | NOV 1988<br>04 | _ | 704 | . 96 | 22.2 | 19.6 | 19.6 | 87 | .360 | 2.0 | 2.00 | | OCT 1989<br>25 | _ | 609 | .83 | 23.0 | 17.7 | 17.7 | 79 | .260 | 18.0 | . 280 | | OCT 1990<br>25 | | 539 | .73 | 17.5 | 17.9 | 17.9 | 79 | .080 | 18.0 | . 250 | | NOV 1991<br>04 | | 387 | .53 | 11.0 | 5.46 | 5.46 | 24 | .040 | 5.50 | .050 | | OCT 1992 | | | | | | | | | - | | | 23<br>NOV 1993 | | 365 | .50 | 1 .2 | 13.0 | 13.0 | 57 | .040 | 13.0 | .040 | | 19<br>OCT 1994 | | _ | _ | _ | 17.0 | 17.0 | 75 | .040 | 17.0 | .060 | | 21 | | _ | | | 16.9 | 16.9 | 75 | .150 | 17.0 | .090 | | | | | | | | | | | | | | DATE | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-GEN,<br>DIS-SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>S, DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | | OCT 1981 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) | GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS,<br>5, DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | | | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | GEN, ORGANIC DIS- SOLVED (MG/L AS N) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) | GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | GEN,<br>TOTAL<br>(MG/L<br>AS N) | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHORUS,<br>TOTAL<br>(MG/L<br>AS P) | PHORUS TOTAL (MG/L AS PO <sub>4</sub> ) | PHORUS,<br>5, DIS-<br>SOLVED<br>(MG/L<br>AS P) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) 11 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS,<br>3, DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666)<br>7.40<br>5.40 | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH <sub>4</sub> ) (71846) 11 30 2.6 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 15 5.0 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623)<br>23<br>28<br>4.2 | GEN, TOTAL (MG/L AS N) (00600) 27 —— | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602)<br>30<br>36<br>24 | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)<br>9.10 | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS,<br>3, DIS-<br>SOT.VED<br>(MG/L<br>AS P)<br>(00666)<br>7.40<br>5.40<br>3.40 | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH <sub>4</sub> ) (71846) 11 30 2.6 .36 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 11 2.2 2.1 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 15 5.0 2.2 1.9 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 20 4.2 2.4 | GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623)<br>23<br>28<br>4.2 | GEN, TOTAL (MG/L AS N) (00600) 27 —— 24 20 | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602)<br>30<br>36<br>24 | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)<br>9.10<br>———————————————————————————————————— | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS,<br>3, DIS-<br>SOT.VED<br>(MG/L<br>AS P)<br>(00666)<br>7.40<br>5.40<br>3.40<br>3.30 | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990<br>25<br>NOV 1991 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) 11 30 2.6 .36 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 11 2.2 2.1 1.8 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 15 5.0 2.2 1.9 1.5 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 20 4.2 2.4 2.1 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) 23 28 4.2 2.2 1.8 | GEN, TOTAL (MG/L AS N) (00600) 27 —— 24 20 20 | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602)<br>30<br>36<br>24<br>20 | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)<br>9.10<br>———————————————————————————————————— | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS,<br>SOLVED<br>(MG/L<br>AS P)<br>(00666)<br>7.40<br>5.40<br>3.40<br>3.30<br>3.20 | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990<br>25 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH <sub>4</sub> ) (71846) 11 30 2.6 .36 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 11 2.2 2.1 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 15 5.0 2.2 1.9 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 20 4.2 2.4 | GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623)<br>23<br>28<br>4.2 | GEN, TOTAL (MG/L AS N) (00600) 27 —— 24 20 | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602)<br>30<br>36<br>24 | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)<br>9.10<br>———————————————————————————————————— | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS,<br>3, DIS-<br>SOT.VED<br>(MG/L<br>AS P)<br>(00666)<br>7.40<br>5.40<br>3.40<br>3.30 | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990<br>25<br>NOV 1991<br>04<br>OCT 1992<br>23 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) 11 30 2.6 .36 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 11 2.2 2.1 1.8 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 15 5.0 2.2 1.9 1.5 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 20 4.2 2.4 2.1 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) 23 28 4.2 2.2 1.8 | GEN, TOTAL (MG/L AS N) (00600) 27 —— 24 20 20 | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602)<br>30<br>36<br>24<br>20 | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)<br>9.10<br>———————————————————————————————————— | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS,<br>SOLVED<br>(MG/L<br>AS P)<br>(00666)<br>7.40<br>5.40<br>3.40<br>3.30<br>3.20 | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990<br>25<br>NOV 1991<br>04<br>OCT 1992 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) 11 30 2.6 .36 .32 .06 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 11 2.2 2.1 1.8 1.0 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 15 5.0 2.2 1.9 1.5 .85 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 20 4.2 2.4 2.1 1.1 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) 23 28 4.2 2.2 1.8 .90 | GEN, TOTAL (MG/L AS N) (00600) 27 —— 24 20 20 6.6 | GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602)<br>30<br>36<br>24<br>20<br>20 | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)<br>9.10<br>———————————————————————————————————— | PHORUS<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHORUS, B, DIS- SOLVED (MG/L AS P) (00666) 7.40 5.40 3.40 3.30 3.20 3.00 | Table 3. Water-quality data from surface-water sites—Continued 01476840 - Goose Creek Tributary to East Branch Chester Creek near West Chester, Pa. (Site 25)—Continued | DATE | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER, DIS- SOLVED (µG/L AS CU) (01040) | IRON, DIS- SOLVED (µG/L AS FE) (0104€) | |----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 27<br>OCT 1982 | 5.60 | 17 | 1 | _ | _ | 3.0 | 6 | 4 | 28 | 410 | | 22<br>NOV 1988 | 5.20 | 16 | 1 | _ | _ | <1.0 | <1 | 3 | 25 | 98 | | 04 | 2.90 | 8.9 | <1 | 42 | <0.5 | <1.0 | <b>&lt;</b> 5 | <3 | 20 | 63 | | OCT 1989<br>25 | 2.60 | 8.0 | <1 | 63 | <.5 | <1.0 | <b>&lt;</b> 5 | 4 | 20 | 56 | | OCT 1990<br>25 | 3.20 | 9.8 | <1 | 46 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | 20 | 59 | | NOV 1991<br>04 | 1.10 | 3.4 | <1 | 39 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | 20 | 39 | | OCT 1992 | | | | | | | | | | | | 23<br>NOV 1993 | 2.20 | 6.7 | <1 | 38 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | 10 | 31 | | 19<br>OCT 1994 | 2.70 | 8.3 | | | _ | | _ | <del></del> | | <del></del> | | 21 | 2.90 | 8.9 | | _ | _ | _ | _ | _ | | _ | | | | | | | | | | | | | | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I-)<br>(3826C) | | OCT 1981 | DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | DIS-<br>SOLVED<br>(µG/L<br>AS LI) | NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(µG/L<br>AS AG) | TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR) | DIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS V) | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | LENF BLUF ACTIVT SUB- STANCE (MG/I.) (38260) | | OCT 1981<br>27 | DIS-<br>SOLVED<br>(µG/L<br>AS PB) | DIS-<br>SOLVED<br>(µG/L<br>AS LI) | NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN) | DIS-<br>SOLVED<br>(µG/L<br>AS HG) | DIS-<br>SOLVED<br>(µG/L<br>AS NI) | DIS-<br>SOLVED<br>(µG/L<br>AS AG) | TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR) | DIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS V) | DIS-<br>SOLVED<br>(µG/L<br>AS ZN) | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I) | | OCT 1981<br>27<br>OCT 1982<br>22 | DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | DIS-<br>SOLVED<br>(µG/L<br>AS LI) | NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(µG/L<br>AS AG) | TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR) | DIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS V) | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | LENF BLUF ACTIVT SUB- STANCE (MG/I.) (38260) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04 | DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | DIS-<br>SOLVED<br>(µG/L<br>AS LI) | NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(µG/L<br>AS AG) | TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR) | DIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS V) | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25 | DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056)<br>48,000 | DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | TIUM, DIS- SOLVED (µG/L AS SR) (01080) | DIUM, DIS- SOLVED (µG/L AS V) (01085) | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989 | DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049)<br>5<br><1 | DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056)<br>48,000 | DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890)<br>83 —<br><.1 | DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | TIUM, DIS- SOLVED (µG/L AS SR) (01080) 180 | DIUM, DIS- SOLVED (µG/L AS V) (01085) | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090)<br>320<br>52 | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990 | DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049)<br>5<br><1<br><10 | DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130)<br><br>24 | NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056)<br>48,000<br>150<br>76 | DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890)<br>83<br><.1 | DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065)<br>4<br>7<br><10 | DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075)<br><br><1.0 | TIUM, DIS- SOLVED (µG/L AS SR) (01080) 180 | DIUM, DIS- SOLVED (µG/L AS V) (01085) <6 | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090)<br>320<br>52<br>35 | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990<br>25<br>NOV 1991<br>04<br>OCT 1992 | DIS- SOLVED (µG/L AS PB) (01049) 5 <1 <10 <10 <10 | DIS- SOLVED (µG/L AS LI) (01130) 24 22 38 38 | NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056)<br>48,000<br>150<br>76<br>56<br>51 | DIS-<br>SOLVED (µG/L<br>AS HG) (71890)<br>83<br><.1<br>.1 | DIS- SOLVED (µG/L AS NI) (01065) 4 7 <10 <10 10 | DIS- SOLVED (µG/L AS AG) (01075) <1.0 <1.0 <1.0 | TIUM, DIS- SOLVED (µG/L AS SR) (01080) 180 180 170 | DIUM, DIS- SOLVED (µG/L AS V) (01085) <6 <6 <6 <6 | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090)<br>320<br>52<br>35<br>50<br>38 | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990<br>25<br>NOV 1991<br>04<br>OCT 1992<br>23<br>NOV 1993 | DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049)<br>5<br><1<br><10<br><10 | DIS- SOLVED (µG/L AS LI) (01130) 24 22 38 | NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056)<br>48,000<br>150<br>76<br>56 | DIS-<br>SOLVED (µG/L<br>AS HG) (71890)<br>83<br><.1 | DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065)<br>4<br>7<br><10<br><10 | DIS- SOLVED (µG/L AS AG) (01075) <1.0 <1.0 | TIUM, DIS- SOLVED (µG/L AS SR) (01080) 180 180 | DIUM, DIS- SOLVED (µG/L AS V) (01085) <6 <6 <6 | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090)<br>320<br>52<br>35<br>50 | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | | OCT 1981<br>27<br>OCT 1982<br>22<br>NOV 1988<br>04<br>OCT 1989<br>25<br>OCT 1990<br>25<br>NOV 1991<br>04<br>OCT 1992<br>23 | DIS- SOLVED (µG/L AS PB) (01049) 5 <1 <10 <10 <10 | DIS- SOLVED (µG/L AS LI) (01130) 24 22 38 38 | NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056)<br>48,000<br>150<br>76<br>56<br>51 | DIS-<br>SOLVED (µG/L<br>AS HG) (71890)<br>83<br><.1<br>.1 | DIS- SOLVED (µG/L AS NI) (01065) 4 7 <10 <10 10 | DIS- SOLVED (µG/L AS AG) (01075) <1.0 <1.0 <1.0 | TIUM, DIS- SOLVED (µG/L AS SR) (01080) 180 180 170 | DIUM, DIS- SOLVED (µG/L AS V) (01085) <6 <6 <6 <6 | DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090)<br>320<br>52<br>35<br>50<br>38 | LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | Table 3. Water-quality data from surface-water sites—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51)—Continued | | | DIS- | | PH | | | | | HARD- | | | | |----------------|------|------------------|---------------|----------------|---------|---------|---------|----------------|---------------------|----------|-----------------|---------| | | | CHARGE,<br>INST. | SPE-<br>CIFIC | WATER<br>WHOLE | | | | HARD-<br>NESS, | NESS,<br>NONCARB | CALCIUM, | MAGNE-<br>SIUM, | SODIUM, | | | | (CUBIC | CON- | FIELD | TEMPER- | TUR- | OXYGEN, | TOTAL | WH WAT | DIS- | DIS- | DIS- | | | | FEET | DUCT- | (STAND- | ATURE | BID- | DIS- | (MG/L | TOT FLD | SOLVED | SOLVED | SOLVED | | DATE | TIME | PER | ANCE | ARD | WATER | ITY | SOLVED | AS | (MG/L AS | (MG/L | (MG/L | (MG/L | | | | SECOND) | (µS/CM) | UNITS) | (DEG C) | (NTU) | (MG/L) | CACO3) | CACO <sub>3</sub> ) | AS CA) | AS MG) | AS NA) | | | | (00061) | (00095) | (00400) | (00010) | (00076) | (00300) | (00900) | (00902) | (00915) | (00925) | (00930) | | OCT 1983 | | | | | | | | | | | | | | 26 | 144 | 5 18 | 560 | 5.7 | 14.0 | 4.6 | 7.9 | 130 | | 31 | 12 | 43 | | OCT 1984 | | | | | | | | | | | | | | 11 | 1530 | 21 | 625 | 8.0 | 18.0 | . 90 | 11.4 | 120 | | 30 | 12 | 76 | | OCT 1985 | | | | | | | | | | | | | | 28 | 1530 | 16 | 550 | 6.5 | 12.0 | 2.4 | 7.7 | 130 | _ | 32 | 13 | 53 | | OCT 1986 | | | | | | | | | | | | | | 16 | 1300 | 28 | 650 | 7.7 | 14.0 | 1.4 | 9.1 | 130 | _ | 32 | 12 | 84 | | NOV 1987 | | | | | | | | | | | | | | 05 | 130 | 18 | 620 | 7.5 | 15.0 | 1.7 | 8.2 | 140 | _ | 35 | 13 | 66 | | NOV 1988<br>03 | 1300 | 18 | 780 | 7.4 | 11.0 | 1.9 | 11.2 | 140 | | 34 | 13 | 82 | | OCT 1989 | | J 16 | 700 | 7.4 | 11.0 | 1.9 | 11.2 | 140 | | 34 | 13 | 62 | | 25 | 094 | 5 31 | 500 | 7.4 | 11.5 | 1.2 | 1.4 | 120 | 60 | 29 | 12 | 33 | | OCT 1990 | | | 000 | , | 22.0 | | | | | | | ••• | | 25 | 090 | 20 | 590 | 6.5 | 11.5 | 2.0 | 8.8 | 130 | 56 | 32 | 12 | 48 | | OCT 1991 | | | | | | | | | | | | | | 22 | 090 | 12 | 465 | 7.5 | 9.5 | 1.4 | 10.3 | 130 | 55 | 32 | 12 | 35 | | OCT 1992 | | | | | | | | | | | | | | 22 | 093 | 0 12 | 480 | 7.6 | 9.0 | . 60 | 11.3 | 120 | | 30 | 12 | 9.4 | | OCT 1993 | | | | | | | | | | | | | | 26 | 094 | 5 20 | 448 | 7.4 | 12.0 | _ | 9.5 | _ | | | _ | | | OCT 1994 | | | | | | | | | | | | | | 17 | 094 | 5 12 | 530 | 7.3 | 9.5 | | 10.5 | _ | | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51) | DATE | | SODIUM AD- SORP- TION F RATIO (00931) | SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS, | |----------------|---------|---------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------| | OCT 1983 | 3 | | | | | | | | | | | | | 26 | 39 | 2 | 15 | 26 | _ | 58 | 66 | _ | 18 | 352 | 366 | 0.48 | | OCT 1984 | ļ | | | | | | | | | | | | | 11 | 55 | 3 | 9.0 | 106 | _ | 75 | 74 | | 19 | 392 | 393 | .53 | | OCT 1985 | 5 | | | | | | | | | | | | | 28 | 45 | 2 | 7.2 | 90 | _ | 79 | 59 | _ | 19 | 326 | 348 | . 44 | | OCT 1986 | 5 | | | | | | | | | | | | | 16 | 57 | 3 | 8.9 | 114 | _ | 120 | 62 | _ | 18 | 540 | 444 | . 73 | | NOV 1987 | | | | | | | | | | | | | | 05 | 45 | 2 | 26 | 114 | _ | 99 | 61 | _ | 17 | 407 | 417 | . 55 | | NOV 1988 | | | | | | | | | | | | | | 03 | 51 | 3 | 27 | 90 | _ | 140 | 69 | | 17 | | 495 | .67 | | OCT 1989 | | | | 60 | | 60 | 4.0 | | | | 005 | | | 25<br>OCT 1990 | . 33 | 1 | 21 | 62 | _ | 60 | 42 | | 18 | | 287 | . 39 | | 25 | ,<br>39 | 2 | 25 | 74 | | 85 | 52 | 0.30 | 17 | _ | 357 | . 49 | | OCT 1991 | | 2 | 23 | /-1 | | 65 | 32 | 0.30 | 17 | | 331 | . 43 | | 22 | 36 | 1 | 6.4 | 75 | | 36 | 52 | .20 | 17 | | 279 | .38 | | OCT 1992 | _ | • | 0.4 | 75 | | 30 | 32 | .20 | | | 2,,, | | | 22 | 14 | . 4 | 3.9 | | 62 | 36 | 21 | .10 | 15 | | 210 | .29 | | OCT 1993 | | | • • • | | | •• | | | | | | | | 26 | | | | | 70 | | | | | | - | | | OCT 1994 | ļ | | | | | | | | | | | | | 17 | | | | | 76 | | 67 | | _ | | | | Table 3. Water-quality data from surface-water sites—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51)—Continued | | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | | NITRO- | NITRO- | NITRO- | |--------|-------------|---------|---------|----------------------|---------|-------------|---------|----------------------|---------|---------|----------|----------| | | SOLIDS, | NITRO- | GEN, | GEN, | GEN, | GEN, | GEN, | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | | | DIS- | GEN, | NITRATE | NITRATE | NITRITE | $NO_2+NO_3$ | AMMONIA | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | | | SOLVED | NITRATE | DIS- | DIS- | DIS- | DIS- | DIS- | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC | | | (TONS | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | | DATE | PER | (MG/L | | DAY) | AS N) | AS N) | AS NO <sub>3</sub> ) | AS N) | AS N) | AS N) | AS NH <sub>4</sub> ) | AS N) | AS N) | AS N) | AS F) | | | (70302) | (00620) | (00618) | (71851) | (00613) | (00631) | (00608) | (71846) | (00605) | (00607) | (00625) | (00623) | | OCT 19 | 983 | | | | | | | | | | | | | 26. | 17.1 | 20.5 | 20.5 | 91 | 0.520 | 21.0 | 5.10 | 6.6 | _ | 0.60 | | 5.7 | | OCT 19 | 984 | | | | | | | | | | | | | | 22.2 | 5.77 | 5.7 | 7 26 | . 530 | 6.30 | .810 | 1.0 | | . 79 | | 1.6 | | OCT 19 | | | | | | | | | | | | | | | 14.3 | 4.49 | 4.4 | 9 20 | .610 | 5.10 | 3.10 | 4.0 | 1.7 | 1.2 | 4.8 | 4.3 | | OCT 1 | | | | | | | | | | | | | | 16. | | 6.13 | 6.13 | 3 27 | . 570 | 6.70 | 4.10 | 5.3 | 3.9 | 1.9 | 8.0 | 6.0 | | NOV 1 | | | | | | | | | | | | 2.0 | | NOV 19 | 19.8 | 4.97 | 4.9 | 7 22 | . 430 | 5.40 | 1.90 | 2.4 | 1.3 | 1.1 | 3.2 | 3.0 | | | 988<br>24.6 | 11.8 | 11.8 | 52 | .180 | 12.0 | . 650 | . 84 | | 2.0 | | 2.7 | | OCT 19 | | 11.0 | 11.0 | 32 | .100 | 12.0 | . 650 | .04 | _ | 2.0 | _ | 2.1 | | | 24.0 | 6.99 | 6.9 | 9 31 | .210 | 7.20 | .160 | . 21 | . 94 | 1.2 | 1.1 | 1.4 | | OCT 19 | | 0.33 | 0.5. | , ,, | | 7.20 | | | .54 | | | | | | 19.3 | 8.37 | 8.3 | 7 37 | .030 | 8.40 | .090 | .12 | 1.5 | 1.1 | 1.6 | 1.2 | | OCT 1 | 991 | | | | | | | | | | | | | 22. | 9.0 | 4 8.88 | 8.8 | 8 39 | .020 | 8.90 | .040 | .05 | .56 | . 46 | . 60 | .50 | | OCT 1 | 992 | | | | | | | | | | | | | 22. | 6.87 | 9.37 | 9.3 | 7 41 | .030 | 9.40 | <.010 | | .50 | | .50 | .40 | | OCT 1 | 993 | | | | | | | | | | | | | 26. | | 8.16 | 8.10 | 6 36 | .040 | 8.20 | .060 | .08 | _ | | _ | | | OCT 1 | | | | | | | | | | | | | | 17. | . — | 9.61 | 9.6 | 1 43 | .190 | 9.80 | .140 | .18 | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51)—Continued | | | | | | | PHOS- | PHOS- | | | | | | |----------|---------|---------|---------|----------------------|---------|---------|---------|----------|---------|---------|---------|---------| | | | NITRO- | | | PHOS- | PHORUS, | PHATE, | | | BERYL- | | CHRO- | | | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | ORTHO, | ORTHO, | ARSENIC, | BARIUM, | LIUM, | CADMIUM | MIUM, | | | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | DATE | (MG/L (μG/L | (µG/L | (μG/L | (µG/L | (μG/L | | | AS N) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | AS P) | AS PO4 | ) AS AS) | AS BA) | AS BE) | AS CD) | AS CR) | | | (00600) | (00602) | (00665) | (71886) | (00666) | (00671) | (00660) | (01000) | (01005) | (01010) | (01025) | (01030) | | | | | | | | | | | | | | | | OCT 1983 | | | | | | | | | | | | | | 26 | | 27 | 2.60 | 8.0 | 2.40 | 2.40 | 7.4 | 1 | | | <1.0 | <1 | | OCT 1984 | | | | | | | | | | | | | | 11 | _ | 7.9 | 2.00 | | 1.70 | 1.80 | 5.5 | <1 | | | <1.0 | <1 | | OCT 1985 | | | | | | | | | | | | | | 28 | 9.9 | 9.4 | 2.30 | 7.1 | 1.90 | 1.80 | 5.5 | <1 | | _ | <1.0 | <1 | | OCT 1986 | | | | | | | | | | | | | | 16 | 15 | 13 | 12.0 | | 15.0 | 1.30 | 4.0 | <1 | | | <1.0 | <1 | | NOV 1987 | | | | | | | | | | | | | | 05 | 8.6 | 8.4 | 2.10 | | _ | 1.60 | 4.9 | 1 | | | <1.0 | <1 | | NOV 1988 | | | | | | | | | | | | | | 03 | _ | 15 | 1.80 | | 1.70 | 1.40 | 4.3 | <1 | 52 | <0.5 | <1.0 | <5 | | OCT 1989 | | | | | | | | | | | | | | 25 | 8.3 | 8.6 | 0.890 | | .800 | .700 | 2.1 | 3 | 64 | <.5 | <1.0 | <5 | | OCT 1990 | | | | | | | | | | | | | | 25 | 10 | 9.6 | 1.30 | | 1.20 | 1.10 | 3.4 | <1 | 59 | <.5 | <1.0 | <5 | | OCT 1991 | | | | | | | | | | | | | | 22 | 9.5 | 9.4 | 1.50 | | 1.40 | 1.20 | 3.7 | <1 | 49 | <.5 | 1.0 | <5 | | OCT 1992 | | | | | | | | | | | | | | 22 | 9.9 | 9.8 | 1.50 | | 1.50 | 1.30 | 4.0 | <1 | 59 | <.5 | <1.0 | <5 | | OCT 1993 | | | | | | | | | | | | | | 26 | | _ | | | | 1.10 | 3.4 | | | _ | | _ | | OCT 1994 | | | | | | | | | | | | | | 17 | | | | | | 1.50 | 4.6 | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51)—Continued | | | | | | | MANGA- | | | | STRON- | VANA- | | |----------|---------|---------|---------|---------|----------|---------|---------|-----------|---------|---------|---------|---------| | | COBALT, | COPPER, | IRON, | LEAD, | LITHIUM, | NESE, | MERCURY | , NICKEL, | SILVER, | TIUM, | DIUM, | ZIWC, | | | DIS- | | SOLVED | DATE | (µG/L | (μG/L | (μG/L | (µG/L | (μG/L | (μG/L | (µG/L | (μG/L | (µG/L | (µG/L | (µG/L | (µC/L | | | AS CO) | AS CU) | AS FE) | AS PB) | AS LI) | AS MN) | AS HG) | AS NI) | AS AG) | AS SR) | AS V) | AS ZN) | | | (01035) | (01040) | (01046) | (01049) | (01130) | (01056) | (71890) | (01065) | (01075) | (01080) | (01085) | (01090) | | OCT 1983 | 3 | | | | | | | | | | | | | 26 | | 9 | 65 | 2 | | 130 | 110 | 6 | <1.0 | _ | _ | 32 | | OCT 198 | 4 | | | | | | | | | | | | | 11 | _ | 4 | 68 | 1 | | 54 | . 6 | 1 | <1.0 | | | 9 | | OCT 198 | 5 | | | | | | | | | | | | | 28 | | 7 | 72 | <1 | | 50 | <.1 | <1 | <1.0 | | | 14 | | OCT 198 | 6 | | | | | | | | | | | | | 16 | | 10 | 41 | <5 | | 59 | <1.0 | <1 | 7.0 | _ | | 16 | | NOV 198 | 7 | | | | | | | | | | | | | 05 | | 9 | 47 | <5 | | 49 | <.1 | 3 | <1.0 | _ | | 13 | | NOV 198 | В | | | | | | | | | | | | | 03 | <3 | 10 | 90 | <10 | 15 | 49 | . 2 | <10 | 1.0 | 150 | <6 | 20 | | OCT 198 | 9 | | | | | | | | | | | | | 25 | <3 | <10 | 65 | <10 | 14 | 71 | <.1 | <10 | <1.0 | 150 | <6 | 17 | | OCT 199 | D | | | | | | | | | | | | | 25 | <3 | 10 | 63 | 10 | 13 | 39 | <.1 | <10 | <1.0 | 150 | <6 | 15 | | OCT 199 | 1 | | | | | | | | | | | | | 22 | <3 | 10 | 54 | 10 | 21 | 25 | <.1 | <10 | 2.0 | 150 | <6 | 12 | | OCT 199 | 2 | | | | | | | | | | | | | 22 | <3 | <10 | 36 | <10 | <4 | 10 | <.1 | <10 | <1.0 | 130 | <6 | 5 | | OCT 199 | 3 | | | | | | | | | | | | | 26 | _ | _ | _ | _ | | | _ | | _ | _ | | | | OCT 199 | 4 | | | | | | | | | | | | | 17 | | | | | | | _ | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>STLVED<br>(MG/L<br>AS MG)<br>(07925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 30 | 1345 | _ | 294 | 8.3 | 10.5 | | 12.0 | 140 | | 32 | 14 | | OCT 1982 | | | | | | | | | | | | | 20<br>NOV 1983 | 1345 | 4.6 | 314 | 8.2 | 11.0 | _ | 12.4 | 150 | _ | 35 | 15 | | 01 | 1330 | 6.3 | 303 | 8.1 | 8.5 | 1.2 | 12.5 | 140 | | 34 | 14 | | OCT 1984 | 1000 | 0.3 | 303 | 0.1 | 0.5 | 1.2 | 12.5 | 140 | | 34 | 14 | | 19 | 1430 | 9.9 | 298 | 8.3 | 14.5 | .70 | 11.9 | 130 | | 32 | 13 | | OCT 1985 | | | | | | | | | | | | | 25 | 1330 | 7.9 | 305 | 7.8 | 11.5 | 1.0 | 12.3 | 130 | | 31 | 12 | | OCT 1986 | | | | | | | | | | | | | 30<br>NOV 1987 | 1430 | 5.6 | 315 | 8.2 | 13.0 | .40 | 11.8 | 150 | | 35 | 15 | | 17 | 0830 | 7.7 | 308 | 8.0 | 9.5 | .30 | 12.4 | 150 | | 35 | 15 | | NOV 1988 | 0050 | , | 300 | 0.0 | 3.5 | .50 | 12.4 | 130 | | 33 | 13 | | 08 | 1500 | 6.6 | 335 | 7.7 | 9.5 | 1.5 | 12.5 | 150 | | 35 | 15 | | OCT 1989 | | | | | | | | | | | | | 31 | 1545 | 15 | 319 | 8.0 | 16.0 | .60 | 10.5 | 140 | 57 | 33 | 14 | | NOV 1990 | 2245 | | | | | | | | | | | | 01<br>NOV 1991 | 0845 | 7.0 | 336 | 6.5 | 9.5 | .70 | 12.4 | 150 | 50 | 36 | 15 | | 14 | 0900 | 5.1 | 330 | 7.6 | 6.5 | 1.0 | 12.2 | 150 | 53 | 35 | 15 | | NOV 1992 | 0300 | 0.1 | 330 | 7.0 | 0.5 | 1.0 | 12.2 | 130 | 55 | 55 | 10 | | 16 | 0930 | 7.5 | 355 | 7.9 | 4.0 | .80 | 13.5 | 150 | _ | 34 | 15 | | NOV 1993 | | | | | | | | | | | | | 24 | 0900 | 6.8 | 337 | 7.6 | 5.5 | | 12.2 | _ | _ | _ | | | NOV 1994 | 0046 | | 24- | | | | | | | | | | 03 | 0840 | 4.6 | 345 | 7.7 | 8.0 | _ | 10.8 | | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L A<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>S (MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 30<br>OCT 1982 | 8.2 | 11 | 0.3 | 3.1 | _ | _ | 25 | 15 | <0.10 | 17 | 189 | | 20<br>NOV 1983 | 6.5 | 9 | .2 | 2.2 | 100 | _ | 26 | 15 | <.10 | 15 | 193 | | 01 | 7.6 | 10 | .3 | 2.5 | 84 | | 27 | 16 | _ | 14 | 198 | | OCT 1984<br>19 | 6.9 | 10 | .3 | 2.6 | 92 | | 26 | 16 | | 14 | 201 | | OCT 1985 | | | | | | | | | | | | | 25 | 7.0 | 10 | .3 | 5.5 | 98 | _ | 25 | 17 | _ | 15 | 176 | | OCT 1986<br>30 | 7.7 | 10 | .3 | 3.3 | 100 | | 27 | 15 | _ | 15 | 206 | | NOV 1987 | | | | | | | | | | | | | 17<br>NOV 1988 | 7.3 | 9 | .3 | 3.0 | 101 | _ | 27 | 18 | _ | 14 | 193 | | 08 | 7.8 | 10 | .3 | 3.0 | 100 | _ | 27 | 15 | | 15 | _ | | OCT 1989 | | | | | | | | | | | | | 31 | 8.2 | 11 | .3 | 3.2 | 83 | | 27 | 14 | _ | 15 | _ | | NOV 1990<br>01 | 7.7 | 10 | .3 | 3.0 | 102 | | 23 | 14 | <.10 | 16 | | | NOV 1991 | 7.7 | 10 | .3 | 3.0 | 102 | <del>- =:</del> | 23 | 14 | V.10 | 10 | | | 14 | 7.0 | 9 | .2 | 2.9 | 96 | _ | 29 | 17 | .10 | 14 | _ | | NOV 1992<br>16 | 7.4 | 10 | .3 | 3.1 | | 95 | 26 | 16 | <.10 | 15 | | | NOV 1993 | 7.4 | 10 | . 3 | 3.1 | | 95 | 20 | 10 | V.10 | 13 | | | 24 | _ | _ | _ | | _ | 100 | 29 | 16 | <.10 | | _ | | NOV 1994 | | | | | | | | | | | | | 03 | | | | | | 108 | _ | 17 | _ | | | Table 3. Water-quality data from surface-water sites—Continued ## 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28)-Continued | | SOLIDS, | | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | | |----------------|---------|---------|---------|---------|---------|---------|---------|---------------|---------|----------------------|---------| | | SUM OF | SOLIDS, | SOLIDS, | NITRO- | GEN, | GEN, | GEN, | GEN, | GEN, | GEN, | NITRO- | | | CONSTI- | DIS- | DIS- | GEN, | NITRATE | NITRATE | NITRITE | $NO_2 + NO_3$ | AMMONIA | AMMONIA | GEN, | | | TUENTS, | SOLVED | SOLVED | NITRATE | DIS- | DIS- | DIS- | DIS- | DIS- | DIS- | ORGANIC | | | DIS- | (TONS | (TONS | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | | DATE | SOLVED | PER | PER | (MG/L | | (MG/L) | AC-FT) | DAY) | AS N) | AS N) | AS NO3) | AS N) | AS N) | AS N) | AS NH <sub>4</sub> ) | AS N) | | | (70301) | (70303) | (70302) | (00620) | (00618) | (71851) | (00613) | (00631) | (00608) | (71846) | (00605) | | | | | | | | | | | | | | | OCT 1981 | | | | | | | | | | | | | 30 | _ | 0.26 | | 3.49 | 3.59 | 16 | 0.010 | 3.60 | <0.010 | 0.01 | 0.46 | | OCT 1982 | | | | | | | | | | | | | 20 | 195 | .26 | 2.42 | 4.59 | 4.59 | 20 | .010 | 4.60 | .020 | .03 | _ | | NOV 1983 | | | | | | | | | | | | | 01 | 187 | .27 | 3.37 | 4.79 | 4.79 | 21 | .010 | 4.80 | .060 | .08 | | | OCT 1984 | | | | | | | | | | | | | 19 | 187 | .27 | 5.37 | 4.66 | 4.66 | 21 | .040 | 4.70 | .040 | .05 | | | OCT 1985 | | | | | | | | | | | | | 25 | 188 | .24 | 3.75 | 3.78 | 3.78 | 17 | .020 | 3.80 | .040 | .05 | .86 | | OCT 1986 | | | | | | | | | | | | | 30 | 196 | .28 | 3.11 | 4.09 | 4.09 | 18 | .010 | 4.10 | .010 | .01 | .49 | | NOV 1987 | | 0.5 | | | | | | | | | | | 17 | 199 | .26 | 4.01 | 4.40 | | _ | <.010 | 4.40 | <.010 | | .40 | | NOV 1988 | 107 | 0.7 | 3 50 | 4 40 | | | < 010 | 4 40 | 040 | 05 | . 36 | | 08 | 197 | .27 | 3.52 | 4.40 | | | <.010 | 4.40 | .040 | .05 | . 36 | | OCT 1989<br>31 | 185 | .25 | 7.50 | 4.70 | | | <.010 | 4.70 | <.010 | | .70 | | NOV 1990 | 163 | .25 | 7.50 | 4.70 | | | <.010 | 4.70 | <.010 | | . 70 | | 01 | 199 | .27 | 3.74 | 5.28 | 5.28 | 23 | .020 | 5.30 | .020 | .03 | .78 | | NOV 1991 | 1,7,7 | , | 3.74 | 3.20 | 3.20 | 23 | .020 | 3.30 | .020 | .03 | . , 0 | | 14 | 200 | .27 | 2.78 | 5.00 | | | <.010 | 5.00 | .010 | .01 | .29 | | NOV 1992 | 200 | | 2.70 | 3.00 | | | 1.010 | 5.00 | .010 | .01 | .23 | | 16 | 196 | .27 | 3.97 | 5.07 | 5.07 | 22 | .030 | 5.10 | <.010 | | . 30 | | NOV 1993 | 150 | .~. | 0.51 | 0.01 | 3.01 | | | 0.10 | 1.010 | | . 50 | | 24 | | - | | 4.89 | 4.89 | 22 | .010 | 4.90 | .020 | .03 | | | NOV 1994 | | | | , | , | | | | | .55 | | | 03 | _ | | | 3.89 | 3.89 | 17 | .010 | 3.90 | <.015 | _ | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS IS)<br>(01000) | |---------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 198 | 1 | | | | | | | | | | | | 30<br>OCT 198 | _ | 0.46 | 0.49 | 4.0 | 4.1 | 0.060 | 0.18 | 0.050 | 0.040 | 0.12 | ND | | 20 | 0.18 | | .20 | _ | 4.8 | _ | | .040 | .020 | .06 | 1 | | NOV 198<br>01 | . 34 | _ | .40 | _ | 5.2 | .030 | .09 | .030 | .010 | .03 | _ | | OCT 198 | 4 | | | | | | | | | | | | 19 | . 36 | | .40 | _ | 5.1 | .010 | _ | .020 | .020 | .06 | | | OCT 198<br>25 | 5<br>. 46 | . 90 | .50 | 4.7 | 4.3 | .050 | .15 | .030 | .030 | .09 | _ | | OCT 198 | | . 90 | .50 | 4.7 | 4.3 | .050 | .15 | .030 | .030 | .03 | | | 30<br>NOV 198 | .49 | .50 | . 50 | 4.6 | 4.6 | .030 | | .020 | .020 | .06 | _ | | 17 | <i>'</i> | . 40 | <.20 | 4.8 | | .040 | _ | .020 | .010 | .03 | | | NOV 198 | | | | | | | | | | | | | 08<br>OCT 198 | .26 | .40 | .30 | 4.8 | 4.7 | .030 | _ | .020 | .010 | .03 | _ | | 31 | | . 70 | .60 | 5.4 | 5.3 | .030 | <del></del> | .020 | .020 | .06 | - | | NOV 199 | | | | | | | | | | | | | 01<br>NOV 199 | . 58 | .80 | . 60 | 6.1 | 5.9 | .020 | _ | <.010 | .030 | .09 | | | 14 | .19 | .30 | .20 | 5.3 | 5.2 | .020 | | .010 | .020 | .06 | | | NOV 199 | | | | | | | | | | | | | 16 | | .30 | .20 | 5.4 | 5.3 | .040 | _ | .030 | .020 | .06 | _ | | NOV 199<br>24 | 3 | | | | | | _ | | <.010 | | | | NOV 199 | 4 | _ | | | | | _ | | V.010 | | | | 03 | | | _ | | _ | _ | | | .020 | .06 | | Table 3. Water-quality data from surface-water sites—Continued 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METFY-<br>LENE<br>BIJUE<br>ACTIVE<br>SUF-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | _ | | | | | | _ | _ | | | 30<br>OCT 1982 | <1.0 | <1 | 1 | <1 | 11 | <1 | 29 | 0.1 | 2 | 5 | ND | | 20 | <1.0 | <1 | 1 | 2 | 11 | <1 | 7 | _ | 2 | <4 | 0.04 | | NOV 1983 | | | | | | | | | | | | | 01<br>OCT 1984 | _ | | | | 21 | _ | 12 | _ | | _ | | | 19 | | | _ | | 19 | | 12 | | _ | ~ | | | OCT 1985 | | | | | | | _ | | | | | | 25<br>OCT 1986 | | | | _ | 31 | _ | 7 | | _ | | _ | | 30 | _ | | _ | | 18 | | 13 | | _ | | | | NOV 1987 | | | | | | | •• | | | | | | 17<br>NOV 1988 | | | | _ | 21 | | 12 | | | | _ | | 08 | | | | | 19 | | 9 | | _ | - | | | OCT 1989 | | | | | 21 | | 01 | | | | | | 31<br>NOV 1990 | _ | _ | | | 31 | _ | 21 | | | | | | 01 | | _ | _ | _ | 18 | | 12 | | _ | | | | NOV 1991<br>14 | | | | | 16 | | 11 | | | | | | NOV 1992 | | | | | 10 | | 11 | _ | | | _ | | 16 | | | | | 31 | _ | 16 | | | _ | _ | | NOV 1993<br>24 | | | | | | _ | | _ | | | | | NOV 1994 | | | | | _ | | | _ | | _ | | | 03 | | | | _ | | _ | | _ | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01478190 - Middle Branch White Clay Creek at Wickerton, Pa. (Site 29) | | | DIS- | | РН | | | | | HARD~ | | | | |----------------|-------|------------------|---------------|-----------------------------------------|---------|-------|---------|---------------------|------------------|----------|-----------------|---------| | | | CHARGE,<br>INST. | SPE-<br>CIFIC | WATER<br>WHOLE | | | | HARD-<br>NESS, | NESS,<br>NONCARB | CALCIUM, | MAGNE-<br>SIUM, | SODIUM, | | | | (CUBIC | CON- | FIELD | TEMPER- | TUR- | OXYGEN, | TOTAL | WH WAT | DIS- | DIS- | DIS- | | | | FEET | DUCT- | (STAND- | ATURE | BID- | DIS- | (MG/L | TOT FLD | SOLVED | SOLVED | SOLVED | | DATE | TIME | | ANCE | ARD | WATER | ITY | SOLVED | AS | (MG/L AS | (MG/L | (MG/L | (MG/L | | | | SECOND) | (µS/CM) | | (DEG C) | (NTU) | (MG/L) | CACO <sub>3</sub> ) | | AS CA) | AS MG) | AS NA) | | | | (00061) | (00095) | | (00010) | | (00300) | | (00902) | (00915) | | (00930) | | | | | | | | | | | | | | | | OCT 1981 | | | | | | | | | | | | | | 29 | 1430 | | 193 | 7.5 | 10.0 | | 9.3 | 70 | _ | 17 | 6.8 | 7.0 | | OCT 1982 | | | | | | | | | | | | | | 20 | 1115 | 3.3 | 210 | 7.2 | 9.5 | _ | 10.6 | 75 | | 17 | 7.8 | 10 | | NOV 1983 | | | | | | | | | | | | | | 02 | 0830 | 4.7 | 192 | 8.0 | 8.0 | 1.3 | 10.5 | 74 | | 17 | 7.6 | 9.0 | | OCT 1984 | | | | | | | | | | | | | | 18 | 1530 | 6.8 | 195 | 7.6 | 15.0 | . 90 | 9.9 | 70 | | 16 | 7.4 | 7.4 | | OCT 1985 | 0000 | | 015 | - ^ | | | | | | | | | | 25 | 0830 | 6.8 | 215 | 7.0 | 10.5 | 1.6 | 8.5 | 73 | | 17 | 7.4 | 8.4 | | DEC 1986<br>02 | 1200 | 8.8 | 190 | 7.6 | 6.0 | 2.2 | 11.8 | 70 | | 16 | 7.2 | 7.4 | | OCT 1987 | 1300 | 0.0 | 190 | 7.6 | 6.0 | 2.2 | 11.6 | 70 | _ | 16 | 1.2 | 7.4 | | 29 | 0900 | 7.1 | 200 | 7.3 | 9.0 | . 60 | 11.3 | 73 | | 17 | 7.5 | 7.8 | | OCT 1988 | 0,000 | , | 200 | 7.5 | 3.0 | .00 | , 11.5 | ,, | | 1, | 7.5 | 7.0 | | 31 | 0830 | 5.6 | 240 | 6.7 | 6.0 | 1.5 | 12.2 | 88 | | 20 | 9.3 | 10 | | OCT 1989 | | 0.0 | | • • • • • • • • • • • • • • • • • • • • | | | | • | | | | | | 31 | 0900 | 12 | 219 | 7.3 | 14.5 | . 70 | 9.8 | 75 | 28 | 17 | 7.8 | 8.6 | | NOV 1990 | | | | | | | | | | | | | | 09 | 0900 | 5.5 | 231 | 6.8 | 5.5 | 1.4 | 13.4 | 87 | 29 | 20 | 8.9 | 9.9 | | NOV 1991 | | | | | | | | | | | | | | 13 | 0930 | 3.7 | 235 | 7.4 | 6.5 | 1.6 | 12.1 | 82 | 47 | 19 | 8.4 | 9.7 | | NOV 1992 | | | | | | | | | | | | | | 12 | 1000 | 5.5 | 236 | 7.5 | 10.5 | . 40 | 11.3 | 82 | _ | 19 | 8.4 | 9.9 | | NOV 1993 | | | | | | | | | | | | | | 24 | 1230 | 5.9 | 236 | 8.0 | 8.0 | | 15.0 | | _ | | - | _ | | NOV 1994 | | | | | | | | | | | | | | 08 | 1305 | 4.3 | 260 | 6.8 | 10.5 | | 12.8 | | _ | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01478190 - Middle Branch White Clay Creek at Wickerton, Pa. (Site 29)—Continued | | | SODIUM<br>AD-<br>SORP- | POTAS-<br>SIUM,<br>DIS-<br>SOLVED | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD | SULFATE,<br>DIS-<br>SOLVED | CHLO-<br>RIDE,<br>DIS-<br>SOLVED | FLUO-<br>RIDE,<br>DIS-<br>SOLVED | SILICA,<br>DIS-<br>SOLVED<br>(MG/L | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS- | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS- | |---------------|---------|------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------------------|-------------------------------------------------| | DATE | SODIUM | TION | (MG/L | (MG/L AS | (MG/L AS | | (MG/L | (MG/L | AS | SOLVED | SOLVED | | | PERCENT | RATIO | AS K) | CACO3) | CACO <sub>3</sub> ) | AS SO4) | AS CL) | AS F) | SIO <sub>2</sub> ) | (MG/L) | (MG/%) | | | (00932) | (00931) | (00935) | (00410) | (00419) | (00945) | (00940) | (00950) | (00955) | (70300) | (70301) | | OCT 198 | 1 | | | | | | | | | | | | 29 | | 0.4 | 5.7 | | | 18 | 13 | <0.10 | 15 | 129 | _ | | OCT 1982 | | 0.1 | · · · | | | | | 10.110 | 10 | 107 | | | 20 | | . 5 | 2.9 | 44 | | 15 | 15 | <.10 | 15 | 141 | 133 | | NOV 1983 | | | | | | | | | | | | | 02 | 20 | .5 | 3.1 | 42 | _ | 16 | 15 | | 14 | 134 | 131 | | OCT 198 | 4 | | | | | | | | | | | | 18 | 18 | . 4 | 3.0 | 38 | | 15 | 15 | _ | 13 | 131 | 123 | | OCT 198 | | | | | | | | | | | | | 25 | | . 4 | 5.2 | 48 | _ | 19 | 17 | _ | 13 | 134 | 137 | | DEC 198 | | | | | | | | | | | | | 02 | | . 4 | 3.4 | 40 | | 18 | 17 | | 16 | 119 | 131 | | OCT 198 | | | | 4.4 | | 10 | 10 | | | 120 | 100 | | 29<br>OCT 198 | | . 4 | 6.4 | 44 | | 18 | 18 | | 14 | 138 | 133 | | 31 | | .5 | 3.4 | 60 | | 17 | 16 | | 15 | | 154 | | OCT 1989 | | | 3.4 | 00 | | 1, | 10 | | 13 | | 131 | | 31 | | . 4 | 3.6 | 47 | | 15 | 14 | - | 14 | | 132 | | NOV 199 | | • - | | | | | | | | | | | 09 | | . 5 | 3.7 | 58 | | 17 | 16 | <.10 | 14 | _ | 151 | | NOV 199 | 1 | | | | | | | | | | | | 13 | 19 | .5 | 4.8 | 35 | | 19 | 18 | .10 | 15 | | 140 | | NOV 199 | 2 | | | | | | | | | | | | 12 | | . 5 | 3.9 | _ | 43 | 17 | 16 | .10 | 16 | | 144 | | NOV 199 | | | | | | | | | | | | | 24 | | _ | | | 60 | 19 | 17 | <.10 | | _ | _ | | NOV 199 | | | | | | | | | | | | | 08 | | | _ | | 51 | | 18 | | | | | Table 3. Water-quality data from surface-water sites—Continued 01478190 - Middle Branch White Clay Creek at Wickerton, Pa. (Site 29)—Continued | DATE | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | |----------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | 0.18 | _ | 2.94 | 2.75 | 12 | 0.050 | 2.80 | 0.180 | 0.23 | 0.79 | 1.1 | | OCT 1982 | | | | | | | | | | | | | 20<br>NOV 1983 | .19 | 1.27 | 5.11 | 5.11 | 23 | .090 | 5.20 | .070 | .09 | | . 73 | | 02 | .18 | 1.70 | 5.09 | 5.09 | 23 | .110 | 5.20 | .390 | .50 | | .41 | | OCT 1984 | | | | | | , | 0,20 | | | | | | 18 | .18 | 2.41 | 5.02 | 5.02 | 22 | .080 | 5.10 | .060 | .08 | | .74 | | OCT 1985 | | | | | | | | | | | | | 25<br>DEC 1986 | .18 | 2.46 | 4.68 | 4.68 | 21 | .120 | 4.80 | .120 | .15 | . 98 | . 58 | | 02 | .16 | 2.83 | 4.67 | 4.67 | 21 | .030 | 4.70 | .300 | .39 | . 60 | .70 | | OCT 1987 | | | | | | | | | | | | | 29 | .19 | 2.65 | 3.63 | 3.63 | 16 | .070 | 3.70 | .400 | . 52 | .80 | .60 | | OCT 1988 | | | | | | | | | | | | | 31 | .21 | 2.32 | 5.58 | 5.58 | 25 | .120 | 5.70 | . 630 | .81 | . 67 | . 37 | | OCT 1989<br>31 | .18 | 4.28 | 5.30 | _ | | <.010 | 5.30 | .020 | .03 | . 28 | .58 | | NOV 1990 | | 3.20 | 3.30 | | | 1.010 | 3.50 | .020 | .00 | .20 | .55 | | 09 | .21 | 2.25 | 5.79 | 5.79 | 26 | .010 | 5.80 | .170 | .22 | .83 | . 73 | | NOV 1991 | | | | | | | | | | | | | 13 | .19 | 1.40 | 5.60 | | - | <.010 | 5.60 | .020 | .03 | . 38 | . 38 | | NOV 1992<br>12 | .20 | 2.13 | 6.06 | 6.06 | 27 | .040 | 6.10 | .040 | . 05 | . 26 | .26 | | NOV 1993 | .20 | 2.13 | 0.00 | 0.00 | 21 | .040 | 0.10 | .040 | .03 | .20 | .20 | | 24 | | _ | 5.99 | 5.99 | 27 | .010 | 6.00 | .020 | .03 | | | | NOV 1994 | | | | | | | | | | | | | 08 | | | 6.29 | 6.29 | 28 | .010 | 6.30 | <.015 | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01478190 - Middle Branch White Clay Creek at Wickerton, Pa. (Site 29)—Continued | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | CADMIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CD)<br>(01025) | |----------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | 0.90 | 1.3 | 3.9 | 4.1 | 0.360 | 1.1 | 0.290 | 0.260 | 0.80 | ND | <1.0 | | OCT 1982 | | | | | | | | | | | | | 20 | _ | .80 | _ | 6.0 | _ | | .370 | .390 | 1.2 | 1 | <1.0 | | NOV 1983 | | | | | | | | | | | | | 02 | _ | . 80 | | 6.0 | .280 | .86 | .260 | .270 | . 83 | | | | OCT 1984 | | | | | | | | | | | | | 18 | | . 80 | | 5.9 | .190 | _ | .190 | .190 | . 58 | _ | | | OCT 1985<br>25 | 1.1 | .70 | 5.9 | 5.5 | . 290 | .89 | .260 | .240 | .74 | | | | DEC 1986 | 1.1 | . 70 | 3.3 | 5.5 | . 290 | .09 | .200 | .240 | . /4 | <del></del> | | | 02 | . 90 | 1.0 | 5.6 | 5.7 | .160 | | .130 | .110 | . 34 | | | | OCT 1987 | . 50 | 1.0 | 0.0 | 0 | ,100 | | .150 | | | | | | 29 | 1.2 | 1.0 | 4.9 | 4.7 | . 200 | | .180 | .150 | . 46 | <1 | <1.0 | | OCT 1988 | | | | | | | | | | | | | 31 | 1.3 | 1.0 | 7.0 | 6.7 | .300 | _ | .280 | .240 | .74 | _ | | | OCT 1989 | | | | | | | | | | | | | 31 | .30 | . 60 | 5.6 | 5.9 | .130 | | .110 | .110 | .34 | | _ | | NOV 1990 | | | | | | | | | | | | | 09 | 1.0 | . 90 | 6.8 | 6.7 | .180 | _ | .170 | .170 | . 52 | | _ | | NOV 1991 | | | | | | | | | | | | | 13 | . 40 | . 40 | 6.0 | 6.0 | .220 | _ | .190 | .180 | . 55 | | | | NOV 1992 | 20 | 20 | | | 200 | | 200 | 100 | | | | | 12<br>NOV 1993 | .30 | . 30 | 6.4 | 6.4 | .200 | _ | .200 | .180 | . 55 | _ | | | 24 | | | | | | | _ | .180 | . 55 | | | | NOV 1994 | | | | | | | | .100 | . 55 | | | | 08 | | | | | | _ | | . 290 | . 89 | | | | | | | | | | | | .250 | | | | Table 3. Water-quality data from surface-water sites—Continued 01478190 - Middle Branch White Clay Creek at Wickerton, Pa. (Site 29)—Continued | DATE | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | <1 | <1 | 2 | 220 | <1 | 95 | 0.4 | 3 | | <4 | 0.10 | | OCT 1982 | | | | | | | | | | | | | 20 | <1 | 1 | 2 | 21 | <1 | 14 | <.1 | <1 | _ | <4 | .08 | | NOV 1983 | | | | 60 | | 32 | | | | | | | 02<br>OCT 1984 | <del></del> | | | 62 | | 32 | | | | | | | 18 | | | | 48 | | 20 | | | | | | | OCT 1985 | | | | | | | | | | | | | 25 | | - | | 37 | | 10 | | | | | | | DEC 1986 | | | | | | | | | | | | | 02 | | _ | | 58 | | 54 | _ | | | | _ | | OCT 1987 | | | | | | | | | | | | | 29<br>OCT 1988 | <1 | | 1 | 84 | <5 | 47 | <.1 | <1 | <1.0 | 4 | <del></del> | | 31 | _ | | **** | 56 | | 32 | | | | | | | OCT 1989 | | | | 30 | | J. | | | | | | | 31 | | | | 66 | | 23 | | | | | | | NOV 1990 | | | | | | | | | | | | | 09 | _ | | _ | 52 | | 20 | | _ | | _ | | | NOV 1991 | | | | | | | | | | | | | 13 | | | <del></del> | 42 | - | 15 | | | | | | | NOV 1992<br>12 | _ | | | 60 | | 20 | | | | | | | NOV 1993 | | | | 30 | | 20 | | | | | | | 24 | | | | | | | | | | | _ | | NOV 1994 | | | | | | | | | | | | | 08 | _ | | | _ | _ | <del></del> | <del></del> | _ | | | | Table 3. Water-quality data from surface-water sites—Continued 01478220 - West Branch White Clay Creek near Chesterville (Site 30) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | 1330 | | 167 | 7.6 | 9.5 | | 10.4 | 56 | _ | 14 | 5.2 | | OCT 1982 | | | | | | | | | | | | | 20 | 0945 | 3.3 | 145 | 7.6 | 8.5 | _ | 10.3 | 49 | - | 12 | 4.6 | | NOV 1983 | | | | | | | | | | | | | 02 | 1015 | 4.3 | 144 | 7.3 | 7.0 | 1.6 | 12.0 | 49 | | 12 | 4.7 | | OCT 1984 | 1400 | 5.4 | 150 | 7.6 | 15.0 | . 50 | 10.4 | 49 | | 12 | 4.6 | | 18<br>OCT 1985 | 1400 | 3.4 | 150 | 7.6 | 15.0 | .50 | 10.4 | 49 | _ | 12 | 4.0 | | 25 | 1100 | 6.2 | 165 | 7.1 | 11.0 | . 60 | 11.5 | 51 | | 12 | 5.0 | | NOV 1986 | | | | | | | | | | | | | 25 | 1100 | 9.8 | 160 | 7.5 | 6.0 | 1.4 | 12.7 | 52 | | 12 | 5.3 | | OCT 1987 | | | | | | | | | | | | | 29 | 1230 | 7.6 | 160 | 7.4 | 10.0 | .70 | 11.9 | 54 | | 13 | 5.3 | | OCT 1988 | | | | | | | | | | | | | 31 | 1300 | 4.1 | 168 | 7.3 | 7.5 | 1.9 | 13.2 | 55 | | 13 | 5.5 | | OCT 1989<br>31 | 1220 | 13 | 169 | 7.3 | 15.5 | . 50 | 9.4 | 53 | 0 | 13 | 5.1 | | NOV 1990 | 1220 | 13 | 109 | 7.3 | 15.5 | . 50 | 9.4 | 33 | U | 13 | 3.1 | | 09 | 1115 | 4.1 | 177 | 7.4 | 5.5 | .40 | 14.1 | 54 | 6 | 13 | 5.3 | | NOV 1991 | 2220 | | | | • • • • • • • • • • • • • • • • • • • • | | | • | • | | | | 13 | 1145 | 3.9 | 184 | 7.3 | 7.0 | 1.4 | 12.9 | 58 | 34 | 14 | 5.6 | | NOV 1992 | | | | | | | | | | | | | 16 | 1235 | 6.3 | 175 | 7.2 | 4.5 | .40 | 13.7 | 55 | | 13 | 5.4 | | NOV 1993 | | | | | | | | | | | | | 23 | 0945 | 5.6 | 180 | 7.3 | 3.5 | | 13.0 | _ | _ | | | | NOV 1994 | 1150 | 2.0 | 100 | 7.0 | 0.5 | | 10.4 | | | | | | 03 | 1150 | 3.0 | 198 | 7.8 | 9.5 | _ | 12.4 | | | | | Table 3. Water-quality data from surface-water sites—Continued 01478220 - West Branch White Clay Creek near Chesterville (Site 30)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | WAT WH<br>TOT FET<br>FIELD | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | 6.4 | 18 | 0.4 | 6.5 | | | 17 | 12 | <0.10 | 14 | 111 | | OCT 1982 | | 21 | | 2.0 | 24 | | 12 | 10 | <.10 | 1.5 | 94 | | 20<br>NOV 1983 | 6.4 | 21 | . 4 | 3.0 | 24 | | 12 | 10 | <.10 | 13 | 94 | | 02 | 7.6 | 24 | .5 | 3.0 | 24 | | 16 | 13 | | 13 | 102 | | OCT 1984 | | | | | | | | | | | | | 18 | 6.7 | 22 | . 4 | 2.9 | 32 | _ | 14 | 12 | | 12 | 99 | | OCT 1985<br>25 | 7.2 | 22 | . 4 | 4.2 | 38 | | 15 | 13 | | 12 | 106 | | 25<br>NOV 1986 | 1.2 | 22 | . 4 | 4.2 | 36 | _ | 15 | 13 | _ | 12 | 100 | | 25 | 7.3 | 22 | . 4 | 4.3 | 32 | | 20 | 12 | _ | 14 | 103 | | OCT 1987 | | | | | | | | | | | | | 29 | .53 | 2 | .0 | 5.9 | 30 | | 20 | 12 | _ | 13 | 104 | | OCT 1988<br>31 | 7.7 | 22 | . 5 | 3.1 | 40 | | 15 | 12 | _ | 14 | | | OCT 1989 | ,., | 22 | .5 | 3.1 | 40 | | 13 | 12 | | 14 | | | 31 | 7.9 | 23 | .5 | 3.7 | 310 | | 15 | 11 | | 13 | | | NOV 1990 | | | | | | | | | | | | | 09<br>NOV 1991 | 7.6 | 22 | . 4 | 3.1 | 48 | | 14 | 15 | <.10 | 13 | | | 13 | 7.9 | 21 | .5 | 5.7 | 24 | | 18 | 18 | <.10 | 13 | | | NOV 1992 | | | | • • • • • • • • • • • • • • • • • • • • | | | | | | | | | 16 | 7.5 | 22 | . 4 | 3.4 | _ | 19 | 17 | 14 | <.10 | 14 | | | NOV 1993 | | | | | | 00 | 1.0 | | | | | | 23<br>NOV 1994 | | | - | | | 28 | 16 | 14 | .10 | | _ | | 03 | _ | _ | | _ | | 29 | | 17 | | | | Table 3. Water-quality data from surface-water sites—Continued 01478220 - West Branch White Clay Creek near Chesterville (Site 30)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GTN,<br>ORGANIC<br>TCTAL<br>(FG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | | 0.15 | | 1.89 | 1.89 | 8.4 | 0.010 | 1.90 | <0.010 | 0.01 | 0.62 | | OCT 1982 | | | | | | | | | | | | | 20<br>NOV 1983 | 87 | .13 | 0.83 | 2.60 | _ | | <.010 | 2.60 | .030 | . 04 | _ | | 02 | 99 | . 14 | 1.18 | 3.49 | 3.49 | 15 | .010 | 3.50 | .030 | .04 | | | OCT 1984 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 1.10 | 3.13 | 3,13 | 10 | .010 | 3.50 | | | | | 18 | 100 | .13 | 1.44 | 3.56 | 3.56 | 16 | .040 | 3.60 | .060 | .08 | _ | | OCT 1985 | | | | | | | | | | | | | 25 | 104 | .14 | 1.77 | 2.89 | 2.89 | 13 | .010 | 2.90 | .030 | .04 | . 57 | | NOV 1986 | 100 | 1.4 | 0.70 | 2 10 | 2 10 | 1.4 | 010 | 2 00 | 040 | 05 | 26 | | 25<br>OCT 1987 | 109 | .14 | 2.73 | 3.19 | 3.19 | 14 | .010 | 3.20 | .040 | .05 | .26 | | 29 | 100 | .14 | 2.13 | 2.70 | | | <.010 | 2.70 | .060 | .08 | . 34 | | OCT 1988 | | | | | | | | | - | | | | 31 | 111 | .15 | 1.23 | 3.80 | | _ | <.010 | 3.80 | .010 | .01 | .49 | | OCT 1989 | | | | | | | | | | | | | 31 | 270 | . 37 | 9.48 | 3.50 | | | <.010 | 3.50 | <.010 | _ | . 40 | | NOV 1990<br>09 | 117 | .16 | 1.28 | 3.90 | _ | | <.010 | 3.90 | .050 | .06 | .45 | | NOV 1991 | 11, | .10 | 1.20 | 3.30 | | | 1.010 | 3.30 | .030 | .00 | . 40 | | 13 | 112 | .15 | 1.18 | 3.50 | _ | | <.010 | 3.50 | .040 | .05 | .56 | | NOV 1992 | | | | | | | | | | | | | 16 | 103 | .14 | 1.75 | 3.87 | 3.87 | 17 | .030 | 3.90 | <.010 | _ | | | NOV 1993<br>23 | | | _ | 4.00 | | | <.010 | 4.00 | .010 | .01 | | | 23<br>NOV 1994 | | | | 4.00 | _ | | <.010 | 4.00 | .010 | .01 | | | 03 | | | | 2.79 | 2.79 | 12 | .010 | 2.80 | <.015 | _ | | | - | | | | | | | · · | | | | | Table 3. Water-quality data from surface-water sites—Continued #### 01478220 - West Branch White Clay Creek near Chesterville (Site 30)—Continued | | NITRO- | NITRO- | NITRO~ | | | | | | PHOS~ | PHOS- | | |----------|---------|----------|----------|---------|---------|---------|----------------------|---------|---------|----------------------|----------| | | GEN, | GEN, AM- | GEN, AM~ | | NITRO- | | | PHOS- | PHORUS, | PHATE, | | | | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | ORTHO, | ORTHO, | ARSENIC, | | | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | DIS- | DIS- | DIS- | | | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | (MG/L (µG/L | | | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | AS P) | AS PO <sub>4</sub> ) | AS AS) | | | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (00666) | (00671) | (00660) | (01000) | | | | | | | | | | | | | | | OCT 1981 | | | | | | | | | | | _ | | 29 | | 0.62 | 0.63 | 2.5 | 2.5 | 0.070 | 0.21 | 0.080 | 0.050 | 0.15 | 1 | | OCT 1982 | | | | | | | | | | | | | 20 | 0.77 | | .80 | | 3.4 | _ | | .020 | <.010 | | 1 | | NOV 1983 | | | | | | | | | | | | | 02 | . 47 | | .50 | | 4.0 | .030 | .09 | .020 | <.010 | | | | OCT 1984 | | | | | | | | | | | | | 18 | . 34 | | .40 | | 4.0 | <.010 | | .010 | .020 | .06 | | | OCT 1985 | | | | | | | | | | | | | 25 | . 37 | .60 | .40 | 3.5 | 3.3 | .010 | .03 | <.010 | .010 | .03 | | | NOV 1986 | | | | | | | | | | | | | 25 | .46 | . 30 | .50 | 3.5 | 3.7 | .050 | | .040 | .030 | .09 | | | OCT 1987 | | | | | | | | | | | | | 29 | .14 | . 40 | .20 | 3.1 | 2.9 | .040 | | .020 | .010 | .03 | _ | | OCT 1988 | | | | | | | | | | | | | 31 | | .50 | <.20 | 4.3 | | .020 | | .010 | <.010 | | | | OCT 1989 | | 4.0 | | | | | | | | | | | 31 | | .40 | .40 | 3.9 | 3.9 | .020 | | .010 | .010 | .03 | | | NOV 1990 | 2- | | | | | | | | | | | | 09 | . 35 | .50 | .40 | 4.4 | 4.3 | <.010 | | <.010 | <.010 | | _ | | NOV 1991 | 2.5 | | | | | | | | | | | | 13 | .36 | .60 | .40 | 4.1 | 3.9 | .030 | _ | .010 | <.010 | | | | NOV 1992 | | | - 0- | | | | | | | | | | 16 | | <.20 | <.20 | _ | | .020 | _ | .030 | .010 | .03 | | | NOV 1993 | | | | | | | | | - 010 | | | | 23 | _ | | | _ | | | _ | | <.010 | _ | | | NOV 1994 | | | | | | | | | . 010 | | | | 03 | | _ | | | | | | | <.010 | _ | | Table 3. Water-quality data from surface-water sites—Continued 01478220 - West Branch White Clay Creek near Chesterville (Site 30)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>STB-<br>STANCE<br>(M~/L)<br>(38260) | |----------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | <1.0 | 1 | <1 | <1 | 110 | <1 | 200 | 0.1 | 2 | <4 | ND | | OCT 1982<br>20 | <1.0 | <1 | 4 | 2 | 35 | <1 | 22 | - | <1 | <4 | 0.09 | | NOV 1983<br>02 | | | | | 52 | | 22 | | | _ | _ | | OCT 1984 | | | | | 32 | | 22 | | | | | | 18 | _ | | | | 39 | | 11 | | | _ | _ | | OCT 1985 | | | | | 40 | | - | | | | | | 25<br>NOV 1986 | | | _ | | 40 | | 7 | | _ | | _ | | 25 | _ | | | _ | 80 | | 30 | | | _ | _ | | OCT 1987 | | | | | | | | | | | | | 29<br>OCT 1988 | _ | _ | | _ | 81 | | 19 | _ | _ | | _ | | 31 | _ | | | _ | 49 | | 21 | | | | | | OCT 1989 | | | | | | | | | | | | | 31 | | _ | _ | | 57 | - | 26 | | _ | | | | NOV 1990<br>09 | _ | | _ | | 53 | _ | 17 | | _ | | | | NOV 1991 | | | | _ | 55 | | 17 | | | | <del></del> | | 13 | _ | _ | _ | _ | 58 | | 12 | | | | | | NOV 1992 | | | | | | | | | | | | | 16<br>NOV 1993 | | | | _ | 66 | | 27 | _ | | | | | 23 | | | | | _ | | | | _ | | _ | | NOV 1994 | | | | | | | | | | | | | 03 | | _ | _ | _ | | _ | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | FIGNE-<br>FIUM,<br>DIS-<br>FOLVED<br>(MG/L<br>AS MG)<br>(CO925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 30 | 0845 | - | 288 | 7.8 | 9.0 | _ | 11.3 | 130 | _ | 30 | 13 | | NOV 1982 | | | | | | | | | | | | | 01<br>NOV 1983 | 1030 | 4.9 | 254 | 8.0 | 12.0 | | 11.1 | 130 | _ | 30 | 14 | | 01 | 0815 | 5.7 | 345 | 7.3 | 6.5 | 1.6 | 11.0 | 170 | | 37 | 18 | | OCT 1984 | 0013 | 3., | 313 | 7.5 | 0.5 | 1.0 | 11.0 | 170 | | 3, | 10 | | 19 | 0830 | 8.5 | 270 | 7.7 | 12.5 | 1.0 | 10.1 | 120 | _ | 28 | 12 | | OCT 1985 | | | | | | | | | | | | | 18 | 0830 | 6.7 | 299 | 7.5 | 7.0 | 1.5 | 12.0 | 130 | _ | 30 | 13 | | NOV 1986<br>18 | 1000 | 6.9 | 305 | 7.8 | 9.5 | . 90 | 10.4 | 140 | | 32 | 15 | | OCT 1987 | 1000 | 0.9 | 303 | 7.0 | 9.5 | . 90 | 10.4 | 140 | _ | 32 | 13 | | 30 | 0830 | 6.2 | 278 | 7.5 | 7.0 | .50 | 12.5 | 130 | | 30 | 13 | | NOV 1988 | | | | | | | | | | | | | 08 | 0900 | 5.6 | 375 | 7.2 | 9.0 | 1.9 | 12.1 | 160 | _ | 37 | 16 | | OCT 1989 | | | 225 | | | | | | | | | | 30<br>OCT 1990 | 0930 | 12 | 285 | 7.6 | 13.0 | 1.6 | 12.2 | 110 | 36 | 26 | 11 | | 31 | 0900 | 6.0 | 300 | 6.7 | 9.0 | .60 | 12.1 | 130 | 43 | 31 | 13 | | NOV 1991 | | • • • | | • • • • • • • • • • • • • • • • • • • • | • • • | | | | | - | | | 07 | 1015 | 4.5 | 338 | 7.4 | 6.0 | 1.4 | 13.3 | 150 | 0 | 34 | 15 | | OCT 1992 | | | | | | | | | | | | | 27<br>NOV 1993 | 1100 | 3.8 | 339 | 8.0 | 10.5 | 2.6 | 12.4 | 140 | _ | 33 | 15 | | 22 | 0900 | 5.9 | 391 | 7.8 | 5.5 | _ | 12.9 | | _ | _ | | | NOV 1994 | 0500 | 0.5 | 001 | ,.0 | 0.5 | | 12.5 | | | | | | 08 | 0850 | 3.9 | 360 | 6.7 | 8.5 | _ | 11.0 | _ | _ | _ | | | | 0850 | 3.9 | 360 | 6.7 | 8.5 | _ | 11.0 | | _ | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA. DIS- SOLVEI (MG/L AS SIO <sub>2</sub> ) (00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | 7.7 | 11 | 0.3 | 4.8 | | | 22 | 15 | <0.10 | 17 | | NOV 1982 | | | | | | | | | | | | 01 | 7.3 | 10 | . 3 | 3.3 | 96 | _ | 24 | 12 | <.10 | 14 | | NOV 1983<br>01 | 8.6 | 10 | .3 | 3.2 | 90 | | 26 | 16 | | 16 | | OCT 1984 | 0.0 | 10 | .5 | 5.2 | 30 | | 20 | 10 | | 10 | | 19 | 7.4 | 12 | .3 | 3.0 | 82 | _ | 14 | 12 | | 15 | | OCT 1985 | | | | | | | | | | | | 18 | 8.2 | 12 | .3 | 3.5 | 100 | | 25 | 13 | | 16 | | NOV 1986 | | | _ | | | | | | | | | 18 | 8.1 | 11 | .3 | 3.6 | 80 | _ | 29 | 13 | | 17 | | OCT 1987 | 7.8 | 11 | . 3 | 4.7 | 80 | _ | 25 | 16 | | 16 | | NOV 1988 | 7.0 | 11 | | 4.7 | 00 | | 2.5 | 10 | | 10 | | 08 | 8.9 | 11 | . 3 | 4.0 | 102 | | 30 | 16 | | 17 | | OCT 1989 | | | | | | | | | | | | 30 | 8.6 | 14 | . 4 | 3.9 | 74 | _ | 25 | 15 | - | 14 | | OCT 1990 | | | _ | | | | | | | | | 31<br>NOV 1991 | 8.9 | 13 | .3 | 3.5 | 88 | _ | 25 | 18 | <.10 | 16 | | 07 | 8.3 | 11 | .3 | 3.3 | 166 | | 31 | 18 | .10 | 15 | | OCT 1992 | 0.5 | | | 5.5 | 100 | | 31 | 10 | .10 | 10 | | 27 | 7.3 | 10 | .3 | 3.6 | | 95 | 28 | 17 | .10 | 14 | | NOV 1993 | | | | | | | | | | | | 22 | _ | | _ | | | 102 | 27 | 25 | <.10 | _ | | NOV 1994 | | | | | | • | | | | | | 08 | _ | | | | | 96 | | 19 | _ | | Table 3. Water-quality data from surface-water sites—Continued 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS 1')<br>(00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | 184 | | 0.25 | _ | 3.69 | 3.69 | 16 | 0.010 | 3.70 | <0.010 | | NOV 1982 | | | | | | | | | | | | 01 | 176 | 179 | .24 | 2.33 | 3.68 | 3.68 | 16 | .020 | 3.70 | <.010 | | NOV 1983 | | | | | - 00 | | | | | 0.50 | | 01<br>OCT 1984 | 215 | 201 | . 29 | 3.31 | 5.00 | | | <.010 | 5.00 | .060 | | 19 | 170 | 161 | .23 | 3.90 | 4.55 | 4.55 | 20 | .050 | 4.60 | .050 | | OCT 1985 | 170 | 101 | .23 | 3.30 | 4.55 | 4.55 | 20 | .050 | 4.00 | .050 | | 18 | 171 | 188 | .23 | 3.09 | 4.29 | 4.29 | 19 | .010 | 4.30 | .050 | | NOV 1986 | | | | | | | | | | | | 18 | 202 | 187 | .27 | 3.76 | 4.80 | | | <.010 | 4.80 | .060 | | OCT 1987 | | | | | | | | | | | | 30 | 181 | 179 | . 25 | 3.03 | 4.20 | _ | _ | <.010 | 4.20 | .050 | | NOV 1988<br>08 | | 211 | . 29 | 3.19 | 4.68 | 4.68 | 21 | .020 | 4.70 | .040 | | OCT 1989 | _ | 211 | .23 | 3.19 | 4.00 | 4.00 | 21 | .020 | 4.70 | .040 | | 30 | | 169 | .23 | 5.48 | 4.69 | 4.69 | 21 | .010 | 4.70 | .030 | | OCT 1990 | | | | | | | | | | | | 31 | | 194 | .26 | 3.14 | 5.58 | 5.58 | 25 | .020 | 5.60 | .280 | | NOV 1991 | | | | | | | | | | | | 07 | | 249 | . 34 | 3.03 | 5.60 | | | <.010 | 5.60 | .030 | | OCT 1992<br>27 | | 107 | . 27 | 2 02 | 4.87 | A 07 | 22 | .030 | 4.90 | .020 | | NOV 1993 | | 197 | .21 | 2.02 | 4.0/ | 4.87 | 22 | .030 | 4.90 | .020 | | 22 | _ | | | _ | 4.98 | 4.98 | 22 | .020 | 5.00 | .040 | | NOV 1994 | | | | | | | | | | | | 08 | _ | _ | | _ | 4.60 | _ | _ | <.010 | 4.60 | <.015 | Table 3. Water-quality data from surface-water sites—Continued 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27)—Continued | | NITRO- | | NITRO- | NITRO- | NITRO- | | | | | | |----------------|----------------------|---------|---------|----------|----------|-------------|------------|---------|----------------------|---------| | | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | | NITRO- | | | PHOS- | | | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | | | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | | DATE | (MG/L | | AS NH <sub>4</sub> ) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | | | (71846) | (00605) | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (006€6) | | OCT 1981 | | | | | | | | | | | | 30 | 0.01 | 0.87 | | 0.89 | 0.49 | 4.6 | 4.2 | 0.090 | 0.28 | 0.080 | | NOV 1982 | | | | | | | | | | | | 01 | .01 | | | _ | .30 | | 4.0 | | _ | .030 | | NOV 1983 | | | | | | | | | | | | 01 | .08 | _ | 1.0 | | 1.1 | | 6.1 | .050 | .15 | .C40 | | OCT 1984 | | | | | | | | | | | | 19 | .06 | | . 35 | | .40 | | 5.0 | .030 | _ | .030 | | OCT 1985 | | | | | | | | | | | | 18 | .06 | .35 | . 35 | .40 | .40 | 4.7 | 4.7 | .030 | .09 | .030 | | NOV 1986 | | | | | | | | | | | | 18 | .08 | . 94 | . 64 | 1.0 | .70 | 5.8 | 5.5 | .060 | _ | .030 | | OCT 1987 | | | | | | | | | | | | 30 | .06 | .25 | _ | .30 | <.20 | 4.5 | _ | .040 | _ | .020 | | NOV 1988 | | | | | | | | | | | | 08 | .05 | . 46 | .46 | .50 | . 50 | 5.2 | 5.2 | .040 | _ | .030 | | OCT 1989 | | | | | | | | | | | | 30 | .04 | .27 | . 27 | .30 | .30 | 5.0 | 5.0 | .030 | | .020 | | OCT 1990 | | | | | | | | | | | | 31 | . 36 | . 92 | . 82 | 1.2 | 1.1 | 6.8 | 6.7 | .180 | | .120 | | NOV 1991 | 0.4 | | .17 | <.20 | .20 | | <b>5</b> 0 | 040 | | .030 | | 07 | .04 | _ | .17 | <.20 | .20 | _ | 5.8 | .040 | | .(30 | | OCT 1992 | 0.3 | .38 | . 48 | 40 | EA | E 2 | E 4 | 000 | | .060 | | 27<br>NOV 1993 | .03 | . 38 | .48 | .40 | .50 | 5.3 | 5.4 | .080 | _ | . ( 60 | | 22 | .05 | | | _ | | | _ | | | _ | | 22<br>NOV 1994 | .05 | _ | _ | _ | _ | <del></del> | _ | | _ | | | NOV 1994<br>08 | | | | | | | | | | | | UB | | | | | | _ | | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27)—Continued | | PHOS- | PHOS- | | | | | | | | | |----------------|----------------|----------------------|------------------|-----------------|---------------|------------------|---------------|-----------------|-----------------|---------------| | | PHORUS, | PHATE, | | | BERYL- | 01 W/T/W/ | CHRO- | 00737 F | 00DDDD | TROY | | | ORTHO,<br>DIS- | ORTHO,<br>DIS- | ARSENIC,<br>DIS- | BARIUM,<br>DIS- | LIUM,<br>DIS- | CADMIUM,<br>DIS- | MIUM,<br>DIS- | COBALT,<br>DIS- | COPPER,<br>DIS- | IRCN,<br>DIS- | | | SOLVED SOLV.ED | | DATE | (MG/L | (MG/L | (µG/L | (µG/L | (µG/L | (μG/L | (µG/L | (µG/L | (µG/L | (μG/L | | DRIL | AS P) | AS PO <sub>4</sub> ) | AS AS) | AS BA) | AS BE) | AS CD) | AS CR) | AS CO) | AS CU) | AS FE) | | | (00671) | (00660) | (01000) | (01005) | (01010) | (01025) | (01030) | (01035) | (01040) | (01046) | | | | | | | | | | | | | | OCT 1981 | | | | | | | | | _ | | | 30 | 0.080 | 0.25 | <1 | | | <1.0 | 3 | <1 | 2 | 78 | | NOV 1982 | | | | | | | | | _ | | | 01<br>NOV 1983 | .030 | .09 | 1 | | | <1.0 | <1 | <1 | 2 | 37 | | 01 | .020 | .06 | 1 | | | <1.0 | <1 | <1 | 1 | 40 | | OCT 1984 | .020 | .00 | 1 | | | <b>\1.0</b> | ~1 | 1,1 | _ | 40 | | 19 | .030 | .09 | <1 | _ | | <1.0 | 2 | | 1 | 51 | | OCT 1985 | | | - | | | | - | | - | | | 18 | .030 | .09 | <1 | | | <1.0 | <1 | _ | <1 | 24 | | NOV 1986 | | | | | | | | | | | | 18 | .020 | .06 | <1 | | | <1.0 | <1 | | <1 | 33 | | OCT 1987 | | | | | | | | | | | | 3 | .020 | .06 | <1 | | | <1.0 | <1 | | 1 | 43 | | NOV 1988 | | | | | | | | | | | | 08 | .030 | .09 | <1 | 44 | <0.5 | <1.0 | <5 | <3 | <10 | 40 | | OCT 1989 | | | _ | | | | _ | | | | | 30 | .020 | .06 | <1 | 45 | <.5 | <1.0 | <5 | <3 | <10 | 53 | | OCT 1990 | 100 | ~~ | | 40 | | -1 0 | 45 | <3 | -10 | | | 31<br>NOV 1991 | .120 | . 37 | <1 | 42 | <.5 | <1.0 | <5 | <3 | <10 | 50 | | 07 | .030 | .09 | <1 | 40 | <.5 | <1.0 | <5 | <3 | <10 | 26 | | OCT 1992 | .030 | .09 | <b>\1</b> | 40 | ٧.5 | <b>\1.0</b> | \3 | \3 | <b>\10</b> | 20 | | 27 | .060 | .18 | <1 | 41 | <.5 | <1.0 | <5 | <3 | <10 | 23 | | NOV 1993 | .000 | .10 | | | 1.5 | 12.0 | | | -20 | 20 | | 22 | .040 | .12 | _ | _ | | | _ | _ | | | | NOV 1994 | | | | | | | | | | | | 08 | <.010 | | | | | | | | _ | _ | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued #### 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METTY-<br>LEYE<br>BLUE<br>ACTIVE<br>SU?-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | <1 | _ | 130 | <0.1 | 4 | _ | _ | | <4 | 0.10 | | NOV 1982 | | | | | | | | | | | | 01<br>NOV 1983 | <1 | | 32 | <.1 | <1 | | | | <4 | .04 | | 01 | <1 | | 31 | .2 | <1 | <1.0 | _ | | 5 | _ | | OCT 1984 | ** | | <b>3.</b> | | | 42.0 | | | · | | | 19 | 2 | | 40 | <.1 | 2 | <1.0 | _ | | 6 | _ | | OCT 1985 | | | | | | | | | | | | 18 | <1 | | 30 | <.1 | <1 | <1.0 | _ | | 7 | | | NOV 1986 | _ | | | _ | _ | | | | _ | | | 18 | 5 | | 42 | <.1 | 1 | <1.0 | _ | | 5 | | | OCT 1987<br>30 | <5 | | 46 | <.1 | 4 | <1.0 | _ | | <3 | | | NOV 1988 | | | -10 | ٠.٠ | • | 12.0 | | | •• | | | 08 | <10 | 42 | 32 | 1.8 | <10 | <1.0 | 96 | <6 | 20 | _ | | OCT 1989 | | | | | | | | | | | | 30 | <10 | <4 | 48 | .5 | <10 | 3.0 | 110 | <6 | <3 | | | OCT 1990 | .10 | | 25 | | .10 | 0 | 100 | | | | | 31<br>NOV 1991 | <10 | <4 | 35 | <.1 | <10 | <1.0 | 100 | <6 | 4 | _ | | 07 | <10 | 5 | 22 | <.1 | <10 | 1.0 | 96 | <6 | <3 | _ | | OCT 1992 | | • | | | | | | | | | | 27 | <10 | <4 | 25 | <.1 | <10 | <1.0 | 99 | <6 | 5 | | | NOV 1993 | | | | | | | | | | | | 22 | | _ | _ | | | | _ | _ | | _ | | NOV 1994<br>08 | | _ | | | | | | | | | | 00 | _ | | _ | | | | | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | NAGNE-<br>, SIUM,<br>DIS-<br>SCLVED<br>(MG/L<br>AS MG)<br>(C0925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 30 | 1115 | | 282 | 8.2 | 9.0 | _ | 11.5 | 120 | _ | 30 | 10 | | NOV 1982 | | | 250 | | | | | | | | 10 | | 01<br>NOV 1983 | 0900 | 4.2 | 252 | 8.3 | 11.0 | _ | 12.5 | 110 | _ | 27 | 10 | | 01 | 1100 | 4.6 | 273 | 8.1 | 8.0 | 1.4 | 11.8 | 120 | _ | 30 | 11 | | OCT 1984 | 1100 | | 2,0 | 0.2 | 0.0 | | 11.0 | 120 | | | | | 19 | 1030 | 6.7 | 275 | 8.3 | 14.5 | .50 | 14.1 | 110 | _ | 28 | 10 | | OCT 1985 | | | | | | | | | | | | | 18 | 1230 | 5.9 | 298 | 8.2 | 8.0 | 2.0 | 14.5 | 120 | _ | 30 | 11 | | NOV 1986<br>18 | 1400 | 7.1 | 300 | 7.9 | 9.0 | .80 | 11.1 | 130 | | 31 | 12 | | NOV 1987 | 1400 | 7.1 | 300 | 7.3 | 3.0 | .00 | 11.1 | 130 | | 31 | 12 | | 17 | 1500 | 8.4 | 290 | 8.5 | 14.0 | .50 | 14.0 | 120 | _ | 30 | 11 | | NOV 1988 | | | | | | | | | | | | | 08 | 1200 | 6.4 | 315 | 7.6 | 9.5 | 3.9 | 12.7 | 130 | | 32 | 12 | | OCT 1989 | | | | | | | | | | | | | 30<br>NOV 1990 | 1230 | 14 | 305 | 7.5 | 15.0 | . 70 | 13.5 | 120 | 54 | 30 | 11 | | 01 | 1230 | 5.5 | 308 | 6.9 | 11.5 | 2.6 | 13.8 | 120 | 62 | 30 | 11 | | NOV 1991 | | | | • | | | | | - | | | | 07 | 1245 | 3.6 | 321 | 7.7 | 5.5 | .50 | 16.0 | 140 | 59 | 33 | 13 | | OCT 1992 | | | | | | | | | | | | | 27 | 0915 | 4.0 | 319 | 7.9 | 8.0 | . 70 | 11.2 | 130 | | 33 | 12 | | NOV 1993<br>22 | 1230 | 6.6 | 332 | 8.5 | 6.0 | | 15.2 | | | | | | NOV 1994 | 1230 | 0.0 | 332 | 0.5 | 0.0 | | 10.2 | | | | | | 08 | 1050 | 3.7 | 350 | 7.0 | 8.0 | _ | 13.1 | _ | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | 9.8 | 15 | 0.4 | 6.7 | | | 29 | 19 | <0.10 | 18 | | NOV 1982 | | | _ | | | | | | | | | 01<br>NOV 1983 | 9.3 | 15 | . 4 | 3.7 | 72 | | 30 | 16 | <.10 | 14 | | 01 | 12 | 17 | . 5 | 4.7 | 86 | | 37 | 21 | | 17 | | OCT 1984 | | | | ••• | | | • | | | | | 19 | 9.2 | 15 | . 4 | 3.8 | 66 | _ | 34 | 19 | _ | 15 | | OCT 1985 | | | | | | | | 4- | | | | 18<br>NOV 1986 | 10 | 15 | . 4 | 4.2 | 74 | | 33 | 17 | | 17 | | 18 | 10 | 14 | . 4 | 5.5 | 66 | | 46 | 16 | | 19 | | NOV 1987 | | | | | | | | | | | | 17 | 12 | 17 | . 5 | 4.2 | 67 | _ | 36 | 23 | _ | 15 | | NOV 1988 | | | | | | | | | | | | 08<br>OCT 1989 | 11 | 15 | . 4 | 5.5 | 70 | | 50 | 17 | _ | 17 | | 30 | 10 | 15 | . 4 | 4.0 | 66 | _ | 35 | 17 | | 17 | | NOV 1990 | | | | *** | | | | | | | | 01 | 9.9 | 15 | . 4 | 3.6 | 58 | | 33 | 19 | .30 | 16 | | NOV 1991 | | | | | | | .= | | | | | 07<br>OCT 1992 | 11 | 15 | . 4 | 3.8 | 77 | | 42 | 23 | .10 | 15 | | 27 | 35 | 35 | 1 | 6.7 | | 66 | 34 | 61 | .30 | 16 | | NOV 1993 | | | | | | | | | | | | 22 | | | _ | _ | | 136 | 37 | 20 | <.10 | | | NOV 1994 | | | | | | 0- | | 0.5 | | | | 08 | | | | _ | | 85 | | 25 | | | Table 3. Water-quality data from surface-water sites—Continued 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS I')<br>(00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | 187 | _ | 0.25 | _ | 2.48 | 2.58 | 11 | 0.020 | 2.60 | <0.010 | | NOV 1982 | | | | | | | | | | | | 01 | 159 | 165 | . 22 | 1.80 | 2.68 | 2.68 | 12 | .020 | 2.70 | <.010 | | NOV 1983 | | | | | | | | | | | | 01<br>OCT 1984 | 187 | 203 | .25 | 2.32 | 4.08 | 4.08 | 18 | .020 | 4.10 | .070 | | 19 | 168 | 176 | .23 | 3.04 | 3.85 | 3.85 | 17 | .050 | 3.90 | .040 | | OCT 1985 | 100 | 1,0 | .23 | 3.04 | 3.03 | 5.03 | | .000 | 3.50 | .040 | | 18 | 174 | 182 | .24 | 2.77 | 3.49 | 3.49 | 15 | .010 | 3.50 | .030 | | NOV 1986 | | | | | | | | | | | | 18 | 206 | 198 | .28 | 3.95 | 4.27 | 4.27 | 19 | .030 | 4.30 | .040 | | NOV 1987 | | | | | | | | | | | | 17<br>NOV 1988 | 203 | 187 | .28 | 4.60 | 3.60 | _ | _ | <.010 | 3.60 | <.010 | | 08 | _ | 200 | .27 | 3.46 | 2.99 | 2.99 | 13 | .010 | 3.00 | .020 | | OCT 1989 | | 200 | , | 5.10 | 2.77 | 2.55 | 10 | .010 | 5.00 | | | 30 | | 181 | .25 | 6.85 | 3.88 | 3.88 | 17 | .020 | 3.90 | <.010 | | NOV 1990 | | | | | | | | | | | | 01 | _ | 176 | .24 | 2.61 | 4.08 | 4.08 | 18 | .020 | 4.10 | <.010 | | NOV 1991 | | | | | | | | | | | | 07<br>OCT 1992 | | 204 | .28 | 1.98 | 3.70 | _ | _ | <.010 | 3.70 | .020 | | 27 | | 252 | . 34 | 2.72 | 3.19 | 3.19 | 14 | .010 | 3.20 | <.010 | | NOV 1993 | | 232 | .54 | 2.12 | 3.13 | 3.19 | | .010 | 3.20 | 7.010 | | 22 | _ | _ | | | 3.58 | 3.58 | 16 | .020 | 3.60 | .020 | | NOV 1994 | | | | | | | | | | | | 08 | _ | | | | 2.70 | _ | | <.010 | 2.70 | <.015 | Table 3. Water-quality data from surface-water sites—Continued 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26)—Continued | DATE | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/I.<br>AS P)<br>(00666) | |----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | 0.01 | 0.74 | | 0.74 | 0.57 | 3.2 | 3.2 | 0.080 | 0.25 | 0.060 | | NOV 1982<br>01 | .01 | _ | | _ | .70 | _ | 3.4 | | | .030 | | NOV 1983 | 00 | | 0.70 | | 00 | | 4.0 | 100 | 21 | 000 | | 01<br>OCT 1984 | .09 | _ | 0.73 | | . 80 | _ | 4.9 | .100 | . 31 | .080 | | 19 | .05 | | . 66 | _ | .70 | _ | 4.6 | .050 | | . 060 | | OCT 1985 | | | | | | | | | | | | 18 | .04 | .57 | . 57 | . 60 | . 60 | 4.1 | 4.1 | .060 | .18 | . 050 | | NOV 1986<br>18 | .05 | .56 | .26 | . 60 | .30 | 4.9 | 4.6 | .020 | | .050 | | NOV 1987 | .05 | .56 | .20 | . 60 | .30 | 4.9 | 4.0 | .020 | | .030 | | 17 | _ | .20 | | .20 | .20 | 3.8 | 3.8 | .070 | | .050 | | NOV 1988 | | | | | | | | | | | | 08 | .03 | .48 | .48 | . 50 | . 50 | 3.5 | 3.5 | .070 | | . 050 | | OCT 1989<br>30 | | . 70 | | . 70 | . 30 | 4.6 | 4.2 | . 030 | | .020 | | NOV 1990 | | . 10 | _ | . 10 | . 30 | 4.0 | 4.2 | .030 | | .020 | | 01 | | .70 | <del></del> | .70 | . 60 | 4.8 | 4.7 | .050 | _ | .030 | | NOV 1991 | | | | | | | | | | | | 07 | .03 | .28 | .28 | .30 | .30 | 4.0 | 4.0 | .020 | | . 030 | | OCT 1992<br>27 | | .20 | | .20 | .20 | 3.4 | 3.4 | .030 | _ | .010 | | NOV 1993 | | .20 | | .20 | .20 | J | | ,,,,, | | | | 22 | . 03 | _ | | | _ | _ | _ | | | | | NOV 1994 | | | | | | | | | | | | 08 | _ | _ | _ | | _ | _ | | | | | Table 3. Water-quality data from surface-water sites—Continued 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26)—Continued | DATE | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/I<br>AS FE)<br>(01046) | |----------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | 0.050 | 0.15 | ND | | | <1.0 | 2 | <1 | <1 | 58 | | NOV 1982<br>01<br>NOV 1983 | .020 | .06 | <1 | _ | _ | <1.0 | <1 | 1 | 1 | 40 | | 01 | .080 | .25 | 1 | | | <1.0 | <1 | _ | 2 | 55 | | OCT 1984 | | | | | | | | | | | | 19 | .060 | .18 | <1 | | | <1.0 | <1 | | 1 | 36 | | OCT 1985<br>18 | . 050 | .15 | <1 | | | <1.0 | <1 | _ | <1 | 18 | | NOV 1986<br>18<br>NOV 1987 | .030 | .09 | <1 | | | <1.0 | <1 | | 4 | 48 | | 17<br>NOV 1988 | .030 | .09 | <1 | | | <1.0 | <1 | - | 1 | 26 | | 08<br>OCT 1989 | .040 | .12 | <1 | 54 | <0.5 | <1.0 | <b>&lt;</b> 5 | <3 | <10 | <b>6</b> 5 | | 30<br>NOV 1990 | .020 | .06 | <1 | 53 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | <10 | 42 | | 01<br>NOV 1991 | .030 | .09 | <1 | 49 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | <10 | 33 | | 07<br>OCT 1992 | .010 | .03 | <1 | 52 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | <10 | 26 | | 27<br>NOV 1993 | .010 | .03 | <1 | 51 | <.5 | <1.0 | <5 | <3 | 10 | 49 | | 22<br>NOV 1994 | .050 | .15 | _ | | - | _ | _ | | | | | 08 | <.010 | | | | <del></del> | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METTY-<br>LENE<br>BIJUE<br>ACTIVE<br>SUF-<br>STANCE<br>(MC/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 30 | <1 | | 62 | 0.3 | 1 | _ | | | <4 | ND | | NOV 1982 | | | | | | | | | | | | 01 | <1 | - | 21 | <.1 | <1 | _ | | | <4 | 0.05 | | NOV 1983 | - | | 07 | • | | | | | _ | | | 01<br>OCT 1984 | 1 | | 27 | . 2 | 1 | <1.0 | | | 5 | | | 19 | <1 | | 17 | <.1 | 1 | <1.0 | | | <3 | | | OCT 1985 | | | | | - | 11.0 | | | ~5 | | | 18 | <1 | _ | 6 | <.1 | <1 | <1.0 | | | 9 | | | NOV 1986 | | | | | | | | | | | | 18 | <b>&lt;</b> 5 | _ | 36 | <.1 | 3 | <1.0 | | | 4 | | | NOV 1987 | | | | | | | | | _ | | | 17<br>NOV 1988 | <5 | | 19 | <.1 | 1 | <1.0 | | | <3 | | | 08 | <10 | 5 | 33 | <.1 | <10 | <1.0 | 130 | <6 | 11 | | | OCT 1989 | 110 | J | 33 | ··· | 110 | 11.0 | 130 | ~0 | | | | 30 | <10 | <4 | 19 | .1 | <10 | <1.0 | 130 | <6 | <3 | | | NOV 1990 | | | | | | | | | | | | 01 | <10 | 6 | 15 | <.1 | <10 | <1.0 | 130 | <6 | <3 | _ | | NOV 1991 | | | | | | | | | | | | 07 | <10 | 5 | 9 | <.1 | <10 | <1.0 | 130 | <6 | 13 | | | OCT 1992<br>27 | <10 | 24 | 17 | <.1 | <10 | <1.0 | 170 | <6 | 23 | | | NOV 1993 | 110 | 24 | 17 | ₹.1 | <b>~10</b> | <b>\1.0</b> | 170 | 46 | 23 | _ | | 22 | _ | | | | | | | | | _ | | NOV 1994 | | | | | | | | | | | | 08 | | | | _ | | | | | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> ) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM.<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | 1545 | | 198 | 8.0 | 12.0 | _ | 11.4 | 76 | _ | 19 | 7.0 | | OCT 1982 | | | | | | | | | | | | | 27 | 1535 | 22 | 196 | 7.5 | 10.5 | | 12.3 | 76 | | 19 | 6.9 | | NOV 1983 | | | | | | | | | | | | | 04 | 0915 | 19 | 198 | 7.4 | 8.5 | 1.5 | | 81 | _ | 20 | 7.5 | | OCT 1984 | 4.400 | | | | | | | | | | | | 30 | 1430 | 38 | 200 | 7.5 | 15.5 | 4.1 | 9.8 | 70 | | 17 | 6.7 | | OCT 1985<br>21 | 1200 | 19 | 200 | 7.4 | 8.0 | .60 | 12.0 | 75 | | 18 | 7.2 | | NOV 1986 | 1200 | 19 | 200 | 7.4 | 8.0 | .60 | 12.0 | 75 | | 16 | 1.2 | | 17 | 1500 | 17 | 210 | 7.7 | 8.5 | . 70 | 11.2 | 82 | _ | 20 | 7.9 | | OCT 1987 | 1500 | 1, | 210 | ,., | 0.5 | . 70 | 11.2 | 02 | | 20 | 7.3 | | 22 | 1100 | 23 | 200 | 7.5 | 9.5 | .50 | 12.7 | 79 | _ | 19 | 7.6 | | OCT 1988 | | | 200 | ,,, | 2.0 | | 22 | | | | | | 05 | 1430 | 17 | 220 | 7.8 | 15.5 | 1.4 | 11.4 | 80 | | 19 | 7.9 | | OCT 1989 | | | | | | | | | | | | | 10 | 1500 | 38 | 214 | 7.5 | 1.5 | .70 | 9.5 | 78 | 30 | 19 | 7.5 | | OCT 1990 | | | | | | | | | | | | | 16 | 1130 | 22 | 232 | 7.1 | 14.0 | 1.0 | 1.3 | 82 | 20 | 20 | 7.7 | | NOV 1991 | | | | | | | | | | | | | 18 | 1300 | 14 | 220 | 7.4 | 5.0 | .60 | 15.2 | 80 | 31 | 20 | 7.4 | | OCT 1992 | | | | | | | | | | | | | 30 | 1100 | 19 | 234 | 7.2 | 1 .5 | .90 | 11.8 | 85 | _ | 21 | 7.8 | | NOV 1993 | 4000 | 24 | 005 | | 40.5 | | 44.0 | | | | | | 15 | 1330 | 31 | 205 | 8.2 | 13.5 | | 11.3 | | _ | | | | OCT 1994 | 1100 | | 000 | | 2 2 | | 40.0 | | | | | | 13 | 1120 | 14 | 238 | 7.6 | 9.0 | _ | 12.3 | | | | | Table 3. Water-quality data from surface-water sites—Continued 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DER. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | 7.6 | 17 | 0.4 | 4.3 | _ | | 20 | 16 | <0.10 | 12 | 125 | | OCT 1982 | | | | 2.0 | | | | | . 10 | | | | 27<br>NOV 1983 | 6.6 | 15 | .3 | 3.0 | 46 | | 16 | 14 | <.10 | 14 | 119 | | 04 | 7.9 | 17 | . 4 | 3.5 | 48 | | 21 | 17 | | 15 | 140 | | OCT 1984 | , | | | • • • | | | | | | | | | 30 | 6.6 | 15 | .3 | 7.4 | 42 | | 20 | 13 | | 13 | 137 | | OCT 1985 | | | | | | | | | | | | | 21<br>NOV 1986 | 8.0 | 18 | . 4 | 3.0 | 50 | _ | 18 | 16 | | 13 | 118 | | 17 | 8.1 | 17 | . 4 | 3.5 | 34 | | 22 | 13 | | 18 | 145 | | OCT 1987 | 0.2 | | | | • | | | | | | | | 22 | 8.1 | 18 | . 4 | 3.3 | 51 | | 19 | 15 | | 14 | 127 | | OCT 1988 | | | | | | | | | | | | | 05<br>OCT 1989 | 7.6 | 16 | . 4 | 4.9 | 55 | | 20 | 16 | | 14 | | | 10 | 8.0 | 18 | . 4 | 2.6 | 48 | _ | 17 | 15 | | 16 | | | OCT 1990 | 0.0 | | | | | | | | | | | | 16 | 8.1 | 17 | . 4 | 4.8 | 62 | | 17 | 16 | <.10 | 16 | | | NOV 1991 | | | | | | | | | | | | | 18 | 9.0 | 19 | . 4 | 2.6 | 49 | _ | 22 | 21 | <.10 | 12 | | | OCT 1992<br>30 | 9.5 | 19 | . 4 | 3.4 | | 58 | 19 | 17 | <.10 | 14 | | | NOV 1993 | 2.5 | 13 | • • | 5.4 | | 50 | ** | • ' | 20 | ** | | | 15 | | _ | _ | _ | | 47 | 18 | 16 | .10 | | | | OCT 1994 | | | | | | | | | | | | | 13 | | | | | | 52 | | _ | | | | Table 3. Water-quality data from surface-water sites—Continued 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GTN,<br>ORGANIC<br>TCTAL<br>(FG/L<br>AS N)<br>(OC 505) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | _ | 0.17 | | 1.40 | - | | <0.010 | 1.40 | <0.010 | 0.01 | 0.43 | | OCT 1982 | | | | | | | | | | | | | 27<br>NOV 1983 | 118 | .16 | 7.20 | 2.50 | | | <.010 | 2.50 | .010 | .01 | | | 04 | 134 | .19 | 7.18 | 2.99 | 2.99 | 13 | .010 | 3.00 | .020 | .03 | | | OCT 1984 | -0. | .25 | ,,,,, | 2.33 | 2.55 | | .020 | 3.00 | .020 | .00 | | | 30 | 117 | .19 | 14.1 | 1.70 | | | <.010 | 1.70 | .030 | .04 | | | OCT 1985 | | | | | | | | | | | | | 21 | 126 | .16 | 6.05 | 2.90 | | | <.010 | 2.90 | .020 | .03 | .58 | | NOV 1986<br>17 | 129 | .20 | 6.66 | 3.60 | | | <.010 | 3.60 | <.010 | | | | OCT 1987 | 129 | .20 | 0.00 | 3.00 | _ | _ | <.010 | 3.60 | <.010 | | _ | | 22 | 130 | .17 | 7.89 | 2.90 | | | <.010 | 2.90 | .020 | .03 | .78 | | OCT 1988 | | | | | | | | | | | | | 05 | 136 | .18 | 6.24 | 3.00 | _ | | <.010 | 3.00 | .020 | .03 | .58 | | OCT 1989 | | | | | | | | | | | | | 10<br>OCT 1990 | 131 | .18 | 13.5 | 3.89 | 3.89 | 17 | .010 | 3.90 | .020 | .03 | .38 | | 16 | 138 | .19 | 8.18 | 2.39 | 2.39 | 11 | .010 | 2.40 | .030 | .04 | . 57 | | NOV 1991 | 100 | | 0.20 | 2.05 | 2.03 | | .010 | 2.10 | | | | | 18 | 137 | .19 | 5.17 | 3.00 | | | <.010 | 3.00 | .020 | .03 | _ | | OCT 1992 | | | | | | | | | | | | | 30 | 141 | .19 | 7.40 | 3.29 | 3.29 | 15 | .010 | 3.30 | .020 | .03 | | | NOV 1993<br>15 | | | | 3.29 | 3.29 | 15 | .010 | 3.30 | .010 | .01 | _ | | OCT 1994 | | | | 3.49 | 3.49 | 13 | .010 | 3.30 | .010 | .01 | | | 13 | | _ | | 3.10 | | | <.010 | 3.10 | <.015 | _ | <del></del> | Table 3. Water-quality data from surface-water sites—Continued 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>FIS-<br>SOLVED<br>(FG/L<br>AS AS)<br>(01.000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | | 0.43 | 0.31 | 1.8 | 1.7 | 0.010 | 0.03 | 0.030 | <0.010 | _ | ND | | OCT 1982 | | | | | | | | | | | | | 27<br>NOV 1983 | 0.59 | _ | .60 | | 3.1 | | | .030 | <.010 | | <1 | | 04 | . 48 | | .50 | | 3.5 | .050 | .15 | .040 | .020 | .06 | | | OCT 1984 | . 10 | | .50 | | 3.3 | .050 | .10 | .010 | .020 | | | | 30 | .77 | _ | .80 | | 2.5 | .150 | | .070 | .090 | .28 | | | OCT 1985 | | | | | | | | | | | | | 21 | . 38 | .60 | .40 | 3.5 | 3.3 | .050 | .15 | .040 | .040 | .12 | | | NOV 1986 | | <.20 | .60 | | | . 070 | | .060 | .040 | .12 | | | 17<br>OCT 1987 | | <.20 | .60 | | 4.2 | .070 | | .060 | .040 | .12 | | | 22 | .58 | .80 | . 60 | 3.7 | 3.5 | .040 | | .060 | .030 | .09 | | | OCT 1988 | | | | | | | | | | | | | 05 | .58 | .60 | .60 | 3.6 | 3.6 | .070 | | .060 | .040 | .12 | | | OCT 1989 | | | | | | | | | | | | | 10 | . 28 | .40 | .30 | 4.3 | 4.2 | .040 | | .030 | .030 | .09 | | | OCT 1990<br>16 | . 47 | . 60 | .50 | 3.0 | 2.9 | .060 | | .050 | .040 | .12 | | | NOV 1991 | | | .50 | 3.0 | 2., | .000 | | .000 | | • • • • | | | 18 | | <.20 | <.20 | | | <.010 | _ | <.010 | <.010 | _ | | | OCT 1992 | | | | | | | | | | | | | 30 | .18 | <.20 | .20 | | 3.5 | .030 | | .030 | .020 | .06 | | | NOV 1993 | | | | | | | | | .020 | .06 | | | 15<br>OCT 1994 | | | | _ | | | _ | _ | .020 | .06 | | | 13 | | _ | | | | | | | .020 | .06 | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued # 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | <1.0 | <1 | 1 | <1 | 140 | <1 | 32 | <0.1 | 4 | <4 | ND | | OCT 1982 | | | | | | | | | | | | | 27<br>NOV 1983 | <1.0 | <1 | <1 | <1 | 71 | <1 | 11 | <.1 | <1 | <4 | 0.04 | | 04 | | | | | 81 | | 20 | | | | | | OCT 1984 | | | | | 01 | | 20 | | | | | | 30 | | | - | | 230 | | 24 | | | | | | OCT 1985 | | | | | | | | | | | | | 21 | _ | | _ | _ | 42 | | 11 | - | | _ | _ | | NOV 1986 | | | | | | | | | | | | | 17 | | | | | 70 | | 20 | | | | _ | | OCT 1987<br>22 | | _ | _ | | 59 | _ | 13 | | | | | | OCT 1988 | | | | | 33 | | 13 | | | | | | 05 | | | | _ | 57 | | 14 | _ | _ | _ | _ | | OCT 1989 | | | | | | | | | | | | | 10 | _ | | _ | _ | 64 | | 21 | | | | _ | | OCT 1990 | | | | | | | | | | | | | 16<br>NOV 1991 | | | | | 100 | | 20 | | | _ | | | 18 | | _ | | | 56 | _ | 14 | | | | | | ОСТ 1992 | | | | | 30 | | | | | | | | 30 | _ | | | | 64 | | 20 | - | | _ | _ | | NOV 1993 | | | | | | | | | | | | | 15 | _ | | | | _ | _ | | _ | | | _ | | OCT 1994 | | | | | | | | | | | | | 13 | | _ | | _ | | | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01480629 - Buck Run at Doe Run, Pa. (Site 46) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | 1000 | | 206 | _ | 7.5 | | 11.7 | 82 | | 21 | 7.1 | | OCT 1982 | | | | | | | | | | | | | 28 | 0930 | 11 | 195 | 7.6 | 7.0 | | 13.5 | 78 | _ | 20 | 6.9 | | OCT 1983<br>28 | 1230 | 11 | 214 | 7.5 | 9.0 | 1.2 | 11.4 | 83 | _ | 21 | 7.4 | | OCT 1984 | 1230 | 11 | 214 | 7.5 | 9.0 | 1.2 | 11.4 | 63 | | 21 | 7.4 | | 31 | 0900 | 18 | 220 | 7.3 | 14.0 | 1.1 | 10.5 | 80 | _ | 20 | 7.2 | | OCT 1985 | | | | | | | | | | | | | 29 | 0945 | 11 | 260 | 7.3 | 9.0 | 1.0 | 12.2 | 86 | _ | 22 | 7.6 | | OCT 1986 | | | | | | | | | | | | | 30 | 0800 | 8.6 | 215 | 7.4 | 11.0 | 1.0 | 9.6 | 79 | _ | 20 | 7.0 | | NOV 1987<br>19 | 0900 | 15 | 228 | 7.1 | 9.0 | .50 | 12.0 | 87 | _ | 22 | 7.8 | | NOV 1988 | 0300 | 13 | 220 | 7.1 | 3.0 | .50 | 12.0 | 0, | | 22 | 7.0 | | 14 | 0830 | 15 | 240 | 7.6 | 7.0 | 2.5 | 13.2 | 92 | _ | 23 | 8.3 | | NOV 1989 | | | | | | | | | | | | | 07 | 0845 | 19 | 223 | 7.6 | 8.5 | 1.1 | 12.8 | 78 | 39 | 19 | 7.5 | | OCT 1990 | | | | | | | | | | | | | 17<br>OCT 1991 | 1130 | 12 | 237 | 6.9 | 12.5 | 1.8 | 10.9 | 80 | 20 | 20 | 7.4 | | 31 | 0845 | 8.2 | 239 | 7.8 | 8.5 | . 60 | 11.1 | 83 | 42 | 21 | 7.3 | | OCT 1992 | 00.10 | 0.2 | 207 | ,,, | 0.0 | | | • | | | | | 16 | 1240 | 13 | 250 | 7.1 | 14.0 | .80 | 11.1 | 90 | _ | 23 | 7.8 | | NOV 1993 | | | | | | | | | | | | | 08 | 1240 | 13 | 242 | 7.7 | 6.0 | _ | 14.0 | | _ | _ | | | NOV 1994 | 0035 | 11 | 244 | 6 7 | 0 = | | 11 - | | | | | | 14 | 0935 | 11 | 244 | 6.7 | 8.5 | | 11.5 | | _ | | | Table 3. Water-quality data from surface-water sites—Continued ## 01480629 - Buck Run at Doe Run, Pa. (Site 46)-Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | 9.6 | 20 | 0.5 | 2.6 | | _ | 17 | 17 | <0.10 | 7.0 | 124 | | OCT 1982 | | | | _ | | | | | | | | | 28 | 8.5 | 18 | . 4 | 4.0 | 40 | | 16 | 17 | <.10 | 7.8 | 129 | | OCT 1983 | 0.0 | 19 | . 4 | | 40 | | 00 | 19 | | 0.6 | 145 | | 28<br>OCT 1984 | 9.2 | 19 | . 4 | 2.9 | 48 | | 20 | 19 | | 9.6 | 143 | | 31 | 9.1 | 19 | . 4 | 3.0 | 46 | - | 17 | 15 | _ | 8.4 | 126 | | OCT 1985 | 7.2 | | • • | 3.0 | | | | | | • • • | | | 29 | 10 | 20 | . 5 | 2.8 | 50 | | 18 | 20 | | 8.1 | 121 | | OCT 1986 | | | | | | | | | | | | | 30 | 9.0 | 19 | . 4 | 3.3 | 50 | _ | 19 | 17 | _ | 9.0 | 141 | | NOV 1987 | | | | | | | | | | | | | 19 | 11 | 21 | . 5 | 2.9 | 47 | | 20 | 23 | | 8.7 | 143 | | NOV 1988 | 10 | 19 | . 5 | 3.0 | 40 | | 19 | 18 | | 8.8 | | | 14<br>NOV 1989 | 10 | 19 | . 5 | 3.0 | 48 | _ | 19 | 18 | | 0.0 | | | 07 | 8.1 | 18 | . 4 | 2.1 | 39 | | 16 | 15 | | 7.8 | | | OCT 1990 | 0.1 | | • • | 2.2 | 3, | | | | | | | | 17 | 9.0 | 19 | . 4 | 2.7 | 60 | _ | 16 | 17 | <.10 | 9.7 | | | OCT 1991 | | | | | | | | | | | | | 31 | 9.2 | 19 | . 4 | 3.0 | 41 | | 21 | 21 | .10 | 7.8 | _ | | OCT 1992 | | | | | | | | | | | | | 16 | 9.1 | 17 | . 4 | 3.1 | _ | 47 | 19 | 17 | .10 | 9.1 | | | NOV 1993 | | | | | | 40 | 1.0 | 10 | . 10 | | | | 08<br>NOV 1994 | _ | | _ | | | 49 | 19 | 19 | <.10 | | | | 14 | _ | _ | _ | | | 43 | | 19 | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480629 - Buck Run at Doe Run, Pa. (Site 46)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | _ | 0.17 | | 3.80 | | | <0.010 | 3.90 | <0.010 | 0.01 | 0.48 | | OCT 1982 | | | | | | | | | | | | | 28 | 122 | .18 | 3.97 | 3.99 | 3.99 | 18 | .010 | 4.00 | <.010 | .01 | | | OCT 1983 | 120 | -00 | 4 21 | 4 40 | | | | | | | | | 28<br>OCT 1984 | 138 | .20 | 4.31 | 4.40 | | | <.010 | 4.40 | <.010 | | _ | | 31 | 125 | .17 | 6.12 | 3.90 | | | <.010 | 3.90 | .020 | .03 | | | OCT 1985 | 125 | | 0.12 | 3.50 | | | 7.010 | 3.50 | .020 | .03 | | | 29 | 139 | .16 | 3.72 | 4.49 | 4.49 | 20 | .010 | 4.50 | .030 | .04 | .27 | | OCT 1986 | | | | | | | | | | | | | 30 | 132 | .19 | 3.27 | 4.00 | | | <.010 | 4.00 | .020 | .03 | . 48 | | NOV 1987 | | | | | | | | | | | | | 19<br>NOV 1988 | 144 | .19 | 5.60 | 4.60 | | | <.010 | 4.60 | <.010 | | .40 | | 14 | 142 | .19 | 5.76 | 5.18 | 5.18 | 23 | .020 | 5.20 | .020 | .03 | .38 | | NOV 1989 | 1.2 | | 0.70 | 3.10 | 3.10 | 20 | .020 | 3.20 | .020 | ,05 | . 50 | | 07 | 124 | .17 | 6.38 | 5.69 | 5.69 | 25 | .010 | 5.70 | .010 | .01 | .19 | | OCT 1990 | | | | | | | | | | | | | 17 | 138 | .19 | 4.47 | 4.59 | 4.59 | 20 | .010 | 4.60 | .020 | .03 | .88 | | OCT 1991 | | | 2 26 | | | | | | | | | | 31<br>OCT 1992 | 134 | .18 | 2.96 | 4.20 | | | <.010 | 4.20 | .020 | .03 | | | 16 | 139 | .19 | 4.74 | 5.09 | 5.09 | 23 | .010 | 5.10 | .020 | .03 | . 28 | | NOV 1993 | 100 | | | 2.03 | 0.05 | | .010 | 0.10 | .020 | .05 | .20 | | 08 | | | | 5.48 | 5.48 | 24 | .020 | 5.50 | .020 | .03 | | | NOV 1994 | | | | | | | | | | | | | 14 | - | | _ | 4.78 | 4.78 | 21 | .020 | 4.80 | <.015 | | _ | Table 3. Water-quality data from surface-water sites—Continued 01480629 - Buck Run at Doe Run, Pa. (Site 46)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | | 0.48 | 0.53 | 4.3 | 4.4 | 0.130 | 0.40 | 0.130 | 0.110 | 0.34 | ND | | OCT 1982 | | | | | | | | | | | _ | | 28 | | _ | .70 | | 4.7 | _ | | .090 | .080 | . 25 | 1 | | OCT 1983<br>28 | | | . 80 | | 5.2 | .100 | .31 | .090 | .080 | .25 | | | OCT 1984 | | | .00 | | 3.2 | .100 | .51 | .030 | | | | | 31 | 0.28 | | .30 | | 4.2 | .080 | | .070 | .060 | .18 | _ | | OCT 1985 | | | | | | | | | | | | | 29 | .17 | .30 | .20 | 4.8 | 4.7 | .080 | . 25 | .080 | .070 | .21 | | | OCT 1986<br>30 | . 38 | . 50 | .40 | 4.5 | 4.4 | .130 | | .090 | .090 | . 28 | | | NOV 1987 | . 30 | . 50 | .40 | 4.5 | 7.7 | .130 | | .030 | .030 | .20 | | | 19 | | .40 | . 30 | 5.0 | 4.9 | .100 | | .070 | .040 | .12 | _ | | NOV 1988 | | | | | | | | | | | | | 14 | . 38 | .40 | .40 | 5.6 | 5.6 | .110 | | .090 | .080 | .25 | | | NOV 1989 | 20 | | 40 | - 0 | | | | | 0.20 | 00 | | | 07<br>OCT 1990 | . 39 | .20 | . 40 | 5.9 | 6.1 | .040 | _ | .020 | .030 | .09 | | | 17 | . 38 | .90 | .40 | 5.5 | 5.0 | .070 | _ | .070 | .050 | .15 | _ | | OCT 1991 | | | | | | | | | | | | | 31 | | <.20 | <.20 | | | .060 | | .050 | .040 | .12 | _ | | OCT 1992 | | 20 | 20 | | | 0.50 | | 050 | 0.40 | 10 | | | 16<br>NOV 1993 | . 28 | .30 | .30 | 5.4 | 5.4 | .060 | | .050 | .040 | .12 | | | 08 | | | | | | | | | .030 | .09 | _ | | NOV 1994 | | | | | | | | | | | | | 14 | | | | | | | | | <.010 | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01480629 - Buck Run at Doe Run, Pa. (Site 46)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(μG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | MTTHY-<br>LENE<br>BLUE<br>ACTIVE<br>STB-<br>STANCE<br>(MG/L)<br>(39260) | |----------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | <1.0 | <1 | <1 | 3 | 54 | <1 | 25 | 0.7 | <1 | 5 | ND | | OCT 1982 | -1 0 | | | • | | | | | _ | | | | 28<br>OCT 1983 | <1.0 | <1 | 1 | 2 | 76 | <1 | 22 | <.1 | 1 | <4 | 0.06 | | 28 | | | | | 62 | | 24 | | | | | | OCT 1984 | | | | | | | | | | | | | 31 | _ | | | | 71 | _ | 27 | | | | | | OCT 1985 | | | | | | | | | | | | | 29<br>OCT 1986 | | | | | 37 | _ | 13 | | | | _ | | 30 | | | | | 45 | | 13 | | | | | | NOV 1987 | | | | | | | 10 | | | | | | 19 | | | | | 47 | | 36 | | | | _ | | NOV 1988 | | | | | | | | | | | | | 14 | _ | _ | _ | | 42 | _ | 19 | | | | | | NOV 1989<br>07 | | | | | 42 | | 22 | | | | | | OCT 1990 | | | | <del></del> | 42 | <del></del> | 22 | | | | | | 17 | | | | _ | 40 | _ | 26 | | | | | | OCT 1991 | | | | | | | | | | | | | 31 | _ | | | | 67 | | 25 | | _ | | | | OCT 1992 | | | | | 7.4 | | -00 | | | | | | 16<br>NOV 1993 | | | | _ | 74 | | 30 | ~ | _ | | _ | | 08 | | | _ | | _ | | | | _ | | | | NOV 1994 | | | | | | | | | | | | | 14 | | | | | | | | | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480632 - Doe Run at Springdell, Pa. (Site 45) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD - NESS, TOTAL (MG/L AS CACO <sub>3</sub> ) (00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>, SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | 0845 | _ | 127 | 7.4 | 6.5 | | 11.9 | 49 | | 12 | 4.6 | | OCT 1982 | | | | | | | | | | | | | 28 | 1100 | 5.0 | 122 | 7.4 | 7.0 | _ | 13.8 | 50 | | 12 | 4.8 | | OCT 1983<br>28 | 1345 | 5.4 | 131 | 7.3 | 10.5 | <1.0 | 11.5 | 50 | | 12 | 4.9 | | OCT 1984 | 1343 | 3.4 | 131 | 7.5 | 10.5 | 11.0 | 11.5 | 30 | | 12 | 4.5 | | 31 | 1100 | 10 | 135 | 7.5 | 14.0 | .90 | 11.2 | 51 | _ | 12 | 5.0 | | OCT 1985 | | | | | | | | | | | | | 29 | 1530 | 6.6 | 140 | 7.4 | 9.0 | .80 | 12.9 | 51 | _ | 12 | 5.0 | | OCT 1986 | | | | | | | | | | | | | 30<br>NOV 1987 | 1100 | 4.6 | 135 | 7.6 | 12.5 | .60 | 10.7 | 50 | _ | 12 | 4.9 | | 19 | 1330 | 7.2 | 140 | 7.4 | 10.5 | . 50 | 12.8 | 54 | | 13 | 5.3 | | NOV 1988 | 1330 | 7.2 | 140 | 7.4 | 10.5 | .50 | 12.0 | 34 | | 1.5 | 3.3 | | 14 | 1245 | 6.7 | 150 | 7.2 | 12.0 | 1.4 | 13.4 | 55 | _ | 13 | 5.4 | | NOV 1989 | | | | | | | | | | | | | 07 | 1230 | 14 | 152 | 7.6 | 11.5 | 1.5 | 12.5 | 51 | 20 | 12 | 5.2 | | OCT 1990<br>17 | 0900 | 5.9 | 146 | 7.1 | 11 5 | 1.0 | 10.8 | 51 | 0 | 12 | 5.1 | | OCT 1991 | 0900 | 5.9 | 146 | 7.1 | 11.5 | 1.0 | 10.8 | 21 | U | 12 | 3.1 | | 31 | 1045 | 4.9 | 142 | 7.0 | 10.0 | 5.7 | 11.4 | 50 | 7 | 12 | 4.8 | | OCT 1992 | | | | | | | | | | | | | 16 | 0900 | 6.4 | 159 | 7.2 | 13.0 | .70 | 10.8 | 53 | | 13 | 5.0 | | NOV 1993 | | | | | | | | | | | | | 08 | 0920 | 7.1 | 150 | 7.6 | 5.0 | | 13.4 | _ | _ | | | | NOV 1994 | 1140 | E 0 | 154 | e = | 11 = | | 10 1 | | | | | | 09 | 1140 | 5.8 | 154 | 6.5 | 11.5 | | 12.1 | | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01480632 - Doe Run at Springdell, Pa. (Site 45)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | WAT WH<br>TOT FET<br>FIELD | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05<br>OCT 1982 | 4.6 | 16 | 0.3 | 1.9 | | _ | 6.9 | 9.6 | <0.10 | 9.0 | 83 | | 28<br>OCT 1983 | 4.8 | 17 | .3 | 2.4 | 28 | | 10 | 10 | <.10 | 9.9 | 85 | | 28<br>OCT 1984 | 5.0 | 17 | .3 | 2.1 | 28 | | 9.9 | 11 | | 9.8 | 92 | | 31<br>OCT 1985 | 5.3 | 18 | .3 | 2.0 | 28 | | 9.3 | 8.7 | _ | 9.2 | 82 | | 29<br>OCT 1986 | 5.2 | 18 | . 3 | 2.0 | 58 | | 9.7 | 10 | _ | 9.4 | 76 | | 30<br>NOV 1987 | 4.9 | 17 | . 3 | 2.6 | 32 | _ | | _ | _ | 10 | 93 | | 19<br>NOV 1988 | 5.7 | 18 | .3 | 2.2 | 32 | | 11 | 16 | | 8.9 | 90 | | 14<br>NOV 1989 | 5.3 | 16 | . 3 | 3.0 | 34 | | 11 | 11 | _ | 9.0 | _ | | 07<br>OCT 1990 | 5.1 | 17 | . 3 | 1.7 | 31 | | 10 | 10 | _ | 9.5 | _ | | 17<br>OCT 1991 | 5.1 | 17 | . 3 | 2.0 | 51 | | 7.6 | 9.6 | <.10 | 11 | _ | | 31<br>OCT 1992 | 5.0 | 17 | . 3 | 2.1 | 43 | | 9.5 | 12 | <.10 | 10 | | | 16<br>NOV 1993 | 5.4 | 17 | . 3 | 2.2 | _ | 71 | 8.7 | 11 | <.10 | 10 | _ | | 08<br>NOV 1994 | | _ | | _ | _ | 27 | 8.9 | 11 | .10 | - | _ | | 09 | _ | _ | | _ | _ | 25 | _ | 11 | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01480632 - Doe Run at Springdell, Pa. (Site 45)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>O~GANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | | 0.11 | | 3.00 | - | | <0.010 | 3.10 | <0.010 | 0.01 | 0.46 | | OCT 1982 | | | | | | | | | | | | | 28 | 84 | .12 | 1.15 | 2.90 | | | <.010 | 2.90 | <.010 | .01 | _ | | OCT 1983 | | | | | | | | | | | | | 28 | 88 | .13 | 1.34 | 3.80 | | | <.010 | 3.80 | <.010 | | _ | | OCT 1984 | 0.5 | | | 2 40 | | | | 2 40 | 0.40 | | | | 31<br>OCT 1985 | 83 | .11 | 2.21 | 3.40 | | | <.010 | 3.40 | .040 | .05 | | | 29 | 106 | .10 | 1.35 | 4.10 | | | <.010 | 4.10 | .020 | .03 | | | OCT 1986 | 100 | .10 | 1.33 | 4.10 | | | <.010 | 4.10 | .020 | .03 | | | 30 | | | | 3.30 | | _ | <.010 | 3.30 | .040 | .05 | 1.8 | | NOV 1987 | | | | 3.30 | | | 1.010 | 3.30 | .040 | .03 | 1.0 | | 19 | 98 | .12 | 1.75 | 3.80 | | | <.010 | 3.80 | <.010 | | .30 | | NOV 1988 | | | | | | | | | | | | | 14 | 96 | .13 | 1.74 | 4.09 | 4.09 | 18 | .010 | 4.10 | .030 | .04 | .37 | | NOV 1989 | | | | | | | | | | | | | 07 | 94 | .13 | 3.55 | 4.90 | | | <.010 | 4.90 | .030 | .04 | .27 | | OCT 1990 | | | | | | | | | | | | | 17 | 101 | .14 | 1.62 | 4.10 | | | <.010 | 4.10 | <.010 | | .80 | | OCT 1991 | | | | | | | | | | | | | 31 | 98 | .13 | 1.30 | 3.80 | | | <.010 | 3.80 | .010 | .01 | .19 | | OCT 1992 | | | | | | | | | | | | | 16 | 118 | .16 | 2.03 | 4.40 | - | | <.010 | 4.40 | .020 | .03 | _ | | NOV 1993 | | | | 4 00 | | | . 010 | 4 00 | 000 | 63 | | | 08 | | _ | | 4.80 | | | <.010 | 4.80 | .020 | .03 | | | NOV 1994<br>09 | | | | 4 40 | | | - 010 | 4 40 | J 015 | | _ | | 09 | | | | 4.40 | _ | | <.010 | 4.40 | <.015 | | | Table 3. Water-quality data from surface-water sites—Continued ## 01480632 - Doe Run at Springdell, Pa. (Site 45)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | AFSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05 | | 0.46 | 0.35 | 3.5 | 3.5 | 0.010 | 0.03 | 0.020 | <0.010 | ***** | ND | | OCT 1982 | | | | | | | | | | | _ | | 28<br>OCT 1983 | | | . 30 | ***** | 3.2 | | | .010 | <.010 | | <1 | | 28 | | | .10 | | 3.9 | .020 | .06 | .020 | .010 | 0.03 | _ | | OCT 1984 | | | | | 0.0 | .020 | | ,,,,, | | ***** | | | 31 | 0.26 | _ | .30 | | 3.7 | <.010 | _ | <.010 | <.010 | _ | _ | | OCT 1985 | | | | | | | | | | | | | 29 | .28 | _ | .30 | | 4.4 | .010 | .03 | .010 | .010 | .03 | | | OCT 1986<br>30 | . 66 | 1.8 | . 70 | 5.1 | 4.0 | .010 | | .010 | .010 | . 03 | | | NOV 1987 | .00 | 1.0 | . 70 | 3.1 | 4.0 | .010 | _ | .010 | .010 | . 03 | _ | | 19 | | . 30 | .30 | 4.1 | 4.1 | .030 | | .010 | <.010 | | | | NOV 1988 | | | | | | | | | | | | | 14 | .77 | .40 | .80 | 4.5 | 4.9 | .030 | | .020 | .010 | .03 | | | NOV 1989 | | | 40 | | | | | | 000 | | | | 07<br>OCT 1990 | . 37 | . 30 | . 40 | 5.2 | 5.3 | .030 | _ | <.010 | .020 | . 06 | | | 17 | | .80 | .50 | 4.9 | 4.6 | .020 | | .020 | <.010 | | | | OCT 1991 | | | | | | | | | | | | | 31 | | .20 | <.20 | 4.0 | ***** | <.010 | | <.010 | <.010 | | | | OCT 1992 | | | | | | | | | | | | | 16 | .28 | <.20 | . 30 | | 4.7 | .030 | | .030 | .020 | .06 | _ | | NOV 1993<br>08 | | | _ | | | | | | .010 | .03 | | | NOV 1994 | | | | | | | | | .010 | .03 | | | 09 | _ | 4 | | _ | _ | | _ | **** | .010 | .03 | _ | Table 3. Water-quality data from surface-water sites—Continued 01480632 - Doe Run at Springdell, Pa. (Site 45)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(μG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | MFTHY- I.ENE F'JOE ACTIVE SUB- ST'NCE (NG/L) (38260) | |----------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 05<br>OCT 1982 | <1.0 | <1 | <1 | <1 | 29 | <1 | 14 | 0.4 | 1 | <4 | NI | | 28 | <1.0 | <1 | <1 | 1 | 27 | <1 | 8 | <.1 | <1 | 6 | 0.04 | | OCT 1983<br>28 | _ | | _ | _ | 32 | | 14 | _ | _ | | _ | | OCT 1984 | | | | | 32 | | 14 | | | | | | 31 | | | _ | | 35 | | 11 | | | _ | <del></del> | | ОСТ 1985<br>29 | | | _ | _ | 18 | | 9 | | | | | | OCT 1986 | | | | | | | - | | | | | | 30 | | | _ | _ | 30 | | 10 | | _ | | _ | | NOV 1987<br>19 | | | _ | | 29 | | 10 | | | | _ | | NOV 1988 | | | | | | | | | | | | | 14<br>NOV 1989 | | _ | _ | | 29 | | 8 | | | | | | 07 | _ | _ | | | 30 | | 14 | | | | _ | | OCT 1990 | | | | | | | | | | | | | 17<br>OCT 1991 | | | _ | | 27 | | 9 | | | | | | 31 | | | _ | | 51 | | 12 | | | | _ | | OCT 1992 | | | | | | | | | | | | | 16<br>NOV 1993 | | | | | 35 | _ | 10 | | | | _ | | 08 | _ | | | _ | | | _ | _ | _ | | _ | | NOV 1994 | | | | | | | | | | | | | 09 | _ | | | | | _ | _ | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | 1445 | | 240 | 7.5 | 10.5 | _ | 12.0 | 93 | _ | 23 | 8.6 | | OCT 1982 | | | | | | | | | | | | | 21 | 1530 | 59 | 238 | 7.7 | 13.0 | | 10.9 | 86 | | 21 | 8.1 | | OCT 1983<br>31 | 1130 | 71 | 245 | 7.4 | 8.0 | 1.2 | 11.6 | 92 | | 23 | 0.3 | | OCT 1984 | 1130 | /1 | 243 | 1.4 | 0.0 | 1.2 | 11.6 | 92 | _ | 23 | 8.3 | | 16 | 1130 | 100 | 225 | 8.2 | 13.0 | . 40 | 11.4 | 84 | | 21 | 7.6 | | OCT 1985 | | | | • • • | 20.0 | | | • | | ~- | | | 22 | 1400 | 74 | 250 | 7.6 | 10.0 | . 60 | 12.6 | 88 | | 22 | 8.1 | | NOV 1986 | | | | | | | | | | | | | 03 | 1130 | 51 | 245 | 7.8 | 11.0 | 1.0 | 10.3 | 92 | _ | 23 | 8.4 | | NOV 1987 | | | | | | | | | | | | | 03<br>OCT 1988 | 1000 | 69 | 230 | 7.4 | 12.0 | .50 | 11.2 | 92 | | 23 | 8.4 | | 11 | 1030 | 57 | 258 | 7.3 | 12.0 | .30 | 11.7 | 95 | | 23 | 9.0 | | OCT 1989 | 2000 | ٥, | 200 | 7.0 | 12.0 | .50 | 11.7 | ,,, | | 23 | 3.0 | | 13 | 1430 | 106 | 230 | 7.5 | 15.5 | .40 | 13.0 | 82 | 38 | 20 | 7.7 | | OCT 1990 | | | | | | | | | | | | | 15 | 1100 | 79 | 258 | 6.8 | 19.0 | 2.5 | 8.4 | 88 | 0 | 22 | 7.9 | | OCT 1991 | | | | | | | | | | | | | 30 | 0930 | 50 | 270 | 6.8 | 8.0 | .30 | 12.1 | 96 | 27 | 24 | 8.7 | | OCT 1992<br>29 | 0915 | 56 | 270 | 7.8 | 9.0 | .90 | 11 2 | 00 | | 22 | 0 3 | | NOV 1993 | 0913 | 36 | 210 | 1.0 | 9.0 | . 90 | 11.3 | 89 | | 22 | 8.3 | | 15 | 0945 | 84 | 261 | 7.7 | 12.0 | _ | 11.3 | | _ | _ | | | OCT 1994 | | | - | | | | <del>-</del> | | | | | | 11 | 1000 | 52 | 263 | 7.3 | 11.5 | _ | 10.4 | _ | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(NG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | 14 | 24 | 0.6 | 3.7 | _ | _ | 22 | 21 | 0.20 | 7.9 | | OCT 1982 | | | _ | | | | | | | | | 21 | 12 | 23 | . 6 | 3.1 | 56 | _ | 20 | 22 | .20 | 8.1 | | OCT 1983<br>31 | 13 | 23 | .6 | 4.0 | 52 | _ | 25 | 22 | _ | 10 | | OCT 1984 | 13 | 23 | . 0 | 4.0 | 32 | | 23 | 22 | | 10 | | 16 | 9.6 | 19 | .5 | 2.6 | 52 | _ | 20 | 18 | _ | 8.3 | | OCT 1985 | | | | | | | | | | | | 22 | 12 | 22 | .6 | 3.7 | 62 | _ | 21 | 20 | _ | 9.4 | | NOV 1986 | | | _ | | | | | | | | | 03 | 12 | 21 | .5 | 4.2 | 62 | _ | 22 | 19 | _ | 9.6 | | NOV 1987<br>03 | 11 | 20 | .5 | 3.9 | 60 | | 22 | 18 | | 11 | | OCT 1988 | 11 | 20 | . 5 | 3.3 | 60 | | 22 | 10 | | 11 | | 11 | 13 | 22 | . 6 | 3.2 | 60 | _ | 21 | 20 | _ | 8.9 | | OCT 1989 | | | | | | | | | | | | 13 | 10 | 20 | .5 | 3.0 | 44 | _ | 20 | 17 | _ | 10 | | OCT 1990 | | | | | | | | | | | | 15 | 12 | 22 | . 6 | 4.3 | 88 | | 18 | 19 | .50 | 13 | | OCT 1991 | 13 | 22 | . 6 | 3.9 | 69 | | 24 | 24 | 20 | 8.8 | | 30<br>OCT 1992 | 13 | 22 | . 6 | 3.9 | 69 | | 24 | 24 | .20 | 0.0 | | 29 | 12 | 22 | . 6 | 3.6 | | 59 | 22 | 21 | .30 | 8.4 | | NOV 1993 | | | • • | | | | | | | | | 15 | _ | _ | _ | | | 49 | 26 | 20 | .20 | - | | OCT 1994 | | | | | | | | | | | | 11 | | _ | | | | 62 | _ | 25 | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38)—Continued | | SOLIDS, | SOLIDS, | | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | |----------------|---------|---------|---------|---------|---------|---------|----------------------|---------|---------------|---------| | | RESIDUE | SUM OF | SOLIDS, | SOLIDS, | NITRO- | GEN, | GEN, | GEN, | GEN, | GEN, | | | AT 180 | CONSTI- | DIS- | DIS- | GEN, | NITRATE | NITRATE | NITRITE | $NO_2 + NO_3$ | AMMONIA | | | DEG. C | TUENTS, | SOLVED | SOLVED | NITRATE | DIS- | DIS- | DIS- | DIS- | DIS- | | | DIS- | DIS- | (TONS | (TONS | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | SOLVED | SOLVED | PER | PER | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | | (MG/L) | (MG/L) | AC-FT) | DAY) | AS N) | AS N) | AS NO <sub>3</sub> ) | AS N) | AS N) | AS N) | | | (70300) | (70301) | (70303) | (70302) | (00620) | (00618) | (71851) | (00613) | (00631) | (00608) | | NOV 1981 | | | | | | | | | | | | 04 | 142 | | 0.19 | | 2.37 | 2.34 | 10 | 0.060 | 2.40 | <0.010 | | OCT 1982 | | | | | | | | | | | | 21 | 140 | 139 | .19 | 22.3 | 2.36 | 2.36 | 10 | .040 | 2.40 | <.010 | | OCT 1983 | | | | | | | | | | | | 31 | 153 | 154 | .21 | 29.3 | 3.76 | 3.76 | 17 | .040 | 3.80 | .060 | | OCT 1984 | | | | | | | | | | | | 16 | 135 | 135 | .18 | 36.5 | 3.55 | 3.55 | 16 | .050 | 3.60 | .070 | | OCT 1985 | | | | | | | | | | | | 22 | 140 | 148 | .19 | 28.0 | 3.15 | 3.15 | 14 | .050 | 3.20 | .C40 | | NOV 1986 | | | | | | | | | | | | 03 | 152 | 148 | .21 | 2.9 | 2.69 | 2.69 | 12 | .010 | 2.70 | <.010 | | NOV 1987 | | | | | | | | | | | | 03 | 144 | 148 | .20 | 26.8 | 3.13 | 3.13 | 14 | .070 | 3.20 | .110 | | OCT 1988 | | | | | 2 - 2 | | | | 2 50 | 000 | | 11 | | 150 | .20 | 23.1 | 3.50 | _ | | <.010 | 3.50 | . 020 | | OCT 1989<br>13 | | 130 | .18 | 37.3 | 3.59 | 3.59 | 16 | .010 | 3.60 | .010 | | OCT 1990 | | 130 | .10 | 37.3 | 3.39 | 3.39 | 10 | .010 | 3.60 | .(10 | | 15 | - | 162 | . 22 | 34.6 | 2.78 | 2.78 | 12 | .020 | 2.80 | .030 | | OCT 1991 | | 102 | | 34.0 | 2.70 | 2.70 | 12 | .020 | 2.00 | .030 | | 30 | | 161 | .22 | 21.7 | 2.80 | | | <.010 | 2.80 | <.010 | | OCT 1992 | | | | | 2.00 | | | | | | | 29 | | 149 | .20 | 22.7 | 3.58 | 3.58 | 16 | .020 | 3.60 | <.010 | | NOV 1993 | | = | . = • | | | | | | | | | 15 | | | | _ | 3.60 | | | <.010 | 3.60 | .010 | | OCT 1994 | | | | | | | | | | | | 11 | | _ | _ | | 3.60 | | _ | <.010 | 3.60 | <.015 | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38)—Continued | | NITRO- | | NITRO- | NITRO- | NITRO- | | | | | | |----------|----------------------|---------|---------|----------|----------|---------|---------|---------|----------------------|---------| | | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | | NITRO- | | | PHOS- | | | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | | | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | | DATE | (MG/L | | AS NH <sub>4</sub> ) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | | | (71846) | (00605) | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (00666) | | NOV 1981 | | | | | | | | | | | | 04 | 0.01 | 0.49 | | 0.49 | 0.66 | 2.9 | 3.1 | 0.200 | 0.61 | 0.170 | | OCT 1982 | 0.01 | 0.49 | | 0.49 | 0.00 | 2.5 | 3.1 | 0.200 | 0.01 | 0.170 | | 21 | .01 | | | | 1.7 | | 4.1 | | | .140 | | OCT 1983 | .01 | | | | 1., | | *** | | | | | 31 | . 08 | _ | 0.34 | | . 40 | | 4.2 | .170 | .52 | .150 | | OCT 1984 | | | | | | | | | | | | 16 | . 09 | _ | .33 | | .40 | | 4.0 | .130 | | .130 | | OCT 1985 | | | | | | | | | | | | 22 | .05 | . 76 | .66 | .80 | .70 | 4.0 | 3.9 | .150 | .46 | .140 | | NOV 1986 | | | | | | | | | | | | 03 | _ | .80 | | .80 | . 60 | 3.5 | 3.3 | .190 | _ | .170 | | NOV 1987 | | | | | | | | | | | | 03 | .14 | .59 | .39 | .70 | .50 | 3.9 | 3.7 | .120 | _ | .100 | | OCT 1988 | | | | | | | | | | | | 11 | .03 | .38 | .38 | .40 | .40 | 3.9 | 3.9 | .150 | | .140 | | OCT 1989 | | | | | | | | | | | | 13 | .01 | .49 | . 39 | .50 | .40 | 4.1 | 4.0 | .080 | _ | .070 | | OCT 1990 | | | | | | | | | | | | 15 | .04 | .57 | .57 | .60 | . 60 | 3.4 | 3.4 | .140 | _ | .100 | | OCT 1991 | | | | | | | | | | | | 30 | | . 30 | | .30 | <.20 | 3.1 | _ | .120 | <del></del> - | .110 | | OCT 1992 | | | | | | | | | | | | 29 | | .20 | _ | . 20 | .20 | 3.8 | 3.8 | .110 | | .090 | | NOV 1993 | | | | | | | | | | | | 15 | .01 | _ | _ | | _ | | | _ | _ | | | OCT 1994 | | | | | | | | | | | | 11 | _ | _ | _ | _ | _ | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued # 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38)—Continued | DATE | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS SOLVED (µG/L AS FF) (01046) | |----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | 0.150 | 0.46 | ND | _ | | <1.0 | <1 | <1 | 2 | 65 | | OCT 1982 | 120 | 40 | | | | -11 0 | -1 | • | 3 | 50 | | 21<br>OCT 1983 | .130 | .40 | 1 | _ | _ | <1.0 | <1 | 1 | 3 | 50 | | 31 | .150 | . 46 | 1 | _ | | <1.0 | <1 | _ | 3 | 81 | | OCT 1984 | | | | | | | _ | | _ | | | 16<br>OCT 1985 | .130 | . 40 | <1 | _ | | <1.0 | 2 | | 1 | 46 | | 22 | .130 | .40 | <1 | | | <1.0 | 1 | | 2 | 42 | | NOV 1986 | | | | | | | | | | | | 03<br>NOV 1987 | .140 | . 43 | <1 | _ | _ | 1.0 | <1 | _ | 3 | 65 | | 03 | .100 | . 31 | <1 | | _ | <1.0 | 2 | _ | 4 | 58 | | OCT 1988 | | | | | | | | | | | | 11<br>OCT 1989 | . 120 | . 37 | <1 | 25 | <0.5 | <1.0 | <5 | <3 | <10 | 35 | | 13 | .060 | .18 | <1 | 25 | <.5 | <1.0 | <5 | <3 | <10 | 41 | | OCT 1990 | | | | | | | | | | | | 15 | .110 | . 34 | <1 | 30 | <.5 | <1.0 | <5 | <3 | <10 | 67 | | OCT 1991<br>30 | .090 | . 28 | <1 | 26 | <.5 | 1.0 | <5 | <3 | <10 | 75 | | OCT 1992 | | | - | | | | | | | | | 29 | .070 | .21 | <1 | 27 | <.5 | <1.0 | <5 | <3 | <10 | 57 | | NOV 1993<br>15 | .040 | . 12 | _ | | | _ | _ | _ | | | | OCT 1994 | .010 | . 12 | | | _ | | | | | | | 11 | .060 | . 18 | _ | | | | _ | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (μG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>STIB-<br>STINCE<br>(MG/L)<br>(38260) | |----------------------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | <1 | | 33 | <0.1 | 7 | _ | _ | | <4 | 0.10 | | OCT 1982<br>21<br>OCT 1983 | <1 | | 23 | <del></del> | 3 | | | | <4 | .03 | | 31 | 1 | _ | 30 | .1 | 4 | <1.0 | _ | _ | 11 | - | | OCT 1984 | | | | | | | | | | | | 16 | 3 | | 18 | <.1 | 3 | <1.0 | _ | _ | 6 | _ | | OCT 1985<br>22 | <1 | | 12 | <.1 | 4 | <1.0 | | _ | 20 | | | NOV 1986 | ~1 | | 12 | <b>\.1</b> | 4 | 1.0 | | | 20 | | | 03 | <5 | _ | 23 | <.1 | 11 | <1.0 | | _ | 15 | - | | NOV 1987 | | | | | | | | | | | | 03<br>OCT 1988 | <5 | | 32 | <.1 | 5 | <1.0 | _ | _ | 7 | | | 11 | <10 | <4 | 10 | | <10 | <1.0 | 94 | <6 | 13 | _ | | OCT 1989 | | -• | | | | | | •• | | | | 13 | <10 | 4 | 23 | . 2 | <10 | <1.0 | 91 | <6 | <3 | | | OCT 1990 | | _ | | | | | | | _ | | | 15<br>OCT 1991 | <10 | 4 | 32 | <.1 | <10 | <1.0 | 96 | <6 | 8 | _ | | 30 | <10 | 5 | 28 | <.1 | <10 | <1.0 | 97 | <6 | 12 | _ | | OCT 1992 | | - | | | | | | | | | | 29 | <10 | <4 | 14 | <.1 | <10 | <1.0 | 100 | <6 | 7 | _ | | NOV 1993 | | | | | | | | | | | | 15<br>OCT 1994 | | | _ | | | _ | | _ | | | | 11 | | | | | | | | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued ## 01480647 - East Branch Brandywine Creek near Struble Dam, Pa. (Site 43) | DATE<br>OCT 1981 | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH<br>WATER<br>WHOLE<br>FIELD<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | DIS-<br>SOLVEI<br>(MG/L) | (MG/L<br>AS<br>CACO <sub>3</sub> ) | CALCIUM<br>L DIS-<br>SOLVED<br>(MG/L<br>AS CA) | DIS-<br>SOLVED<br>(MG/L | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | |---------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------| | 22 | 1430 | | 215 | 7.6 | 14.5 | 12.6 | 69 | 17 | 6.5 | 8.9 | 21 | | NOV 1982<br>03 | 1100 | 1.6 | 165 | 7.3 | 14.5 | 9.6 | 66 | 16 | 6.4 | 6.2 | 16 | | DATE | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931 | DIS-<br>SOLVEI<br>(MG/L<br>) AS K) | WAT WE<br>TOT FE<br>FIELD<br>(MG/L A<br>CACO <sub>3</sub> ) | H SULFA<br>ET DIS-<br>SOLVE<br>AS (MG/I<br>AS SO | DIS-<br>D SOLVEI<br>L (MG/L<br>L) AS CL | E, RIDE, DIS- SOLVEI (MG/L AS F) | DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO <sub>2</sub> ) | AT 180<br>DEG. O<br>DIS-<br>SOLVED<br>(MG/L) | DE SUM OF CONST: TUENTS, DIS- SOLVEI (MG/L) | F SOLIDS,<br>I- DIS-<br>, SOLVEI<br>(TONS<br>D PER<br>AC-FT) | DIS-<br>SOLVEI<br>(TONS<br>PER<br>DAY) | | OCT 1981<br>22 | 0. | 5 3.4 | <u> </u> | 19 | 15 | <0.10 | 21 | 135 | | 0.18 | _ | | NOV 1982<br>03 | | 3 4.0 | ) 4 | 44 16 | 12 | .10 | 7.7 | 112 | 103 | .15 | 0.49 | | DAT: OCT 1981 22 NOV 1982 | E | NITRATE<br>TOTAL<br>(MG/L<br>AS N) | DIS-<br>SOLVED<br>(MG/L<br>AS N) | DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> ) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | | 03 | | 1.78 | 1.78 | 7.9 | .020 | 1.80 | .040 | . 05 | _ | .46 | | | D | ATE | NITRO-<br>GEN, AM-<br>MONIA -<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | | NITRO- GEN, DIS- SOLVED (MG/L AS N) (00602) | PHOS-PHORUS,<br>TOTAL (MG/L<br>AS P) | TOTAL<br>(MG/L<br>AS PO <sub>4</sub> ) | SOLVE<br>(MG/L<br>AS P) | DIS-<br>D SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHATE<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> ) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS) | CADMIUN'. DIS- SOLVEN (µG/L AS CL) (01025) | | OCT 198<br>22 | | 1.4 | 5.4 | 5.6 | 0.090 | 0.28 | 0.050 | 0.030 | 0.09 | 1 | 3.0 | | NOV 198 | 2 | .50 | _ | 2.3 | _ | | .010 | <.010 | | 1 | <1.0 | | 03 | | .50 | | 2.3 | | | .010 | <.010 | | - | <b>VI.</b> 0 | | DATE | 2 | DIS-<br>SOLVED SO<br>(µG/L<br>AS CR) | DIS-<br>OLVED :<br>(µG/L<br>AS CO) : | (µG/L ()<br>AS CU) | IRON,<br>DIS-<br>SOLVED<br>µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | DIS-<br>SOLVED | | | SOLVED<br>(µG/L S<br>AS ZN) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>TANCE<br>(MG/L)<br>(38260) | | OCT 198<br>22 | | 5 | 1 | 20 | 610 | 1 | 140 | 0.5 | 22 | 6 | | | NOV 198 | 2 | | | | | | | | | | 0.03 | | 03 | | <1 | 1 | <1 | 49 | <1 | 82 | <.1 | <1 | <4 | 0.03 | Table 3. Water-quality data from surface-water sites—Continued 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 48) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 22 | 1245 | _ | 185 | 7.3 | 9.5 | | 10.1 | 64 | | 17 | 5.3 | | NOV 1982<br>03 | 0930 | 2.6 | 158 | 7 7 | 14 5 | | 10 5 | 67 | | 17 | F 0 | | NOV 1983 | 0930 | 2.6 | 138 | 7.7 | 14.5 | <del></del> | 10.5 | 67 | | 17 | 5.9 | | 03 | 0945 | 3.2 | 121 | 8.0 | 10.0 | 2.0 | 9.3 | 66 | | 17 | 5.8 | | OCT 1984 | | | | | | | | | | | | | 17 | 1000 | 2.9 | 185 | 7.5 | 12.5 | .80 | 10.2 | 70 | _ | 18 | 6.0 | | OCT 1985 | | | | | | | | | | | | | 23<br>OCT 1986 | 0900 | 2.6 | 185 | 7.1 | 8.0 | . 90 | 10.5 | 67 | | 17 | 6.0 | | 29 | 0900 | 3.1 | 180 | 7.5 | 10.0 | 2.6 | 10.8 | 68 | | 17 | 6.2 | | OCT 1987 | 0,500 | 3.1 | 100 | 7.5 | 10.0 | 2.0 | 10.0 | 00 | | | 0.2 | | 19 | 0930 | 3.6 | 178 | 7.3 | 10.5 | 2.3 | 11.2 | 68 | - | 17 | 6.1 | | NOV 1988 | | | | | | | | | | | | | 16 | 0915 | 4.3 | 180 | 7.4 | 9.5 | 5.2 | 11.4 | 71 | _ | 18 | 6.3 | | OCT 1989<br>16 | 1030 | | 202 | 7.2 | 16.5 | 1.3 | 10.0 | 75 | 26 | 19 | 6.6 | | OCT 1990 | 1030 | 4.4 | 202 | 1.2 | 16.5 | 1.3 | 10.0 | 75 | 20 | 19 | 0.0 | | 26 | 0900 | 2.6 | 212 | 6.2 | 9.5 | 1.9 | 10.5 | 84 | 26 | 22 | 7.0 | | NOV 1991 | | | | | | | | | | | | | 01 | 0945 | 1.9 | 208 | 7.2 | 11.5 | 1.6 | 10.9 | 78 | 4 | 20 | 6.7 | | OCT 1992 | | | | | | | | | | | | | 26<br>NOV 1993 | 1200 | 2.7 | 204 | 7.0 | 9.0 | 2.4 | 11.5 | 75 | | 19 | 6.6 | | 03 | 0940 | 6.1 | 198 | 7.5 | 7.5 | | 11.0 | | | _ | | | OCT 1994 | 0740 | 0.1 | 170 | 7.5 | 7.5 | | 11.0 | | | | | | 12 | 0920 | 1.9 | 210 | 7.0 | 9.0 | | 10.8 | | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 46)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | AS K) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DFG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70500) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|-------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 22<br>NOV 1982 | 8.2 | 21 | 0.4 | 2.1 | | _ | 12 | 8.7 | <0.10 | 24 | 112 | | 03<br>NOV 1983 | 6.9 | 17 | . 4 | 3.2 | 44 | _ | 14 | 10 | .10 | 14 | 107 | | 03 | 7.6 | 19 | . 4 | 2.9 | 52 | | 18 | 11 | | 12 | 120 | | OCT 1984 | | | | | | | | | | | | | 17 | 6.4 | 16 | .3 | 2.8 | 48 | | 16 | 11 | | 15 | 130 | | OCT 1985 | | | | | | | | | | | | | 23 | 7.3 | 18 | . 4 | 3.0 | 54 | | 15 | 12 | | 16 | 108 | | OCT 1986 | | | | | | | | | | 10 | *** | | 29<br>OCT 1987 | 7.2 | 18 | . 4 | 3.7 | 48 | _ | 17 | 13 | _ | 12 | 119 | | 19 | 7.0 | 18 | . 4 | 3.3 | 46 | | 13 | 11 | | 15 | 117 | | NOV 1988 | 7.0 | 10 | | 3.3 | 40 | | 13 | 11 | | 13 | 11, | | 16 | 6.7 | 16 | .3 | 3.5 | 50 | | 19 | 11 | _ | 10 | | | OCT 1989 | | | | | | | | | | | | | 16 | 7.1 | 16 | . 4 | 3.4 | 49 | _ | 13 | 12 | _ | 15 | | | OCT 1990 | | | | | | | | | | | | | 26 | 8.0 | 17 | . 4 | 3.0 | 58 | _ | 21 | 17 | .10 | 23 | _ | | NOV 1991 | | | | | | | | | | | | | 01 | 7.8 | 17 | . 4 | 2.9 | 74 | | 15 | 15 | <.10 | 16 | | | OCT 1992 | | | | | | | | | | | | | 26 | 7.6 | 17 | . 4 | 3.0 | - | 47 | 16 | 14 | .10 | 15 | <del></del> | | NOV 1993 | | | | | | 50 | | 10 | 0.0 | | | | 03<br>OCT 1994 | _ | | | | | 50 | 16 | 12 | .20 | _ | | | 12 | | | | | | 53 | | 13 | | | | Table 3. Water-quality data from surface-water sites—Continued 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 48)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>#S N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 22 | | 0.15 | | 3.09 | _ | _ | <0.010 | 3.10 | 0.040 | 0.05 | 0.22 | | NOV 1982 | | | | | | | ••• | | | | | | 03<br>NOV 1983 | 106 | .15 | 0.75 | 1.98 | 1.98 | 8.8 | . 020 | 2.00 | <.010 | .01 | _ | | 03 | 118 | .16 | 1.04 | 2.77 | 2.77 | 12 | .030 | 2.80 | .130 | .17 | _ | | OCT 1984 | | | 2.0. | 2 | 2.,, | | | 2.00 | | | | | 17 | 120 | .18 | 1.02 | 3.44 | 3.44 | 15 | .060 | 3.50 | .130 | .17 | _ | | ОСТ 1985 | | | | | | | | | | | | | 23 | 126 | .15 | .76 | 3.79 | 3.79 | 17 | .010 | 3.80 | .050 | . 06 | | | OCT 1986<br>29 | 113 | .16 | 1.0 | 1.80 | | | <.010 | 1.80 | <.010 | | . 90 | | OCT 1987 | 113 | .10 | 1.0 | 1.00 | | | <.010 | 1.00 | <.010 | _ | . 90 | | 19 | 115 | .16 | 1.14 | 3.39 | 3.39 | 15 | .010 | 3.40 | .030 | .04 | 1.2 | | NOV 1988 | | | | | | | | | | | | | 16 | 118 | .16 | 1.37 | 2.97 | 2.97 | 13 | .030 | 3.00 | .210 | .27 | . 69 | | OCT 1989 | 100 | 4.5 | | 2 57 | 2 55 | 1.6 | | 2.60 | 222 | | 20 | | 16<br>OCT 1990 | 122 | .17 | 1.44 | 3.57 | 3.57 | 16 | .030 | 3.60 | .020 | .03 | .78 | | 26 | 159 | .22 | 1.13 | 5.18 | 5.18 | 23 | . 020 | 5.20 | .030 | . 04 | .77 | | NOV 1991 | | | | | | | | | | | | | 01 | 144 | .20 | .74 | 3.68 | 3.68 | 16 | .021 | 3.70 | .021 | .03 | .48 | | ОСТ 1992 | | | | | | | | | | | | | 26<br>NOV 1993 | 124 | .17 | . 90 | 3.18 | 3.18 | 14 | .020 | 3.20 | .020 | .03 | .58 | | 03 | | | | 2.47 | 2.47 | 11 | .030 | 2.50 | .180 | .23 | | | OCT 1994 | | | | | | | | | | | | | 12 | | _ | | 3.88 | 3.88 | 17 | .020 | 3.90 | .030 | .04 | | Table 3. Water-quality data from surface-water sites—Continued 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 48)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 22 | 0.26 | 0.24 | 0.30 | 3.3 | 3.4 | 0.040 | 0.12 | <0.010 | 0.020 | 0.06 | 2 | | NOV 1982 | | | | | | | | 01.0 | 212 | | | | 03<br>NOV 1983 | | _ | . 50 | | 2.5 | _ | | .010 | .010 | .03 | 1 | | 03 | . 67 | | .80 | | 3.6 | .050 | .15 | .020 | <.010 | | | | OCT 1984 | | | | | | | | | | | | | 17 | .47 | | . 60 | | 4.1 | .050 | | .040 | .040 | .12 | | | OCT 1985 | | | | | | | | | | | | | 23 | . 35 | | .40 | | 4.2 | .030 | | .010 | .010 | .03 | | | OCT 1986<br>29 | | .90 | . 60 | 2.7 | 2.4 | . 050 | | <.010 | <.010 | | | | OCT 1987 | | . 90 | . 60 | 2.1 | 2.4 | .030 | | V.010 | V.010 | | | | 19 | . 47 | 1.2 | .50 | 4.6 | 3.9 | .040 | _ | .030 | <.010 | | | | NOV 1988 | | | | | | | | | | | | | 16 | . 39 | .90 | . 60 | 3.9 | 3.6 | .040 | _ | .020 | <.010 | | | | OCT 1989 | | | | | | | | | | | | | 16<br>OCT 1990 | . 58 | .80 | . 60 | 4.4 | 4.2 | .070 | | .030 | .030 | .09 | | | 26 | .77 | . 80 | . 80 | 6.0 | 6.0 | .060 | | .040 | .040 | .12 | | | NOV 1991 | • • • • | .00 | | 0.0 | 0.0 | | | .010 | .010 | ,,,, | | | 01 | .28 | .50 | .30 | 4.2 | 4.0 | .041 | | .021 | <.010 | _ | _ | | OCT 1992 | | | | | | | | | | | | | 26 | . 58 | . 60 | . 60 | 3.8 | 3.8 | .050 | _ | .020 | .010 | .03 | | | NOV 1993 | | | | | | | | | 000 | 06 | | | 03<br>OCT 1994 | | | | | _ | | _ | | .020 | .06 | | | 12 | | | | | | | _ | | <.010 | | | Table 3. Water-quality data from surface-water sites—Continued 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 48)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>FLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 22 | <1.0 | 2 | <1 | 2 | 84 | <1 | 25 | <0.1 | <1 | 8 | _ | | NOV 1982 | | | | | | | | | | | | | 03 | <1.0 | <1 | <1 | 1 | 50 | <1 | 39 | <.1 | <1 | <4 | 0.04 | | NOV 1983 | | | | | | | | | | | | | 03 | _ | | | | 70 | | 54 | | | | | | OCT 1984<br>17 | | | | | 120 | | 33 | | | | | | OCT 1985 | | | | | 120 | - | 33 | | <del></del> | _ | | | 23 | | | _ | | 36 | | 13 | _ | | _ | _ | | OCT 1986 | | | | | | | | | | | | | 29 | | | | _ | 37 | | 27 | _ | | | _ | | OCT 1987 | | | | | | | | | | | | | 19 | | | | | 61 | | 22 | | | | | | NOV 1988<br>16 | | | | | 38 | | 25 | | | | | | OCT 1989 | | | _ | _ | 36 | _ | 25 | _ | _ | | _ | | 16 | _ | | | | 48 | | 28 | | | | | | OCT 1990 | | | | | | | 20 | | | | | | 26 | _ | _ | | | 93 | | 52 | **** | | | | | NOV 1991 | | | | | | | | | | | | | 01 | | | | | 54 | | 26 | | _ | | _ | | OCT 1992 | | | | | | | | | | | | | 26<br>NOV 1993 | | _ | | | 66 | | 26 | | | | | | NOV 1993 | | | | | | | | _ | | | _ | | OCT 1994 | | | | | | | | | | | | | 12 | | | | _ | _ | | | _ | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | BID-<br>ITY<br>(NTU) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | (MG/L<br>AS<br>CACO <sub>3</sub> ) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | AS CA) | MAGNE, SIUM, DIS- SOLVED (MG/L AS MG) (00925) | SODITM, DIS- SOLVED (MG/: AS N;) (00937) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------|------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|--------|-----------------------------------------------|------------------------------------------| | NOV 1981 | | | | | | | | | | | | | | 02 | 110 | ) <del></del> | 169 | 7.5 | 9.5 | | 10.4 | 65 | _ | 16 | 6.1 | 8.3 | | NOV 1982<br>03 | 133 | 7.6 | 154 | 8.0 | 16.5 | | | 61 | | 16 | 5.1 | 6.6 | | NOV 1983 | 133 | J 1.6 | 134 | 8.0 | 16.5 | | 9.8 | 91 | <del></del> | 10 | 5.1 | 0.0 | | 03 | 123 | 7.6 | 164 | 6.5 | 10.5 | 1.5 | 10.2 | 65 | | 17 | 5.4 | 7.3 | | OCT 1984 | | | | | | | | | | | | | | 17 | 133 | 9.2 | 178 | 7.8 | 12.5 | .70 | 11.6 | 68 | | 18 | 5.5 | 6.8 | | OCT 1985<br>23 | 130 | 0 7.0 | 170 | 7.7 | 10.0 | . 90 | 11.9 | 65 | | 16 | 6.0 | 8.0 | | DEC 1986 | 130 | 7.0 | 170 | 1.1 | 10.0 | . 90 | 11.9 | 65 | | 10 | 6.0 | 6.0 | | 05 | 100 | 0 25 | 140 | 7.6 | 3.0 | 2.6 | 13.4 | 60 | | 15 | 5.5 | 6.7 | | OCT 1987 | | | | | | | | | | | | | | 23 | 120 | 8.0 | 173 | 7.2 | 9.0 | .70 | 12.4 | 66 | _ | 17 | 5.7 | 7.2 | | NOV 1988<br>15 | 090 | 0 12 | 178 | 7.4 | 8.0 | 2.2 | 13.4 | 66 | | 17 | 5.7 | 7.3 | | NOV 1989 | 090 | J 12 | 1/0 | 7.4 | 8.0 | 2.2 | 13.4 | 00 | | 17 | 3.7 | 7.3 | | 01 | 114 | 5 20 | 193 | 8.0 | 12.5 | .80 | 11.1 | 70 | 22 | 18 | 6.0 | 7.8 | | OCT 1990 | | | | | | | | | | | | | | 26 | 120 | 0 11 | 197 | 6.4 | 10.5 | 1.7 | 11.4 | 73 | 17 | 19 | 6.1 | 7.9 | | NOV 1991<br>01 | 120 | 0 7.0 | 199 | 7.5 | 11.5 | . 60 | 12.1 | 71 | 0 | 19 | 5.8 | 8.0 | | NOV 1992 | 120 | ,.0 | 133 | 7.3 | 11.5 | . 00 | 12.1 | ,_ | • | 13 | 3.0 | 0.0 | | 17 | 123 | 0 13 | 180 | 7.5 | 5.5 | 2.7 | 13.5 | 69 | _ | 18 | 5.9 | 7.4 | | NOV 1993 | | | | | | | | | | | | | | 04<br>OCT 1994 | 095 | 0 11 | 198 | 7.6 | 6.0 | _ | 11.8 | _ | | | _ | _ | | 12 | 121 | 5 6.2 | 208 | 7.1 | 9.5 | | 12.4 | | | | | _ | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42)—Continued | | | SODIUM | POTAS-<br>SIUM, | WAT WH | ALKA-<br>LINITY<br>WAT WH | SULFATE, | CHLO-<br>RIDE, | FLUO-<br>RIDE, | SILICA,<br>DIS- | SOLIDS,<br>RESIDUE<br>AT 180 | SOLIDS,<br>SUM OF<br>CCNSTI- | |----------------|---------|--------------|-----------------|---------------------|---------------------------|----------------------|----------------|----------------|--------------------|------------------------------|------------------------------| | | | AD-<br>SORP- | DIS-<br>SOLVED | TOT FET<br>FIELD | TOT IT<br>FIELD | DIS-<br>SOLVED | DIS-<br>SOLVED | DIS-<br>SOLVED | SOLVED<br>(MG/L | DEG. C<br>DIS- | TUENTS,<br>DIS- | | DATE | SODIUM | TION | (MG/L | (MG/L AS | (MG/L AS | (MG/L | (MG/L | (MG/L | AS | SOLVED | SCLVED | | | PERCENT | RATIO | AS K) | CACO <sub>3</sub> ) | CACO <sub>3</sub> ) | AS SO <sub>4</sub> ) | AS CL) | AS F) | SIO <sub>2</sub> ) | (MG/L) | (NG/L) | | | (00932) | (00931) | (00935) | (00410) | (00419) | (00945) | (00940) | (00950) | (00955) | (70300) | (70301) | | NOV 1981 | | | | | | | | | | | | | 02 | . 21 | 0.4 | 2.3 | | | 14 | 11 | 0.10 | 20 | 113 | | | NOV 1982 | | 0.4 | 2.3 | | | 1.7 | | 0.10 | 20 | 113 | | | 03 | 18 | . 4 | 2.5 | 46 | | 13 | 11 | <.10 | 15 | 106 | 105 | | NOV 1983 | | | | | | | | | | | | | 03 | 19 | . 4 | 2.2 | 42 | | 16 | 11 | | 16 | 120 | 113 | | OCT 1984 | l | | | | | | | | | | | | 17 | 17 | . 4 | 2.2 | 48 | _ | 14 | 12 | | 17 | 132 | 121 | | OCT 1985 | 5 | | | | | | | | | | | | 23 | 20 | .4 | 2.5 | 44 | _ | 14 | 11 | | 18 | 106 | 115 | | DEC 1986 | 5 | | | | | | | | | | | | 05 | 19 | . 4 | 3.0 | 40 | _ | 18 | 13 | | 13 | 101 | 109 | | OCT 1987 | | | | | | | | | | | | | 23 | 18 | . 4 | 3.1 | 48 | | 11 | 11 | | 18 | 114 | 114 | | NOV 1988 | | | | | | | | | | | | | 15 | 19 | . 4 | 3.1 | 47 | - | 16 | 11 | | 15 | - | 115 | | NOV 1989 | | _ | | | | | | | | | | | 01 | 19 | . 4 | 3.0 | 48 | | 13 | 12 | | 17 | _ | 120 | | OCT 1990 | | _ | | | | | | | | | | | 26 | 18 | . 4 | 3.1 | 56 | _ | 15 | 12 | .10 | 21 | <del></del> | 133 | | NOV 1991 | | | 2.4 | 96 | | 1.5 | 1.4 | - 10 | 17 | | 153 | | 01<br>NOV 1992 | . 19 | . 4 | 2.4 | 96 | | 15 | 14 | <.10 | 17 | _ | 153 | | 17 | 18 | . 4 | 2.7 | | 36 | 16 | 13 | .10 | 15 | | 114 | | NOV 1993 | | .~ | 2.1 | | 30 | 10 | 13 | .10 | 13 | | 114 | | 04 | _ | | | | 47 | 15 | 12 | .10 | | - | | | OCT 1994 | 1 | | | | | 4.5 | 12 | . 10 | | | | | 12 | _ | | | | 44 | _ | 13 | _ | | | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42)—Continued | | | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | | NITPO- | |----------------|---------|---------|---------|---------|---------|---------|---------------|---------|----------------------|---------|---------| | | SOLIDS, | SOLIDS, | NITRO- | GEN, | GEN, | GEN, | GEN, | GEN, | GEN, | NITRO- | GEI', | | | DIS- | DIS- | GEN, | NITRATE | NITRATE | NITRITE | $NO_2 + NO_3$ | AMMONIA | AMMONIA | GEN, | ORGANIC | | | SOLVED | SOLVED | NITRATE | DIS- | DIS- | DIS- | DIS- | DIS- | DIS- | ORGANIC | DIS- | | | (TONS | (TONS | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | SOLVED | | DATE | PER | PER | (MG/L | | AC-FT) | DAY) | AS N) | AS N) | AS NO3) | AS N) | AS N) | AS N) | AS NH <sub>4</sub> ) | AS N) | AS N) | | | (70303) | (70302) | (00620) | (00618) | (71851) | (00613) | (00631) | (00608) | (71846) | (00605) | (00607) | | | | | | | | | | | | | | | NOV 1981 | | | | | | | | | | | | | 02 | 0.15 | | 1.70 | | | <0.010 | 1.70 | <0.010 | 0.01 | 0.48 | _ | | NOV 1982 | | | | | | | | | | | | | 03 | .14 | 2.18 | 1.89 | 1.89 | 8.4 | .010 | 1.90 | .010 | .01 | | 0.19 | | NOV 1983 | | 0.46 | 0.00 | | | | 2 22 | 0.50 | .08 | | . 44 | | 03<br>OCT 1984 | .16 | 2.46 | 2.90 | | | <.010 | 2.90 | .060 | .08 | | .44 | | 17 | .18 | 3.27 | 3.66 | 3.66 | 16 | .040 | 3.70 | .090 | .12 | | . 41 | | OCT 1985 | .10 | 3.21 | 3.00 | 3.00 | 16 | .040 | 3.70 | .090 | .12 | | .41 | | 23 | .14 | 2.00 | 2.89 | 2.89 | 13 | .010 | 2.90 | .030 | .04 | . 97 | . 47 | | DEC 1986 | .14 | 2.00 | 2.09 | 2.03 | 13 | .010 | 2.50 | .030 | .04 | | | | 05 | .14 | 6.82 | 2.40 | | | <.010 | 2.40 | .030 | .04 | . 87 | .87 | | OCT 1987 | | 2.02 | 2010 | | | | | | | | | | 23 | .16 | 2.46 | 2.80 | | | <.010 | 2.80 | .030 | .04 | .27 | . 37 | | NOV 1988 | | | | | | | | | | | | | 15 | .16 | 3.71 | 2.69 | 2.69 | 12 | .010 | 2.70 | .020 | .03 | .48 | .38 | | NOV 1989 | | | | | | | | | | | | | 01 | .16 | 6.48 | 3.20 | | | <.010 | 3.20 | .030 | .04 | .37 | . 27 | | OCT 1990 | | | | | | | | | | | | | 26 | .18 | 3.97 | 3.28 | 3.28 | 15 | .020 | 3.30 | .020 | .03 | 1.6 | .78 | | NOV 1991 | | | | | | | | | | | | | 01 | . 21 | 2.89 | 3.20 | _ | | <.010 | 3.20 | .021 | .03 | _ | .28 | | NOV 1992 | | | | | | | | | | | | | 17 | .16 | 3.98 | 3.26 | 3.26 | 14 | .040 | 3.30 | .010 | .01 | .29 | .29 | | NOV 1993 | | | | | | | | | | | | | 04 | | _ | 2.89 | 2.89 | 13 | .010 | 2.90 | .020 | .03 | _ | | | OCT 1994 | | | | | | | | | | | | | 12 | _ | _ | 3.39 | 3.39 | 15 | .010 | 3.40 | <.015 | | _ | | Table 3. Water-quality data from surface-water sites—Continued ## 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42)—Continued | | NITRO- | NITRO- | | | | | | PHOS- | PHOS- | | | |----------------|----------|----------|---------|---------|---------|----------------------|---------|---------|----------------------|----------|-------------| | | GEN, AM- | GEN, AM- | | NITRO- | | | PHOS- | PHORUS, | PHATE, | | | | | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | ORTHO, | ORTHO, | ARSENIC, | CADMIUM | | | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | DIS- | DIS- | DIS- | DIS- | | | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | (MG/L (µG/L | (l.e\r | | | AS N) | AS N) | AS N) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | AS P) | AS PO <sub>4</sub> ) | AS AS) | AS CD) | | | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (00666) | (00671) | (00660) | (01000) | (01025) | | NOV 1981 | | | | | | | | | | | | | 02 | 0.48 | 0.59 | 2.2 | 2.3 | 0.020 | 0.06 | 0.040 | 0.010 | 0.03 | ND | <1.0 | | NOV 1982 | | | | | | | | | | | | | 03 | | .20 | | 2.1 | | _ | .020 | <.010 | | 1 | <1.0 | | NOV 1983 | | | | | | | | | | | | | 03 | _ | .50 | | 3.4 | .030 | .09 | .020 | <.010 | | | | | OCT 1984 | | | | | | | | | | | | | 17 | | .50 | | 4.2 | .030 | _ | .030 | .030 | .09 | | | | OCT 1985 | | | | | | | | | | | | | 23 | 1.0 | .50 | 3.9 | 3.4 | .020 | .06 | .020 | .010 | .03 | | | | DEC 1986 | | | | | | | | | | | | | 05 | . 90 | . 90 | 3.3 | 3.3 | . 060 | _ | .020 | .010 | .03 | | | | OCT 1987 | | | | | | | | | | | | | 23 | .30 | .40 | 3.1 | 3.2 | .030 | _ | <.010 | <.010 | - | <1 | <1.0 | | NOV 1988 | | | | | | | | | | | | | 15 | .50 | .40 | 3.2 | 3.1 | .030 | | .020 | .010 | .03 | | | | NOV 1989 | | | | | | | | | | | | | 01 | . 40 | . 30 | 3.6 | 3.5 | .030 | | <.010 | .010 | .03 | | | | OCT 1990<br>26 | 1.6 | .80 | 4.0 | 4.1 | 040 | | 020 | 0.40 | 10 | | | | NOV 1991 | 1.6 | .80 | 4.9 | 4.1 | .040 | | .030 | .040 | .12 | | | | 01 | <.20 | . 30 | | 3.5 | .021 | | <.010 | .030 | .09 | | | | NOV 1992 | 1.20 | . 30 | | 3.5 | .021 | | ₹.010 | .030 | .09 | | <del></del> | | 17 | .30 | .30 | 3.6 | 3.6 | .040 | | .020 | <.010 | | | | | NOV 1993 | . 30 | .30 | 3.0 | 3.0 | . 040 | | .020 | ~.010 | | | | | 04 | | | | | _ | | | .010 | .03 | | | | OCT 1994 | | | | | | | | .010 | .05 | | | | 12 | | | | | | | | .010 | .03 | | | Table 3. Water-quality data from surface-water sites—Continued ### 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42)—Continued | DATE | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | <1 | 1 | <1 | 77 | <1 | 49 | <0.1 | 1 | | 6 | | | NOV 1982 | | | | | | 00 | | | | | 0.00 | | 03<br>NOV 1983 | <1 | 1 | <1 | 55 | <1 | 22 | <.1 | <1 | _ | <4 | 0.02 | | 03 | _ | | | 67 | _ | 25 | | | _ | | | | OCT 1984 | | | | | | | | | | | | | 17 | | | _ | 69 | _ | 16 | | | | | | | OCT 1985 | | | | | | | | | | | | | 23<br>DEC 1986 | | | | 50 | _ | 11 | | _ | _ | _ | | | 05 | | | | 71 | _ | 18 | | | | | | | OCT 1987 | | | | | | | | | | | | | 23 | <1 | - | <1 | 67 | <5 | 11 | <.1 | 1 | <1.0 | <3 | _ | | NOV 1988 | | | | <b>6</b> 5 | | | | | | | | | 15<br>NOV 1989 | | | | 67 | <del></del> | 12 | | | _ | | | | 01 | | | | 92 | _ | 19 | | | | | | | OCT 1990 | | | | | | | | | | | | | 26 | _ | | | 100 | | 30 | | | | _ | | | NOV 1991 | | | | | | | | | | | | | 01 | | | | 65 | _ | 13 | | | | | | | NOV 1992<br>17 | | | | 77 | _ | 18 | | | | | | | NOV 1993 | | | | • • | | | | | | | | | 04 | _ | | | | | _ | | | _ | | | | OCT 1994 | | | | | | | | | | | | | 12 | _ | | | <del></del> | | <del></del> | | | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480656 - Indian Run near Springton, Pa. (Site 47) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | IGGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | 1345 | | 164 | 7.6 | 11.5 | _ | 10.9 | 64 | _ | 18 | 4.6 | | NOV 1982 | | | | | | | | | | | | | 03<br>NOV 1983 | 1500 | 1.9 | 157 | 7.9 | 15.5 | _ | 9.8 | 63 | | 18 | 4.4 | | 03 | 1400 | 2.1 | 156 | 6.5 | 12.0 | 1.1 | 9.3 | 63 | | 18 | 4.5 | | OCT 1984 | | -/- | | | | | ,,, | | | | | | 17 | 1600 | 2.7 | 170 | 7.6 | 12.0 | .50 | 9.9 | 63 | | 18 | 4.4 | | OCT 1985 | | | | | | | | | | | | | 23<br>OCT 1986 | 1330 | . 94 | 175 | 7.4 | 9.5 | .70 | 10.8 | 61 | _ | 17 | 4.4 | | 29 | 1500 | 1.8 | 185 | 7.5 | 13.0 | .40 | 9.5 | 68 | | 19 | 4.9 | | OCT 1987 | | | | | | | 2.0 | | | | | | 19 | 1400 | 2.0 | 175 | 7.3 | 12.5 | .30 | 11.2 | 64 | | 18 | 4.6 | | NOV 1988 | | | | | | | | | | | | | 15 | 1300 | 2.2 | 178 | 7.4 | 10.0 | 1.4 | 12.8 | 64 | _ | 18 | 4.7 | | OCT 1989<br>16 | 1510 | 3.0 | 183 | 7.1 | 18.5 | .50 | 9.8 | 63 | 13 | 18 | 4.3 | | NOV 1990 | 1010 | 3.0 | 100 | , | 10.5 | | 5.0 | 03 | -13 | 10 | 1.5 | | 13 | 1030 | 3.7 | 160 | 7.6 | 5.5 | 1.0 | 12.6 | 57 | 17 | 16 | 4.1 | | NOV 1991 | | | | | | | | | | | | | 05 | 1200 | 1.7 | 191 | 7.5 | 6.0 | .50 | 13.5 | 82 | 7 | 17 | 9.5 | | OCT 1992<br>26 | 0845 | 1.7 | 202 | 6.7 | 7.0 | .60 | 11.6 | 74 | | 21 | 5.2 | | NOV 1993 | 0040 | 1., | | J., | , | .00 | 11.0 | , -2 | | -1 | 5.2 | | 02 | 1010 | 3.1 | 162 | 7.4 | 6.0 | | 11.6 | _ | _ | | _ | | OCT 1994 | | | | | | | | | | | | | 14 | 0950 | 1.7 | 210 | 7.1 | 9.5 | _ | 11.5 | _ | _ | | - Charles | Table 3. Water-quality data from surface-water sites—Continued 01480656 - Indian Run near Springton, Pa. (Site 47)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | WAT WH<br>TOT FET<br>FIELD | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | 8.7 | 22 | 0.5 | 1.4 | _ | - | 7.6 | 9.8 | <0.10 | 28 | 120 | | NOV 1982<br>03 | 8.5 | 22 | .5 | 1.6 | 57 | | 9.0 | 9.7 | <.10 | 26 | 117 | | NOV 1983 | 0.5 | 22 | | 1.0 | 37 | | 3.0 | 3.1 | V.10 | 20 | 117 | | 03 | 9.2 | 23 | . 5 | 1.4 | 38 | | 9.2 | 11 | _ | 26 | 126 | | OCT 1984 | | | | | | | | | | | | | 17 | 8.4 | 22 | . 5 | 1.3 | 50 | - | 8.2 | 11 | _ | 25 | 120 | | OCT 1985<br>23 | 9.0 | 24 | .5 | 1.6 | 60 | | 7.8 | 10 | | 27 | 140 | | OCT 1986 | 9.0 | 24 | | 1.0 | 00 | | 7.0 | 10 | | 21 | 140 | | 29 | 9.8 | 23 | .5 | 2.0 | 58 | | 10 | 12 | | 28 | 145 | | OCT 1987 | | | | | | | | | | | | | 19 | 9.3 | 24 | . 5 | 1.5 | 55 | _ | 11 | 10 | | 25 | 125 | | NOV 1988<br>15 | 9.2 | 23 | .5 | 1.6 | 49 | | 14 | 11 | _ | 24 | | | OCT 1989 | 3.2 | 23 | .3 | 1.0 | 47 | | 14 | 11 | | 24 | | | 16 | 9.4 | 24 | . 5 | 1.7 | 50 | | 9.0 | 10 | _ | 26 | | | NOV 1990 | | | | | | | | | | | | | 13 | 7.4 | 21 | . 4 | 1.6 | 40 | | 13 | 11 | <.10 | 24 | <del></del> | | NOV 1991<br>05 | 15 | 28 | .7 | 2.3 | 75 | | 9.4 | 14 | <.10 | 14 | | | OCT 1992 | 13 | 20 | • • | 2.3 | 73 | | 3.4 | 17 | 1.10 | 4-4 | | | 26 | 10 | 22 | . 5 | 1.9 | _ | 60 | 8.8 | 12 | .10 | 26 | | | NOV 1993 | | | | | | | | | | | | | 02 | _ | | _ | _ | - | 47 | 12 | 8.6 | .10 | | | | OCT 1994<br>14 | _ | | _ | | | 58 | _ | 13 | | | | | 17 | | | | <del></del> | - <del></del> | 30 | <del></del> | 13 | | | | Table 3. Water-quality data from surface-water sites—Continued 01480656 - Indian Run near Springton, Pa. (Site 47)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>FS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | | 0.16 | | 2.69 | 2.89 | 13 | 0.010 | 2.90 | <0.010 | 0.01 | 0.46 | | NOV 1982 | | | | | | | | | | | | | 03<br>NOV 1983 | 122 | .16 | 0.60 | 2.19 | 2.19 | 9.7 | .010 | 2.20 | .040 | . 05 | | | 03 | 118 | .17 | .71 | 3.38 | 3.38 | 15 | .020 | 3.40 | .060 | .08 | | | OCT 1984 | 110 | | • • • • | 5.55 | 3.30 | | .020 | 5.10 | .000 | | | | 17 | 122 | .16 | .87 | 3.36 | 3.36 | 15 | .040 | 3.40 | .100 | .13 | _ | | OCT 1985 | | | | | | | | | | | | | 23 | 125 | .19 | . 36 | 2.69 | 2.69 | 12 | .010 | 2.70 | .020 | . 03 | .88 | | OCT 1986<br>29 | 135 | . 20 | .70 | 3.10 | | | <.010 | 3.10 | .020 | .03 | . 38 | | OCT 1987 | 133 | .20 | . 10 | 3.10 | | | ~.010 | 3.10 | .020 | .03 | . 30 | | 19 | 129 | .17 | . 68 | 3.60 | | | <.010 | 3.60 | .020 | .03 | . 28 | | NOV 1988 | | | | | | | | | | | | | 15 | 125 | .17 | .74 | 2.88 | 2.88 | 13 | .020 | 2.90 | .030 | .04 | . 67 | | OCT 1989 | 120 | .16 | .97 | 2.46 | 2 46 | 11 | 040 | 2.50 | .020 | .03 | .28 | | 16<br>NOV 1990 | 120 | .16 | .97 | 2.46 | 2.46 | 11 | .040 | 2.50 | .020 | .03 | .20 | | 13 | 113 | . 15 | 1.13 | 2.59 | 2.59 | 11 | .010 | 2.60 | .060 | .08 | . 24 | | NOV 1991 | | | | | | | | | | | | | 05 | 141 | . 19 | . <b>6</b> 5 | 3.40 | | _ | <.010 | 3.40 | .010 | .01 | .19 | | OCT 1992 | | | | | | | | | | | | | 26<br>NOV 1993 | 134 | .18 | . 62 | 2.98 | 2.98 | 13 | .020 | 3.00 | <.010 | | .30 | | 02 | | | | 1.70 | | | <.010 | 1.70 | .030 | .04 | | | OCT 1994 | | | | | | | | | | | | | 14 | _ | | | 4.19 | 4.19 | 19 | .010 | 4.20 | <.015 | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01480656 - Indian Run near Springton, Pa. (Site 47)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(010C0) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02 | _ | 0.46 | 0.40 | 3.2 | 3.3 | 0.170 | 0.52 | 0.150 | 0.150 | 0.46 | LLD. | | NOV 1982 | | | | | | | | | | | | | 03 | 0.66 | | .70 | | 2.9 | | | .320 | .340 | 1.0 | 1 | | NOV 1983<br>03 | .74 | | .80 | | 4.2 | .140 | . 43 | .130 | .120 | .37 | _ | | OCT 1984 | . /4 | <del></del> | .00 | | 4.2 | .140 | .43 | .130 | .120 | .37 | | | 17 | .20 | | .30 | | 3.7 | .140 | | .160 | .150 | .46 | _ | | OCT 1985 | | | | | | | | | | | | | 23 | .48 | .90 | .50 | 3.6 | 3.2 | .130 | .40 | .120 | .110 | .34 | _ | | OCT 1986<br>29 | . 38 | .40 | .40 | 3.5 | 3.5 | .180 | | .120 | .120 | .37 | | | OCT 1987 | . 30 | .40 | .40 | 3.5 | 3.3 | .100 | <del></del> | .120 | .120 | .31 | | | 19 | .18 | . 30 | .20 | 3.9 | 3.8 | . 090 | | .080 | .070 | .21 | | | NOV 1988 | | | | | | | | | | | | | 15 | . 67 | .70 | .70 | 3.6 | 3.6 | .120 | _ | .110 | .100 | . 31 | | | OCT 1989 | | | | | | | | | | | | | 16<br>NOV 1990 | . 28 | . 30 | . 30 | 2.8 | 2.8 | .060 | | .050 | .060 | .18 | | | 13 | . 34 | .30 | .40 | 2.9 | 3.0 | .040 | _ | .030 | .040 | .12 | | | NOV 1991 | | ,,,, | , | | • | | | | | | | | 05 | - | .20 | <.20 | 3.6 | _ | .060 | | .060 | .040 | .12 | | | OCT 1992 | | | | | | | | | | | | | 26<br>NOV 1993 | | .30 | <.20 | 3.3 | | .040 | | .030 | .020 | .06 | _ | | 02 | | | _ | | | | | _ | .030 | . 09 | | | OCT 1994 | | | | | | | | | .030 | | | | 14 | - | _ | | | _ | | | | .020 | .06 | _ | Table 3. Water-quality data from surface-water sites—Continued ### 01480656 - Indian Run near Springton, Pa. (Site 47)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | AS ZN) | PTTHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 02<br>NOV 1982 | <1.0 | 5 | <1 | <1 | 41 | <1 | 11 | 0.1 | 1 | <4 | ND | | 03<br>NOV 1983 | <1.0 | <1 | <1 | 5 | 23 | <1 | 3 | <.1 | <1 | <4 | 0.03 | | 03 | | _ | | | 31 | _ | 4 | | | | | | OCT 1984 | | | | | | | | | | | | | 17<br>OCT 1985 | | _ | _ | _ | 31 | | 5 | | | | | | 23 | | _ | | | 18 | | 5 | | | | | | OCT 1986 | | | | | 10 | | J | | | | | | 29 | | | | | 34 | | 6 | | | | | | OCT 1987 | | | | | | | | | | | | | 19<br>NOV 1988 | | | _ | _ | 18 | | 2 | | _ | | | | 15 | | | | _ | 27 | | 2 | | _ | | | | OCT 1989 | | | | | • | | _ | | | | | | 16 | | _ | - | _ | 46 | | 5 | | _ | _ | | | NOV 1990 | | | | | | | _ | | | | | | 13<br>NOV 1991 | | | _ | _ | 61 | | 5 | | | _ | | | 05 | | | | | 47 | | 17 | | | _ | | | OCT 1992 | | | | | | | | | | | | | 26 | | | | | 36 | | 3 | | | | | | | | | | | | | | | | | | | NOV 1993 | | | | | | | | | | | | | | _ | _ | _ | - | _ | _ | | _ | _ | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 38) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-, SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|---------|------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | 0900 | 24 | 174 | 7.4 | 7.5 | | 10.8 | 66 | | 17 | 5.6 | | OCT 1982<br>28 | 1 2 2 0 | 31 | 164 | 7 5 | 10.5 | | 12.8 | 62 | | 16 | 5.4 | | 28<br>NOV 1983 | 1330 | 31 | 104 | 7.5 | 10.5 | | 12.8 | 62 | | 10 | 3.4 | | 04 | 1230 | 40 | 169 | 7.6 | 9.0 | 2.5 | 11.8 | 61 | 15 | 16 | 5.2 | | OCT 1984 | | | | | | | | | | | | | 30 | 1000 | 69 | 165 | 7.8 | 15.5 | . 70 | 10.4 | 58 | | 15 | 5.0 | | OCT 1985 | 1500 | 26 | 170 | | 0.5 | . 60 | | 60 | | 16 | <b>5</b> 4 | | 21<br>NOV 1986 | 1500 | 36 | 178 | 7.1 | 9.5 | . 60 | 11.4 | 62 | | 10 | 5.4 | | 17 | 0930 | 29 | 180 | 7.6 | 8.0 | 1.5 | 10.8 | 66 | | 17 | 5.7 | | OCT 1987 | | | | | | | | | | | | | 20 | 1130 | 34 | 178 | 7.2 | 14.0 | . 60 | 12.0 | 63 | _ | 16 | 5.5 | | OCT 1988 | | | | | | | | | | | | | 05<br>OCT 1989 | 0900 | 27 | 193 | 7.3 | 14.5 | 1.5 | 10.8 | 67 | | 17 | 6.0 | | 10 | 1015 | 60 | 187 | 7.2 | 11.0 | 1.1 | 10.7 | 62 | 8 | 16 | 5.4 | | OCT 1990 | | | | | | | | | - | | | | 16 | 0845 | 45 | 186 | 7.8 | 15.0 | 1.5 | 9.3 | 62 | 6 | 16 | 5.4 | | NOV 1991 | | | | | | | | | | | | | 05<br>OCT 1992 | 0930 | 31 | 193 | 7.4 | 6.0 | 1.5 | 12.6 | 68 | 20 | 18 | 5.6 | | 30 | 0900 | 28 | 200 | 7.4 | 10.5 | 1.3 | 10.7 | 69 | | 18 | 5.8 | | NOV 1993 | 0,500 | | | | 20.0 | 2.0 | 20 | | | | 0.0 | | 03 | 1245 | 44 | 195 | 7.6 | 9.0 | | 10.8 | _ | | | | | OCT 1994 | | | | | | | | | | | | | 13 | 0915 | 20 | 208 | 7.2 | 9.0 | | 11.9 | | _ | | _ | Table 3. Water-quality data from surface-water sites—Continued 01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 36)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | • | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIL'TE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04<br>OCT 1982 | 9.5 | 23 | 0.5 | 2.2 | _ | <del></del> | 13 | 16 | 0.10 | 13 | 110 | | 28 | 8.7 | 22 | .5 | 3.0 | 36 | | 16 | 15 | <.10 | 13 | 108 | | NOV 1983 | | | | | | | | | | | | | 04<br>OCT 1984 | 9.1 | 24 | .5 | 2.2 | 46 | | 18 | 16 | | 12 | 111 | | 30 | 7.9 | 22 | . 5 | 3.2 | 38 | | 16 | 12 | | 11 | 106 | | OCT 1985 | | | | | | | | | | | | | 21 | 9.0 | 23 | . 5 | 2.6 | 44 | _ | 17 | 17 | | 12 | 102 | | NOV 1986<br>17 | 9.1 | 22 | .5 | 2.3 | 30 | | 18 | 13 | | 14 | 122 | | OCT 1987 | | | | 2.0 | | | | | | | | | 20 | 9.4 | 23 | .5 | 3.4 | 44 | | 15 | 15 | _ | 11 | 113 | | OCT 1988<br>05 | 8.6 | 21 | .5 | 2.6 | 46 | | 18 | 15 | | 14 | | | OCT 1989 | 0.0 | 21 | | 2.0 | 40 | | 10 | 13 | | 7.2 | | | 10 | 8.2 | 22 | .5 | 2.3 | 54 | | 14 | 14 | | 14 | _ | | OCT 1990<br>16 | 8.7 | 22 | . 5 | 2.5 | 56 | | 14 | 16 | <.10 | 11 | | | NOV 1991 | 8.7 | 22 | . 5 | 2.5 | 36 | <del></del> | 14 | 10 | <.10 | 11 | | | 05 | 8.8 | 21 | .5 | 2.2 | 48 | | 17 | 20 | <.10 | 12 | | | OCT 1992 | | | _ | | | | | | | | | | 30<br>NOV 1993 | 9.1 | 22 | .5 | 2.3 | _ | 49 | 15 | 16 | .10 | 12 | | | 03 | | | _ | | | 43 | 17 | 16 | .10 | | _ | | OCT 1994 | | | | | | | | | | | | | 13 | | | | | | 49 | | 19 | | | | Table 3. Water-quality data from surface-water sites—Continued 01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 36)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>OFGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | |----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | | 0.15 | | 0.980 | 0.980 | 4.3 | 0.020 | 1.00 | 0.170 | 0.22 | 0.57 | | OCT 1982 | * 0.5 | 4.5 | 0.04 | | | | 212 | | 0.50 | 0.0 | | | 28<br>NOV 1983 | 105 | .15 | 9.04 | 1.29 | 1.29 | 5.7 | .010 | 1.30 | .060 | .08 | _ | | 04 | 113 | . 15 | 12.0 | 1.49 | 1.49 | 6.6 | .010 | 1.50 | .230 | .30 | _ | | OCT 1984 | | | 12.0 | 21.25 | | | | _,,,, | .200 | | | | 30 | 98 | .14 | 19.7 | 1.00 | | | <.010 | 1.00 | .030 | .04 | | | OCT 1985 | | | | | | | | | | | | | 21 | 112 | .14 | 9.91 | 1.49 | 1.49 | 6.6 | .010 | 1.50 | .040 | .05 | | | NOV 1986 | 105 | .17 | 0.55 | 1 00 | | | . 010 | 1 00 | 100 | 12 | .20 | | 17<br>OCT 1987 | 105 | .17 | 9.55 | 1.80 | | _ | <.010 | 1.80 | .100 | .13 | .20 | | 20 | 109 | .15 | 1.4 | 1.60 | | | <.010 | 1.60 | .050 | .06 | . 65 | | OCT 1988 | | | | | | | | | | | | | 05 | 118 | .16 | 8.57 | 1.89 | 1.89 | 8.4 | .010 | 1.90 | <.030 | | .50 | | OCT 1989 | | | | | | | | | | | | | 10 | 116 | .16 | 18.7 | 1.99 | 1.99 | 8.8 | .010 | 2.00 | .090 | .12 | | | OCT 1990<br>16 | 111 | .15 | 13.4 | .900 | | | <.010 | . 900 | .020 | .03 | . 58 | | NOV 1991 | 111 | .13 | 13.4 | .500 | | | 1.010 | . 500 | .020 | .03 | . 50 | | 05 | 119 | .16 | 9.83 | 1.28 | 1.28 | 5.7 | .020 | 1.30 | .120 | .15 | .28 | | OCT 1992 | | | | | | | | | | | | | 30 | 116 | .16 | 8.74 | 1.68 | 1.68 | 7.4 | .020 | 1.70 | .060 | .08 | .14 | | NOV 1993 | | | | 1 20 | 1 20 | 6.2 | 01.0 | 1 40 | .060 | .08 | | | 03<br>OCT 1994 | | | | 1.39 | 1.39 | 0.2 | .010 | 1.40 | .060 | .08 | | | 13 | | | | 1.89 | 1.89 | 8.4 | .010 | 1.90 | .020 | .03 | | | | | | | - · · · | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 36)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | 0.56 | 0.74 | 0.73 | 1.7 | 1.7 | 0.020 | 0.06 | 0.020 | <0.010 | | ND | | OCT 1982<br>28<br>NOV 1983 | . 24 | | .30 | | 1.6 | _ | _ | .020 | .010 | 0.03 | <1 | | 04 | 1.3 | | 1.5 | _ | 3.0 | .030 | .09 | . 020 | <.010 | | | | OCT 1984 | | | | | | | | | | | | | 30 | .37 | _ | . 40 | _ | 1.4 | <.010 | _ | <.010 | .020 | .06 | | | OCT 1985 | | | | | | | | | | | | | 21<br>NOV 1986 | .86 | _ | . 90 | _ | 2.4 | .020 | .06 | .010 | .010 | .03 | | | 17 | .50 | .30 | . 60 | 2.1 | 2.4 | .040 | | .010 | <.010 | | | | OCT 1987 | | | | | | | | | | | | | 20 | . 35 | .70 | . 40 | 2.3 | 2.0 | .010 | _ | <.010 | <.010 | | _ | | OCT 1988<br>05 | _ | . 50 | . 50 | 2.4 | 2.4 | .010 | _ | .010 | <.010 | | | | OCT 1989 | | . 50 | . 50 | 2.7 | 2.7 | .010 | | .010 | 1.010 | | | | 10 | .31 | <.20 | . 40 | | 2.4 | .030 | | .010 | <.010 | | _ | | OCT 1990 | | | | | | | | | | | | | 16<br>NOV 1991 | . 28 | .60 | .30 | 1.5 | 1.2 | .020 | | <.010 | <.010 | | | | 05 | .18 | . 40 | .30 | 1.7 | 1.6 | <.010 | | <.010 | <.010 | | | | OCT 1992 | , | | | | | | | | | | | | 30 | .14 | .20 | .20 | 1.9 | 1.9 | <.010 | _ | .010 | <.010 | | _ | | NOV 1993 | | | | | | | | | 010 | 0.3 | | | 03<br>OCT 1994 | _ | _ | _ | | _ | | | _ | .010 | .03 | | | 13 | _ | | | | _ | | _ | _ | <.010 | | | Table 3. Water-quality data from surface-water sites—Continued 01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 36)—Continued | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCF<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | <1.0 | 2 | <1 | 1 | 240 | <1 | 750 | 0.1 | 1 | <4 | ND | | OCT 1982<br>28 | -1 0 | <1 | <1 | 2 | 59 | <1 | 74 | <.1 | 2 | <4 | 0.03 | | 28<br>NOV 1983 | <1.0 | <1 | <1 | 2 | 59 | <1 | /4 | <.1 | 2 | <4 | 0.03 | | 04 | | | | | 150 | | 140 | | | | | | OCT 1984 | | | | | | | | | | | | | 30 | | | _ | _ | 71 | | 23 | | _ | | | | OCT 1985 | | | | | | | | | | | | | 21<br>NOV 1986 | | | | | 54 | - | 27 | - | | _ | | | 17 | | | | | 120 | | 140 | | | _ | | | OCT 1987 | | | | | | | | | | | | | 20 | | | | | 87 | _ | 96 | | _ | _ | | | OCT 1988 | | | | | | | | | | | | | 05 | _ | _ | | | 290 | | 99 | | _ | | | | OCT 1989 | | | | | 190 | | 160 | | | | | | OCT 1990 | | | | | 130 | | 100 | | | | | | 16 | | | | _ | 87 | | 34 | | | | | | NOV 1991 | | | | | | | | | | | | | 05 | | | _ | | 370 | _ | 350 | | _ | _ | | | OCT 1992<br>30 | | | | | 98 | | 240 | | | | | | NOV 1993 | | _ | | | 98 | _ | 240 | | _ | _ | _ | | 03 | | | | _ | | | | | | | | | OCT 1994 | | | | | | | | | | | | | 13 | _ | _ | | | | | _ | <del></del> | | | - | Table 3. Water-quality data from surface-water sites—Continued 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | |----------------------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | 1045 | _ | 308 | 7.8 | 8.0 | | 10.9 | 140 | _ | 36 | | OCT 1982<br>28<br>OCT 1983 | 1445 | 7.3 | 324 | 8.4 | 10.7 | | 12.4 | 150 | _ | 33 | | 31<br>OCT 1984 | 1345 | 7.0 | 377 | 8.0 | 10.0 | 1.3 | 12.4 | 170 | _ | 38 | | 16<br>OCT 1985 | 1500 | 11 | 370 | 8.7 | 14.0 | . 40 | 12.8 | 150 | | 33 | | 31<br>OCT 1986 | 0930 | 8.3 | 340 | 7.6 | 11.0 | . 60 | 12.2 | 150 | | 37 | | 08<br>NOV 1987 | 1330 | 5.5 | 345 | 8.5 | 14.5 | .40 | 12.6 | 170 | _ | 35 | | 04<br>OCT 1988 | 1400 | 7.8 | 335 | 8.6 | 15.0 | .40 | 14.6 | 150 | _ | 37 | | 14<br>OCT 1989 | 1530 | 12 | 321 | 7.6 | 12.0 | 1.5 | 13.4 | 130 | | 33 | | 06<br>OCT 1990 | 1015 | 21 | 370 | 7.8 | 13.0 | .40 | 11.5 | 160 | 54 | 36 | | 11<br>NOV 1991 | 1245 | 6.1 | 390 | 6.9 | 19.0 | .50 | 10.2 | 160 | 48 | 32 | | 18<br>NOV 1992 | 0945 | 4.4 | 349 | 7.5 | 3.5 | 1.1 | 15.0 | 150 | 60 | 38 | | 17<br>NOV 1993 | 0915 | 7.4 | 329 | 7.9 | 4.5 | .70 | 14.5 | 130 | _ | 34 | | 04<br>OCT 1994 | 1300 | 8.6 | 429 | 8.4 | 9.0 | _ | 14.0 | _ | _ | | | 06 | 1000 | 5.4 | 390 | 8.0 | 10.0 | _ | 12.0 | | | | Table 3. Water-quality data from surface-water sites—Continued 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44)—Continued | DATE | SI<br>DI<br>SOL<br>(MG | MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ANC WATER UNFLTRD FET FIELD (MG/L AS CACO <sub>3</sub> ) (00410) | IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> ) | AS SO <sub>4</sub> ) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | AT 180<br>DEG. C<br>DIS-<br>SCLVED<br>(NG/L) | |--------------|------------------------|-----|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|----------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------| | NOV 1 | 981 | | | | | | | | | | | | | | 04. | | 13 | 11 | 14 | 0.4 | 1.7 | | | 29 | 20 | <0.10 | 6.1 | 190 | | OCT 1 | | | 1.0 | 10 | | 0.4 | 00 | | 22 | 10 | . 10 | | 202 | | 28.<br>OCT 1 | | 17 | 10 | 12 | . 4 | 2.4 | 92 | _ | 33 | 19 | <.10 | 5.7 | 203 | | 04. | | 19 | 10 | 11 | .3 | 2.5 | 84 | | 55 | 19 | | 5.4 | 231 | | OCT 1 | 984 | | | | | | | | | | | | | | 16. | | 16 | 9.7 | 12 | .3 | 2.1 | 100 | | 42 | 19 | | 4.5 | 196 | | OCT 1: | | 14 | 13 | 16 | .5 | 2.0 | 108 | | 27 | 28 | | 6.0 | 195 | | OCT 1 | | 1.4 | 13 | 10 | .5 | 2.0 | 100 | _ | 21 | 20 | | 0.0 | 193 | | 08. | | 19 | 11 | 12 | . 4 | 3.2 | 104 | | 49 | 20 | _ | 6.2 | 240 | | NOV 1 | | | | | | | | | | | | | | | 04. | | 15 | 12 | 14 | . 4 | 2.5 | 114 | _ | 31 | 23 | | 5.0 | 202 | | OCT 1: | | 12 | 11 | 15 | . 4 | 1.7 | 101 | | 25 | 22 | | 6.4 | | | OCT 1 | | 12 | 11 | 13 | • • | 1., | 101 | | 23 | 22 | | 0.4 | | | 06. | | 16 | 12 | 14 | . 4 | 2.4 | 102 | | 38 | 23 | _ | 7.5 | | | OCT 1 | | | | | | | | | | | | | | | 11.<br>NOV 1 | | 20 | 12 | 14 | . 4 | 3.1 | 114 | | 43 | 24 | <.10 | 5.8 | 220 | | 18. | | 14 | 13 | 15 | . 5 | 1.8 | 93 | _ | 32 | 27 | .10 | 4.1 | _ | | NOV 1 | | | | | | | | | - | | | | | | 17. | | 12 | 13 | 17 | . 5 | 1.7 | | 82 | 27 | 25 | <.10 | 6.6 | _ | | NOV 1 | | | | | | | | | | | | | | | 04.<br>OCT 1 | | | | | | | | 138 | 40 | 29 | <.10 | | _ | | 06. | | | | _ | _ | | 110 | 110 | | 32 | | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44)—Continued | DATE | SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | PITROGEN, OFGANIC TOTAL (MG/L AS N) (C0605) | |----------------|-----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | | 0.26 | | 2.40 | | | <0.010 | 2.20 | <0.010 | 0.01 | _ | | OCT 1982 | | | | | | | | | | | | | 28 | 186 | . 28 | 4.01 | | | _ | <.010 | 2.40 | .020 | .03 | | | OCT 1983<br>31 | 216 | . 31 | 4.37 | | 3.60 | 16 | .010 | 3.60 | .010 | .01 | | | OCT 1984 | 210 | . 31 | 4.31 | <del></del> | 3.00 | 10 | .010 | 3.60 | .010 | .01 | | | 16 | 200 | . 27 | 5.82 | | 2.96 | 13 | .040 | 3.00 | .050 | .06 | | | OCT 1985 | | | | | | | | | | | | | 31 | 204 | .27 | 4.37 | | | | <.010 | 2.70 | .010 | .01 | _ | | OCT 1986 | | | | | | | | | | | | | 08 | 217 | . 33 | 3.56 | | 2.39 | 11 | .010 | 2.40 | <.010 | | | | NOV 1987 | 005 | 0.77 | 4 0- | | | | | | | | | | 04 | 205 | . 27 | 4.25 | | _ | _ | <.010 | 2.40 | .020 | .03 | C.88 | | OCT 1988<br>14 | 183 | .25 | 5.92 | | _ | | <.010 | 2.50 | .010 | .01 | | | OCT 1989 | 100 | .20 | J.J2 | | | | 1.010 | 2.00 | .010 | .01 | | | 06 | 208 | .28 | 11.8 | | | | <.010 | 2.70 | .010 | .01 | | | OCT 1990 | | | | | | | | | | | | | 11 | 219 | . 30 | 3.63 | | _ | _ | <.010 | 2.40 | <.020 | _ | | | NOV 1991 | | _ | | | | | | | | | | | 18 | 196 | .27 | 2.35 | _ | | _ | <.010 | 2.30 | .010 | .01 | | | NOV 1992 | 170 | 24 | 2 50 | | 2 26 | 10 | 040 | 2.40 | 040 | 0.5 | | | 17<br>NOV 1993 | 179 | . 24 | 3.58 | | 2.36 | 10 | .040 | 2.40 | .040 | .05 | | | 04 | | _ | | | | | <.010 | 2.00 | .020 | .03 | | | OCT 1994 | | | | | | | | | | | | | 06 | _ | | | | _ | _ | <.010 | 2.40 | <.015 | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSINIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | | 0.31 | 0.24 | 2.7 | 2.4 | 0.100 | 0.31 | 0.110 | 0.090 | 0.28 | 0 | | OCT 1982 | | | | | | | | | | | | | 28 | 0.78 | | .80 | _ | 3.2 | | | .080 | .080 | . 25 | 1 | | OCT 1983 | . 69 | | .70 | | 4.3 | .100 | .31 | .100 | .080 | . 25 | | | 31<br>OCT 1984 | .03 | | . 70 | | 4.3 | .100 | .31 | .100 | .080 | .23 | _ | | 16 | .35 | | .40 | | 3.4 | .060 | | .070 | .060 | .18 | _ | | OCT 1985 | | | | | | | | | | | | | 31 | _ | <.20 | <.20 | _ | | .090 | .28 | .080 | .080 | . 25 | | | OCT 1986 | | | | | | | | | | | | | 08 | _ | .70 | <.20 | 3.1 | | .050 | _ | .040 | .030 | . 09 | | | NOV 1987<br>04 | .38 | . 90 | .40 | 3.3 | 2.8 | .070 | | . 060 | .060 | .18 | | | OCT 1988 | . 30 | . 30 | .40 | 3.3 | 2.0 | .070 | | .000 | .000 | .10 | | | 14 | | <.20 | <.20 | | _ | .050 | | .050 | .030 | .09 | _ | | OCT 1989 | | | | | | | | | | | | | 06 | .29 | <.20 | .30 | _ | 3.0 | .020 | | .020 | .020 | .06 | | | OCT 190 | | | | | | | | | | | | | 11<br>NOV 1991 | | .50 | .20 | 2.9 | 2.6 | .020 | | <.010 | <.010 | _ | <del></del> | | 18 | | <.20 | <.20 | | | <.010 | | <.010 | <.010 | | _ | | NOV 1992 | | | | | | | | | | | | | 17 | | <.20 | <.20 | | | .020 | | <.010 | <.010 | _ | | | NOV 1993 | | | | | | | | | | | | | 04 | | _ | | _ | | _ | | | .010 | .03 | _ | | OCT 1994 | | | | | | | | | - 010 | | | | 06 | | | | | | _ | | | <.010 | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44)—Continued | DATE | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(μG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | <1.0 | <1.0 | 2.0 | <1.0 | 16 | <1.0 | 46 | 0.1 | 2.0 | <4.0 | ND | | OCT 1982<br>28 | <1.0 | <1.0 | <1.0 | <1.0 | 18 | <1.0 | 5.0 | <.1 | 1.0 | <4.0 | 0.04 | | OCT 1983 | | | | | | | | | | | | | 31 | | _ | _ | | 16 | | 8.0 | | _ | _ | | | OCT 1984 | | | | | | | | | | | | | 16<br>OCT 1985 | _ | | _ | | 13 | | 4.0 | | | | | | 31 | | _ | _ | | 10 | | 8.0 | _ | | | | | OCT 1986 | | | | | | | | | | | | | 08 | | _ | _ | | 13 | | 8.0 | _ | | | _ | | NOV 1987 | | | | | | | | | | | | | 04<br>OCT 1988 | | _ | _ | | 13 | | 6.0 | | | | | | 14 | _ | | | | 17 | - | 6.0 | | | | | | OCT 1989 | | | | | | | | | | | | | 06 | | | | | 14 | | 7.0 | | | | | | OCT 1990<br>11 | | <1.0 | | | 24 | | 17 | | | | | | NOV 1991 | | (1.0 | _ | | 24 | | 17 | | _ | | | | 18 | | | _ | | 15 | | 4.0 | _ | | | | | NOV 1992 | | | | | | | | | | | | | 17 | 1.0 | <5.0 | <3.0 | <10 | 20 | <10 | 8.0 | | <10 | <3.0 | | | NOV 1993<br>04 | | | | _ | | | | | _ | | _ | | OCT 1994 | | | | | | | | | | | | | 06 | | _ | | | | | | | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS,<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>I, SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | 1330 | _ | 328 | 6.7 | 10.5 | _ | 12.4 | 120 | | 29 | 12 | | OCT 1982<br>21<br>OCT 1983 | 1400 | 56 | 290 | 8.0 | 14.5 | _ | 11.3 | 100 | _ | 25 | 10 | | 31 | 0945 | 78 | 284 | 7.5 | 7.5 | 2.4 | 10.8 | 120 | | 28 | 11 | | OCT 1984 | | | | | | | | | | | | | 16 | 0930 | 68 | 290 | 7.8 | 13.0 | 1.3 | 12.4 | 110 | | 26 | 10 | | OCT 1985<br>22<br>NOV 1986 | 0900 | 55 | 290 | 7.5 | 9.5 | 1.0 | 13.8 | 110 | | 27 | 11 | | 03<br>NOV 1987 | 1400 | 50 | 293 | 7.9 | 12.0 | .70 | 11.4 | 110 | | 27 | 10 | | 04<br>OCT 1988 | 0930 | 66 | 292 | 7.4 | 12.5 | .60 | 12.6 | 110 | _ | 28 | 10 | | 06<br>OCT 1989 | 1030 | 52 | 374 | 7.8 | 12.5 | 1.8 | 13.4 | 130 | | 30 | 13 | | 13<br>OCT 1990 | 0915 | 113 | 293 | 7.5 | 13.0 | .80 | 10.9 | 110 | 35 | 26 | 9.7 | | 15<br>OCT 1991 | 1300 | 86 | 295 | 6.6 | 19.5 | 1.5 | 8.8 | 100 | 26 | 25 | 9.7 | | 30<br>OCT 1992 | 1245 | 51 | 350 | 8.3 | 10.5 | .50 | 16.4 | 120 | 45 | 30 | 11 | | 29<br>NOV 1993 | 1300 | 46 | 350 | 7.6 | 11.5 | . 90 | 11.6 | 110 | | 27 | 10 | | 16<br>OCT 1994 | 1000 | 55 | 338 | 8.2 | 12.0 | | 12.8 | | _ | - | _ | | 11 | 1300 | 57 | 377 | 7.8 | 12.5 | | 12.4 | | | | | Table 3. Water-quality data from surface-water sites—Continued #### 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)---Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | 20 | 26 | 0.8 | 3.4 | _ | _ | 29 | 24 | 0.10 | 13 | | OCT 1982 | | | | | | | | | | | | 21 | 16 | 25 | .7 | 2.8 | 74 | _ | 32 | 23 | .10 | 10 | | OCT 1983<br>31 | 16 | 23 | . 6 | 3.1 | 84 | | 31 | 23 | _ | 11 | | OCT 1984 | 10 | 25 | . 0 | 3.1 | 04 | | 31 | 23 | | | | 16 | 16 | 24 | .7 | 2.7 | 82 | | 25 | 22 | | 9.0 | | OCT 1985 | | | | | | | | | | | | 22 | 16 | 23 | . 7 | 3.4 | 80 | _ | 28 | 25 | - | 9.7 | | NOV 1986 | | 05 | - | 2.0 | 84 | | 24 | 0.5 | | 10 | | 03<br>NOV 1987 | 17 | 25 | .7 | 3.9 | 84 | _ | 24 | 25 | | 10 | | 04 | 18 | 25 | .7 | 3.8 | 85 | _ | 26 | 26 | | 12 | | OCT 1988 | | - | . , | | • • | | | | | | | 06 | 19 | 24 | .7 | 3.7 | 94 | | 29 | 27 | | 11 | | OCT 1989 | | | | | | | | | | | | 13<br>OCT 1990 | 15 | 23 | .6 | 3.3 | 70 | <del></del> | 21 | 21 | | 12 | | 15 | 15 | 23 | . 6 | 4.0 | 77 | | 21 | 22 | .20 | 12 | | OCT 1991 | 10 | 23 | | 4.0 | • • • • • • • • • • • • • • • • • • • • | | | | .20 | | | 30 | 22 | 28 | . 9 | 4.5 | 75 | _ | 30 | 33 | .20 | 9.8 | | OCT 1992 | | | | | | | | | | | | 29 | 19 | 27 | . 8 | 4.1 | | 76 | 24 | 33 | .20 | 10 | | NOV 1993<br>16 | | | | | | 70 | 28 | 26 | .10 | | | OCT 1994 | | _ | | _ | _ | 70 | 20 | 20 | .10 | | | 11 | _ | _ | | _ | _ | 108 | | 37 | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-GEN, AMMONIF DIS-SOLVED (MG/L AS N) (00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | 189 | | 0.26 | | 2.24 | 2.04 | 9.0 | 0.160 | 2.20 | 0.497 | | OCT 1982 | | | | | | | | | | | | 21 | 176 | 174 | .24 | 26.5 | 1.94 | 1.94 | 8.6 | .060 | 2.00 | . 061 | | OCT 1983 | | | | | | | | | | | | 31 | 188 | 188 | .26 | 39.6 | 2.85 | 2.85 | 13 | .050 | 2.90 | .310 | | OCT 1984 | 175 | | | 20.1 | 0.01 | | | | 2 22 | | | 16<br>OCT 1985 | 175 | 175 | . 24 | 32.1 | 2.91 | 2.91 | 13 | .090 | 3.00 | .070 | | 22 | 174 | 180 | . 24 | 25.8 | 2.31 | 2.31 | 10 | .090 | 2.40 | .110 | | NOV 1986 | | 100 | | 23.0 | 2.51 | 2.51 | 10 | .050 | 2.40 | .110 | | 03 | 186 | 180 | . 25 | 25.1 | 2.23 | 2.23 | 9.9 | .070 | 2.30 | .170 | | NOV 1987 | | | | | | _ | | | | _ | | 04 | 182 | 188 | .25 | 32.4 | 2.58 | 2.58 | 11 | .020 | 2.60 | .050 | | OCT 1988 | | | | | | | | | | | | 06 | | 205 | .28 | 28.8 | 3.09 | 3.09 | 14 | .010 | 3.10 | .020 | | OCT 1989 | | | | | | | | | | | | 13 | | 165 | .22 | 50.5 | 3.18 | 3.18 | 14 | .020 | 3.20 | .020 | | OCT 1990 | | | | | | | | | | | | 15<br>OCT 1991 | | 166 | .23 | 38.8 | 2.18 | 2.18 | 9.6 | .020 | 2.20 | .040 | | 30 | | 201 | .27 | 27.5 | 3.19 | 3.19 | 14 | .010 | 3.20 | .010 | | OCT 1992 | | 201 | .21 | 27.3 | 3.19 | 3.19 | 14 | .010 | 3.20 | .010 | | 29 | - | 190 | .26 | 23.8 | 3.57 | 3.57 | 16 | .030 | 3.60 | .090 | | NOV 1993 | | | | | | | | | | | | 16 | | | - | | 3.67 | 3.67 | 16 | .030 | 3.70 | .050 | | OCT 1994 | | | | | | | | | | | | 11 | - | | | | 4.18 | 4.18 | 19 | .020 | 4.20 | .020 | Table 3. Water-quality data from surface-water sites—Continued # 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)—Continued | DATE | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PTOS-<br>PHOTUS,<br>DIS-<br>SOLVED<br>(MT/L<br>AS P)<br>(00566) | |----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | 0.63 | 1.1 | 0.71 | 1.6 | 1.2 | 4.0 | 3.4 | 0.900 | 2.8 | 0.800 | | OCT 1982 | | | | | | | | | | 500 | | 21<br>OCT 1983 | .08 | | 1.2 | _ | 1.3 | | 3.3 | _ | | . 530 | | 31 | .40 | _ | . 39 | | . 70 | - | 3.6 | .520 | 1.6 | .510 | | OCT 1984 | | | | | | | | | | | | 16 | .09 | _ | .23 | | .30 | _ | 3.3 | .710 | _ | . 670 | | OCT 1985<br>22 | .14 | . 59 | .49 | .70 | . 60 | 3.1 | 3.0 | .480 | 1.5 | . 450 | | NOV 1986 | .14 | . 39 | .43 | . 70 | . 60 | 3.1 | 3.0 | .400 | 1.5 | .430 | | 03 | . 22 | . 43 | .63 | .60 | .80 | 2.9 | 3.1 | .690 | _ | . 660 | | NOV 1987 | | | | | | | | | | | | 04 | .06 | . 65 | .55 | . 70 | . 60 | 3.3 | 3.2 | .530 | _ | . 560 | | OCT 1988<br>06 | . 03 | . 68 | . 68 | . 70 | .70 | 3.8 | 3.8 | .700 | _ | . 690 | | OCT 1989 | | | | .,, | | 3.0 | 0.0 | .,,,, | | | | 13 | .03 | .48 | . 68 | .50 | .70 | 3.7 | 3.9 | .330 | _ | .320 | | OCT 1990 | 0.5 | | .36 | | 40 | | 0.6 | 200 | | 200 | | 15<br>OCT 1991 | . 05 | . 66 | .36 | .70 | . 40 | 2.9 | 2.6 | .320 | _ | . 320 | | 30 | .01 | . 39 | .29 | .40 | .30 | 3.6 | 3.5 | .350 | | .330 | | OCT 1992 | | | | | | | | | | | | 29 | .12 | .61 | .51 | .70 | . 60 | 4.3 | 4.2 | .320 | _ | .250 | | NOV 1993<br>16 | .06 | | | | _ | | | | | | | OCT 1994 | . 00 | | | | | | | | | | | 11 | .03 | _ | _ | | _ | | | | | _ | Table 3. Water-quality data from surface-water sites—Continued 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)—Continued | DATE | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | |----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | 0.800 | 2.5 | 1 | _ | _ | <1.0 | <1 | <1 | 2 | 66 | | OCT 1982 | | | | | | | | | | | | 21<br>OCT 1983 | .570 | 1.7 | 1 | _ | | <1.0 | <1 | 1 | 4 | 45 | | 31 | .530 | 1.6 | 1 | | | 1.0 | <1 | | 3 | 74 | | OCT 1984 | .550 | 1.0 | - | | | 1.0 | ~1 | | 3 | , . | | 16 | .700 | 2.1 | <1 | | | <1.0 | 1 | | 1 | 41 | | OCT 1985 | | | | | | | | | | | | 22 | .410 | 1.3 | <1 | _ | _ | <1.0 | <1 | | 2 | 33 | | NOV 1986 | | | | | | | | | _ | | | 03<br>NOV 1987 | .640 | 2.0 | <1 | | | 1.0 | <1 | | 3 | 68 | | 04 | .490 | 1.5 | <1 | | | <1.0 | 90 | | 4 | 68 | | OCT 1988 | | 1.0 | | | | 11.0 | 30 | | • | 00 | | 06 | .610 | 1.9 | <1 | 31 | <0.5 | 2.0 | 5 | <3 | <10 | 53 | | OCT 1989 | | | | | | | | | | | | 13 | .300 | . 92 | <1 | 38 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | <10 | 99 | | OCT 1990<br>15 | . 340 | 1.0 | <1 | 25 | | <1.0 | <5 | 42 | <b>410</b> | 74 | | OCT 1991 | .340 | 1.0 | <1 | 35 | <.5 | <1.0 | <5 | <3 | <10 | 74 | | 30 | .270 | .83 | <1 | 30 | <.5 | <1.0 | <5 | <3 | <10 | 130 | | OCT 1992 | | | _ | | | | | | | | | 29 | .240 | .74 | <1 | 33 | <.5 | <1.0 | <5 | <3 | <10 | 50 | | NOV 1993 | | | | | | | | | | | | 16 | .330 | 1.0 | | _ | | _ | | _ | | | | OCT 1994 | 150 | | | | | | | | | | | 11 | .150 | .46 | | | | _ | | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METTY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 04 | <1 | | 49 | 0.1 | 2 | _ | _ | | 5 | 0.10 | | OCT 1982 | | | 22 | | _ | | | | | | | 21<br>OCT 1983 | <1 | | 33 | _ | 3 | _ | _ | _ | <4 | .05 | | 31 | 1 | | 45 | <.1 | <1 | <1.0 | _ | | 6 | _ | | OCT 1984 | - | | 43 | ~.1 | ~1 | 11.0 | | | U | | | 16 | 1 | | 21 | <.1 | 2 | <1.0 | | _ | <3 | | | OCT 1985 | | | | | | | | | | | | 22 | <1 | | 18 | <.1 | <1 | <1.0 | _ | _ | 27 | _ | | NOV 1986 | | | | | | | | | | | | 03 | <5 | _ | 38 | .1 | 3 | <1.0 | | _ | 15 | _ | | NOV 1987 | | | 40 | • | _ | | | | _ | | | 04<br>OCT 1988 | <5 | _ | 43 | . 2 | 3 | <1.0 | _ | <del></del> | 5 | _ | | 06 | <10 | 8 | 20 | .1 | <10 | 3.0 | 120 | <6 | 12 | | | OCT 1989 | 110 | ŭ | 20 | • • | 710 | 3.0 | 120 | 10 | 12 | | | 13 | <10 | 6 | 22 | <.1 | <10 | <1.0 | 120 | <6 | 4 | | | OCT 1990 | | | | | | | | | | | | 15 | <10 | 6 | 39 | <.1 | <10 | <1.0 | 110 | <6 | 8 | | | OCT 1991 | | | | | | | | | | | | 30 | <10 | 7 | 23 | <.1 | <10 | <1.0 | 120 | <6 | 8 | | | OCT 1992 | | | •• | | | | | | | | | 29<br>NOV 1993 | <10 | 4 | 20 | <.1 | <10 | <1.0 | 120 | <6 | 10 | _ | | 16 | _ | | | | | | _ | _ | _ | | | OCT 1994 | | | | | | | | | | | | 11 | | | | | _ | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01481030 - Brandywine Creek near Chadds Ford, Pa. (Site 40) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | 1645 | 121 | 265 | 7.6 | 11.0 | | 11.2 | 100 | | 25 | 9.7 | | OCT 1982 | | | | | | | | | | | | | 21 | 1045 | 157 | 262 | 7.5 | 12.5 | | 10.3 | 94 | _ | 23 | 8.9 | | OCT 1983 | 1.600 | 121 | 050 | | | | | 100 | | 0.5 | ۰. | | 31<br>OCT 1984 | 1600 | 131 | 252 | 7.6 | 9.0 | 1.6 | 11.2 | 100 | _ | 25 | 9.5 | | 15 | 1600 | 165 | 230 | 8.4 | 14.0 | . 60 | 12.4 | 89 | _ | 22 | 8.2 | | OCT 1985 | 1000 | 100 | 250 | ٠ | 11.0 | | *2.3 | U, | | | 0.2 | | 30 | 1100 | 135 | 250 | 8.0 | 10.0 | . 70 | 13.9 | 95 | | 23 | 9.1 | | DEC 1986 | | | | | | | | | | | | | 02 | 0930 | 258 | 240 | 7.8 | 5.0 | 1.8 | 11.8 | 92 | | 22 | 8.9 | | NOV 1987 | | | | | | | | | | | | | 20 | 1200 | 199 | 250 | 7.4 | 9.5 | .80 | 11.6 | 90 | | 22 | 8.4 | | OCT 1988 | 1000 | | 005 | 7.6 | 10.0 | | 10.4 | 100 | | 0.4 | 10 | | 07<br>OCT 1989 | 1000 | 116 | 285 | 7.6 | 12.0 | 1.5 | 10.4 | 100 | | 24 | 10 | | 17 | 1030 | 278 | 260 | 7.3 | 17.5 | .70 | 8.7 | 92 | | 22 | 8.9 | | OCT 1990 | 1050 | 2,0 | 200 | , | 17.5 | | 0., | 72 | | | 0.5 | | 15 | 0930 | 201 | 242 | 6.8 | 19.0 | 3.7 | 7.6 | 80 | 4 | 19 | 7.8 | | NOV 1991 | | | | | | | | | | | | | 15 | 1000 | 127 | 299 | 7.4 | 7.5 | . 70 | 12.4 | 100 | 38 | 26 | 9.4 | | OCT 1992 | | | | | | | | | | | | | 27 | 1345 | 135 | 290 | 8.4 | 10.5 | .80 | 13.9 | 98 | _ | 24 | 9.2 | | NOV 1993<br>09 | 0945 | 191 | 275 | 7 2 | 5.5 | | 12.9 | | | | | | OCT 1994 | 0945 | 131 | 275 | 7.3 | 5.5 | | 12.9 | | _ | | | | 04 | 1000 | 169 | 295 | 7.6 | 12.5 | | 9.4 | | | | | | · · · · · | 2000 | | 200 | | 22.0 | | J. 1 | | | | | Table 3. Water-quality data from surface-water sites—Continued 01481030 - Brandywine Creek near Chadds Ford, Pa. (Site 40)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | |----------------|---------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | 14 | 22 | 0.6 | 3.4 | | | 26 | 21 | 0.20 | 11 | 164 | | OCT 1982 | | | | | | | | | | | | | 21 | 15 | 25 | .7 | 3.0 | 62 | _ | 24 | 24 | .20 | 9.8 | 161 | | OCT 1983 | | | _ | 2.6 | | | 0.0 | | | 10 | 170 | | 31<br>OCT 1984 | 14 | 22 | . 6 | 3.6 | 64 | | 29 | 21 | _ | 12 | 172 | | 15 | 11 | 21 | . 5 | 2.6 | 62 | | 22 | 18 | | 8.8 | 143 | | OCT 1985 | 11 | 21 | | 2.0 | 02 | | 22 | 10 | | 0.0 | 143 | | 30 | 13 | 22 | . 6 | 3.3 | 70 | | 23 | 21 | | 11 | 146 | | DEC 1986 | | | | | | | | | | | | | 02 | 11 | 20 | . 5 | 3.1 | 72 | | 25 | 23 | _ | 13 | 150 | | NOV 1987 | | | | | | | | | | | | | 20 | 14 | 24 | . 6 | 3.5 | 65 | | 21 | 24 | | 11 | 164 | | OCT 1988 | | | _ | | =0 | | | | | | | | 07<br>OCT 1989 | 14 | 22 | . 6 | 3.3 | 78 | _ | 24 | 22 | _ | 10 | | | 17 | 13 | 23 | . 6 | 3.4 | 58 | | 21 | 20 | | 9.9 | | | OCT 1990 | 13 | 25 | . 0 | 3.4 | 30 | | 21 | 20 | | 3.3 | | | 15 | 11 | 22 | .5 | 4.5 | 76 | _ | 19 | 18 | .30 | 12 | | | NOV 1991 | | | | | | | | | | | | | 15 | 16 | 24 | .7 | 3.6 | 66 | _ | 25 | 26 | .20 | 8.5 | | | OCT 1992 | | | | | | | | | | | | | 27 | 15 | 24 | . 7 | 3.7 | | 59 | 23 | 23 | .20 | 9.3 | | | NOV 1993 | | | | | | | 0.7 | 00 | 20 | | | | 09 | _ | _ | | <del></del> | | 64 | 27 | 22 | .20 | _ | | | OCT 1994<br>04 | | | _ | _ | 68 | 68 | _ | 26 | _ | | | | U**··· | | | | | 00 | 00 | _ | 20 | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01481030 - Brandywine Creek near Chadds Ford, Pa. (Site 40)—Continued | DATE | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITPO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | |----------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | - | 0.22 | _ | 2.21 | 2.12 | 9.4 | 0.080 | 2.20 | 0.090 | 0.12 | 0.71 | | OCT 1982 | | 22 | co 2 | 0 17 | 0 17 | 0.6 | .030 | 2.20 | 010 | 01 | | | 21<br>OCT 1983 | 156 | .22 | 68.2 | 2.17 | 2.17 | 9.6 | .030 | 2.20 | .010 | .01 | | | 31 | 166 | .23 | 60.8 | 2.88 | 2.88 | 13 | .020 | 2.90 | .040 | .05 | | | OCT 1984 | | | | | | | | | | | | | 15 | 143 | .19 | 63.7 | 2.76 | 2.76 | 12 | .040 | 2.80 | .070 | .09 | | | OCT 1985 | 156 | .20 | 53.2 | 2.26 | 2.26 | 10 | .040 | 2.30 | .020 | .03 | . 58 | | DEC 1986 | | .20 | 33.2 | 2.20 | 2.20 | 10 | .040 | 2.30 | .020 | .03 | . 36 | | 02 | 163 | .20 | 104 | 2.97 | 2.97 | 13 | .030 | 3.00 | .160 | .21 | . 94 | | NOV 1987 | | | | | | | | | | | | | 20 | 155 | .22 | 88.1 | 2.49 | 2.49 | 11 | .010 | 2.50 | <.010 | _ | . 50 | | OCT 1988<br>07 | 168 | .23 | 52.7 | 3.00 | _ | | <.010 | 3.00 | <.010 | | .40 | | OCT 1989 | | .23 | 32.7 | 3.00 | | | V.010 | 3.00 | V.010 | | . 40 | | 17 | 147 | .20 | 111 | 3.08 | 3.08 | 14 | .020 | 3.10 | .020 | .03 | . 58 | | OCT 1990 | | | | | | | | | | | | | 15 | 147 | .20 | 79.8 | 1.98 | 1.98 | 8.8 | .020 | 2.00 | .050 | .06 | . 55 | | NOV 1991<br>15 | 169 | .23 | 57.9 | 3.20 | | _ | <.010 | 3.20 | .010 | .01 | .29 | | OCT 1992 | | .23 | 37.3 | 3.20 | | | 1.010 | 3.20 | .010 | .01 | .23 | | 27 | 156 | .21 | 56.8 | 2.88 | 2.88 | 13 | .020 | 2.90 | <.010 | _ | .30 | | NOV 1993 | | | | | | | | | | | | | 09 | _ | _ | _ | 3.19 | 3.19 | 14 | .010 | 3.20 | .010 | .01 | | | OCT 1994<br>04 | _ | _ | | 3.39 | 3.39 | 15 | .010 | 3.40 | <.015 | | | | · | | | | 5.55 | 3.33 | | .010 | 0 | | | | Table 3. Water-quality data from surface-water sites—Continued 01461030 - Brandywine Creek near Chadds Ford, Pa. (Site 40)—Continued | DATE | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>FIS-<br>SCLVED<br>(µG/L<br>AS AS)<br>(01000) | |----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | 0.58 | 0.85 | 0.67 | 3.2 | 2.9 | 0.410 | 1.3 | 0.360 | 0.330 | 1.0 | 1 | | OCT 1982 | | | | | | | | | | | | | 21 | .39 | | .40 | | 2.6 | _ | _ | .290 | .330 | 1.0 | 1 | | OCT 1983 | 76 | | 00 | | 2.7 | 200 | | 000 | 250 | 77 | | | 31<br>OCT 1984 | . 76 | | .80 | | 3.7 | .300 | . 92 | .290 | .250 | .77 | | | 15 | . 43 | _ | .50 | | 3.3 | .250 | | .250 | .260 | .80 | | | OCT 1985 | | | .50 | | 5.5 | .250 | | .230 | .200 | .00 | | | 30 | .38 | . 60 | .40 | 2.9 | 2.7 | .280 | .86 | .260 | .240 | .74 | | | DEC 1986 | | | | | | | | | | | | | 02 | .34 | 1.1 | .50 | 4.1 | 3.5 | .200 | _ | .160 | .130 | . 40 | | | NOV 1987 | | | | | | | | | | | | | 20 | | . 50 | <.20 | 3.0 | | .290 | _ | .260 | .170 | . 52 | | | OCT 1988 | | . 40 | 40 | 2.4 | 2.4 | 200 | | 21.0 | 260 | 00 | | | 07<br>OCT 1989 | _ | . 40 | .40 | 3.4 | 3.4 | .320 | | .310 | .260 | . 80 | _ | | 17 | . 48 | . 60 | .50 | 3.7 | 3.6 | .210 | | .170 | .170 | . 52 | _ | | OCT 1990 | | | | • • • • • • • • • • • • • • • • • • • • | 5.0 | .220 | | | | | | | 15 | .75 | . 60 | .80 | 2.6 | 2.8 | .190 | _ | .140 | .150 | . 46 | _ | | NOV 1991 | | | | | | | | | | | | | 15 | .19 | .30 | .20 | 3.5 | 3.4 | .150 | | .130 | .120 | .37 | _ | | OCT 1992 | | | | | | | | | | | | | 27 | <del></del> | . 30 | .20 | 3.2 | 3.1 | .110 | | .090 | .080 | . 25 | _ | | NOV 1993<br>09 | _ | | _ | | _ | | | | .110 | . 34 | | | OCT 1994 | | <del></del> | | | | | | | .110 | . 34 | _ | | 04 | | | | | _ | | | | .080 | . 25 | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01481030 - Brandywine Creek near Chadds Ford, Pa. (Site 40)—Contined | DATE | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM,<br>DIS-SOLVED<br>(µG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>FLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 04 | <1.0 | <1 | <1 | 1 | 67 | <1 | 56 | 0.7 | 4 | <4 | | | OCT 1982<br>21 | <1.0 | <1 | 1 | 4 | 61 | <1 | 37 | | 4 | 7 | C.05 | | OCT 1983 | | | | | 88 | | 47 | | | | | | 31<br>OCT 1984 | _ | | _ | | 88 | | 4 / | | _ | <del></del> | <del></del> | | 15 | | | | | 50 | | 18 | | | | _ | | OCT 1985 | | | | | | | | | | | | | 30 | | | _ | | 46 | | 19 | | | | | | DEC 1986<br>02 | | | _ | | 67 | | 44 | | | | | | NOV 1987 | | | | | • | | | | | | | | 20 | _ | _ | _ | _ | 57 | _ | 40 | _ | _ | _ | _ | | OCT 1988 | | | | | | | 00 | | | | | | 07<br>OCT 1989 | | _ | _ | _ | 55 | _ | 20 | _ | _ | | <del></del> | | 17 | _ | | | | 69 | | 20 | | | | | | OCT 1990 | | | | | | | | | | | | | 15<br>NOV 1991 | | _ | | _ | 89 | _ | 35 | _ | _ | | _ | | 15 | _ | _ | _ | _ | 45 | | 18 | | _ | _ | _ | | OCT 1992 | | | | | | | | | | | | | 27 | | _ | _ | _ | 66 | - | 16 | _ | _ | _ | | | NOV 1993<br>09 | _ | | _ | | | | _ | | | _ | _ | | 09<br>OCT 1994 | | _ | _ | | | _ | _ | | _ | _ | _ | | 04 | | | | | | | | | _ | _ | | Table 3. Water-quality data from surface-water sites—Continued 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29 | 0930 | _ | 190 | 7.2 | 9.5 | _ | 9.8 | 57 | | 13 | 6.0 | | NOV 1982 | | | | | | | | | | | | | 01<br>NOV 1983 | 1300 | 3.2 | 132 | 7.4 | 13.0 | | 9.2 | 44 | | 9.9 | 4.7 | | 02 | 1430 | 4.7 | 129 | 7.1 | 11.0 | 1.5 | 9.9 | 42 | | 9.4 | 4.6 | | OCT 1984 | 1450 | | 123 | | 11.0 | 1.0 | 3.5 | | | J. 1 | | | 18 | 0830 | 7.4 | 148 | 7.3 | 13.0 | .90 | 9.9 | 49 | | 11 | 5.2 | | OCT 1985 | | | | | | | | | | | | | 17 | 0815 | _ | 148 | 6.9 | 7.0 | .80 | 10.8 | 50 | _ | 11 | 5.4 | | OCT 1986 | | | | | | | | | | | | | 28 | 0830 | 5.0 | 170 | 7.4 | 12.5 | 1.2 | 9.6 | 57 | | 13 | 5.9 | | OCT 1987 | 0000 | | 1.45 | ~ . | ~ ^ | -0 | 10.0 | | | | - 4 | | 27<br>OCT 1988 | 0900 | 4.6 | 145 | 7.1 | 7.0 | .50 | 12.0 | 50 | | 11 | 5.4 | | 17 | 0900 | 4.1 | 169 | 6.8 | 13.5 | .90 | 10.6 | 56 | | 12 | 6.2 | | OCT 1989 | 0,000 | | | | 20.0 | | | | | | • | | 12 | 1000 | 11 | 178 | 7.1 | 11.5 | .70 | 11.8 | 55 | 30 | 12 | 6.0 | | OCT 1990 | | | | | | | | | | | | | 18 | 1245 | 4.7 | 180 | 6.5 | 16.0 | 1.4 | 9.8 | 56 | 28 | 13 | 5.8 | | OCT 1991 | | | | | | | | | _ | | | | 25 | 1200 | 3.7 | 182 | 7.2 | 13.5 | 1.0 | 10.3 | 57 | 13 | 13 | 5.9 | | NOV 1992 | 1000 | F 2 | 170 | 7.6 | ~ ^ | | 10.0 | | | 11 | 5.7 | | 10<br>NOV 1993 | 1200 | 5.7 | 170 | 7.6 | 7.0 | 1.7 | 12.8 | 51 | _ | 11 | 3.1 | | 10 | 1225 | 6.4 | 167 | 7.5 | 6.5 | | 12.3 | | | | | | NOV 1994 | 1000 | ٠ | | | 0.0 | | | | | | | | 04 | 1315 | 4.4 | 178 | 7.2 | 12.5 | _ | 10.4 | _ | | | | Table 3. Water-quality data from surface-water sites—Continued ## 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD~ SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 29<br>NOV 1982 | 13 | 30 | 0.7 | 7.9 | | | 14 | 21 | 0.10 | 14 | | 01<br>NOV 1983 | 6.7 | 23 | . 4 | 3.3 | 28 | | 8.0 | 12 | <.10 | 10 | | 02<br>OCT 1984 | 6.6 | 24 | . 4 | 2.5 | 22 | | 8.2 | 12 | <del></del> | 11 | | 18<br>OCT 1985 | 6.1 | 20 | . 4 | 2.7 | 28 | | 6.4 | 13 | <del></del> | 11 | | 17<br>OCT 1986 | 6.5 | 21 | . 4 | 2.9 | 26 | | 9.0 | 12 | | 10 | | 28<br>OCT 1987 | 7.4 | 20 | . 4 | 6.5 | 34 | | 12 | 13 | | 13 | | 27<br>OCT 1988 | 6.5 | 21 | . 4 | 2.8 | 30 | _ | 9.7 | 12 | | 11 | | 17<br>OCT 1989 | 6.9 | 20 | . 4 | 3.4 | 51 | | 9.7 | 12 | | 9.8 | | 12<br>OCT 1990 | 6.9 | 20 | . 4 | 3.5 | 25 | | 10 | 12 | _ | 11 | | 18<br>OCT 1991 | 7.2 | 20 | . 4 | 3.6 | 28 | | 7.4 | 15 | <.10 | 11 | | 25<br>NOV 1992 | 7.5 | 21 | . 4 | 4.3 | 44 | | 11 | 18 | <.10 | 11 | | 10<br>NOV 1993 | 8.2 | 25 | .5 | 3.0 | _ | 22 | 7.8 | 14 | <.10 | 13 | | 10<br>NOV 1994 | | _ | | _ | _ | 26 | _ | | _ | - | | 04 | | | | | _ | 32 | | 15 | | | Table 3. Water-quality data from surface-water sites—Continued 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVFD<br>(MG/I<br>AS N)<br>(00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 29 | 128 | | 0.17 | _ | 3.18 | 3.07 | 14 | 0.030 | 3.10 | 0.020 | | NOV 1982 | 0.5 | | | | | | | | | 250 | | 01<br>NOV 1983 | 85 | 90 | .12 | 0.73 | 3.97 | 3.97 | 18 | .030 | 4.00 | .060 | | 02 | 92 | 88 | .13 | 1.17 | 4.36 | 4.36 | 19 | .040 | 4.40 | .210 | | OCT 1984 | | • • • | | | | | | | | | | 18 | 92 | 97 | .13 | 1.84 | 5.35 | 5.35 | 24 | .050 | 5.40 | .120 | | OCT 1985 | | | | | | | | | | | | 17 | 84 | 94 | .11 | _ | 4.78 | 4.78 | 21 | .020 | 4.80 | .030 | | OCT 1986<br>28 | 115 | 113 | .16 | 1.55 | 4.68 | 4.68 | 21 | .020 | 4.70 | .020 | | OCT 1987 | 115 | 113 | .10 | 1.55 | 4.00 | 4.00 | 21 | .020 | 4.70 | .020 | | 27 | 90 | 99 | .12 | 1.12 | 5.09 | 5.09 | 23 | .010 | 5.10 | .030 | | OCT 1988 | | | | | | | | | | | | 17 | | 119 | .16 | 1.32 | 5.98 | 5.98 | 26 | .020 | 6.00 | .030 | | OCT 1989 | | 107 | 1.5 | 2.10 | | - 0- | 00 | 240 | c 20 | 010 | | 12<br>OCT 1990 | | 107 | . 15 | 3.19 | 6.26 | 6.26 | 28 | .040 | 6.30 | .210 | | 18 | | 109 | .15 | 1.37 | 6.18 | 6.18 | 27 | .020 | 6.20 | .010 | | OCT 1991 | | | | | 4 | • • • • • • • • • • • • • • • • • • • • | | | **-* | | | 25 | _ | 125 | .17 | 1.25 | 5.98 | 5.98 | 26 | .020 | 6.00 | .020 | | NOV 1992 | | | | | | | | | | | | 10 | _ | 101 | .14 | 1.55 | 5.47 | 5.47 | 24 | .030 | 5.50 | <.010 | | NOV 1993<br>10 | | | | _ | 5.69 | 5.69 | 25 | .010 | 5.70 | .010 | | NOV 1994 | | | | | 3.09 | 3.09 | 2.3 | .010 | 3.70 | .010 | | 04 | | _ | _ | _ | 4.88 | 4.88 | 22 | .020 | 4.90 | <.015 | Table 3. Water-quality data from surface-water sites—Continued ## 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31)-Continued | | NITRO- | | NITRO- | NITRO- | NITRO- | | | | | | |----------------|----------------------|---------|---------|----------|----------|---------|---------|---------|----------------------|---------| | | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | | NITRO- | | | PHOS- | | | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | | | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SO VED | | DATE | (MG/L (M3/L | | | AS NH <sub>4</sub> ) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | | | (71846) | (00605) | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (00<66) | | OCT 1981 | | | | | | | | | | | | 29 | 0.03 | 0.89 | 0.79 | 0.90 | 0.81 | 4.1 | 3.9 | 0.220 | 0.67 | 0.230 | | NOV 1982 | | | | | | | | | | | | 01 | .08 | | 1.1 | _ | 1.2 | _ | 5.2 | _ | | .180 | | NOV 1983 | | | | | | | | | | | | 02 | . 27 | | .89 | _ | 1.1 | | 5.5 | .130 | .40 | .120 | | OCT 1984 | | | | | | | | | | | | 18 | .15 | _ | .28 | | .40 | | 5.8 | .090 | | .090 | | OCT 1985 | | | | | | | | | | | | 17 | .04 | . 47 | .27 | .50 | . 30 | 5.3 | 5.1 | .080 | .25 | .080 | | OCT 1986 | | | | | | | | | | | | 28 | .03 | 1.5 | 1.3 | 1.5 | 1.3 | 6.2 | 6.0 | .190 | | .180 | | OCT 1987 | | | | | | | | | | | | 27 | .04 | . 47 | | .50 | <.20 | 5.6 | _ | .070 | | .080 | | OCT 1988 | | | | | | | | | | | | 17 | .04 | . 87 | . 67 | .90 | .70 | 6.9 | 6.7 | .710 | | . 690 | | OCT 1989 | 0.7 | | 20 | | 60 | | | | | 000 | | 12 | .27 | .59 | .39 | .80 | .60 | 7.1 | 6.9 | .920 | _ | .890 | | OCT 1990<br>18 | .01 | 1 - | . 69 | . 7 | .70 | 7.0 | | 400 | | 400 | | OCT 1991 | .01 | 1.7 | . 69 | 1.7 | . 70 | 7.9 | 6.9 | . 420 | | .400 | | 25 | .03 | . 38 | .18 | .40 | . 20 | 6.4 | 6.2 | .430 | | .420 | | NOV 1992 | .05 | .50 | .10 | .40 | .20 | 0.4 | 0.2 | .430 | | .420 | | 10 | | .20 | | .20 | .30 | 5.7 | 5.8 | .100 | | .080 | | NOV 1993 | | .20 | | | .50 | 0., | 3.0 | .100 | | .000 | | 10 | .01 | - | | | | | | _ | | | | NOV 1994 | | | | | | | | | | | | 04 | | | | | | | | _ | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31)—Continued | | PHOS-<br>PHORUS, | PHOS-<br>PHATE, | | | BERYL- | | CHRO- | | | | |----------------|------------------|----------------------|----------|---------|-------------|----------|---------------|---------|---------|-----------| | | ORTHO, | ORTHO, | ARSENIC, | BARIUM, | LIUM, | CADMIUM, | MIUM, | COBALT, | COPPER, | IRON, | | | DIS- | | SOLVED | DATE | (MG/L | (MG/L | (µG/L | | AS P) | AS PO <sub>4</sub> ) | AS AS) | AS BA) | AS BE) | AS CD) | AS CR) | AS CO) | AS CU) | AS FE) | | | (00671) | (00660) | (01000) | (01005) | (01010) | (01025) | (01030) | (01035) | (01040) | (01046) | | OCT 1981 | | | | | | | | | | | | 29 | 0.190 | 0.58 | ND | | <del></del> | <1.0 | <1 | 2 | 7 | 140 | | NOV 1982 | | | | | | | | | | | | 01 | .180 | .55 | 1 | | | <1.0 | <1 | <1 | 1 | 56 | | NOV 1983 | | | | | | | | | | | | 02 | .120 | .37 | <1 | | | <1.0 | <1 | _ | 2 | 58 | | OCT 1984 | | | | | | | | | | | | 18 | .100 | .31 | <1 | | | <1.0 | <1 | _ | 2 | 44 | | OCT 1985 | | | | | | | | | | | | 17 | .070 | . 21 | <1 | | | <1.0 | <1 | | <1 | 23 | | OCT 1986<br>28 | .140 | . 43 | <1 | | | 2.0 | <1 | | 4 | 66 | | OCT 1987 | .140 | .43 | <b>1</b> | | | 2.0 | <1 | _ | - | 00 | | 27 | .060 | .18 | <1 | | | <1.0 | <1 | | 1 | 37 | | OCT 1988 | .000 | .10 | | | | 11.0 | `- | | - | <i>J.</i> | | 17 | .610 | 1.9 | <1 | 23 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | <10 | 34 | | OCT 1989 | | | | | | | | | | | | 12 | .890 | 2.7 | <1 | 25 | <.5 | <1.0 | <5 | <3 | <10 | 43 | | OCT 1990 | | | | | | | | | | | | 18 | .410 | 1.3 | <1 | 23 | <.5 | <1.0 | <5 | <3 | <10 | 27 | | OCT 1991 | | | | | | | | | | | | 25 | .370 | 1.1 | <1 | 24 | <.5 | <1.0 | <5 | <3 | <10 | 40 | | NOV 1992 | | | | | | | | | | | | 10 | .080 | . 25 | <1 | 22 | . 6 | <1.0 | <5 | <3 | <10 | 50 | | NOV 1993 | | _ | | | | | | | | | | 10 | .080 | .25 | _ | | | _ | _ | | | | | NOV 1994 | | | | | | | | | | | | 04 | .070 | .21 | _ | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENF<br>BLUF<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/I.)<br>(3826C) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 29 | <1 | | 790 | 0.1 | 3 | _ | | | 6 | 0.10 | | NOV 1982 | _ | | | | | | | | | | | 01<br>NOV 1983 | <1 | | 23 | <.1 | <1 | _ | _ | _ | <4 | . 05 | | 02 | <1 | | 20 | .2 | <1 | <1.0 | | _ | 5 | _ | | OCT 1984 | | | | | - | | | | - | | | 18 | <1 | _ | 11 | <.1 | <1 | <1.0 | | | 6 | | | OCT 1985 | | | | | | | | | _ | | | 17<br>OCT 1986 | <1 | | 9 | <.1 | <1 | <1.0 | | | 6 | | | 28 | <5 | | 13 | <.1 | 3 | 1.0 | _ | | 29 | | | OCT 1987 | | | | | • | | | | | | | 27 | <5 | | 14 | <.1 | 2 | <1.0 | _ | _ | 3 | _ | | OCT 1988 | | | | | | | | | | | | 17 | <10 | <4 | 13 | .2 | <10 | <1.0 | 80 | <6 | 27 | _ | | OCT 1989<br>12 | <10 | <4 | 18 | <.1 | <10 | <1.0 | 82 | <6 | 8 | | | OCT 1990 | 110 | ** | 10 | | 120 | 42.0 | 02 | ••• | Ū | | | 18 | <10 | <4 | 10 | .1 | <10 | 1.0 | 83 | <6 | 3 | | | OCT 1991 | | | | | | | | | | | | 25 | <10 | 4 | 15 | <.1 | <10 | <1.0 | 84 | <6 | 10 | | | NOV 1992<br>10 | <10 | <4 | 25 | <.1 | <10 | <1.0 | 80 | <6 | 5 | | | NOV 1993 | 710 | 7.7 | 2.5 | ~ | 710 | 11.0 | 00 | 10 | 3 | | | 10 | | | | | _ | | | _ | | _ | | NOV 1994 | | | | | | | | | | | | 04 | | | | | | _ | _ | _ | _ | _ | Table 3. Water-quality data from surface-water sites—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | | 29<br>NOV 1982 | 1100 | | 180 | 7.5 | 9.5 | _ | 10.4 | 56 | | 13 | 5.8 | | 01<br>NOV 1983 | 1430 | 3.4 | 146 | 7.8 | 16.5 | _ | 10.4 | 46 | _ | 10 | 5.2 | | 02 | 1300 | 6.6 | 141 | 6.2 | 11.0 | 1.4 | 11.1 | 46 | | 10 | 5.1 | | OCT 1984 | | | | | | | | | | | | | 18 | 1030 | 7.0 | 155 | 7.6 | 14.0 | .80 | 11.8 | 46 | _ | 10 | 5.2 | | OCT 1985 | 1100 | | 100 | - 0 | | | | | | 10 | 6.1 | | 17<br>OCT 1986 | 1100 | 6.4 | 188 | 7.0 | 8.0 | 2.1 | 12.4 | 55 | _ | 12 | 6.1 | | 28 | 1200 | 4.9 | 200 | 7.6 | 15.5 | 2.8 | 11.1 | 56 | | 12 | 6.3 | | OCT 1987 | | | | | | | | | | | | | 27 | 1300 | 4.9 | 160 | 7.2 | 10.0 | .80 | 11.4 | 51 | | 11 | 5.7 | | OCT 1988 | | | | | | | | | | | | | 17 | 1430 | 4.7 | 201 | 7.2 | 17.0 | .80 | 12.4 | 61 | | 13 | 6.9 | | OCT 1989 | | | 1-0 | | | | | | | 10 | | | 12<br>OCT 1990 | 1445 | 9.7 | 179 | 7.7 | 14.5 | .70 | 12.9 | 55 | 32 | 12 | 6.1 | | 29 | 0930 | 8.9 | 191 | 7.7 | 7.5 | 2.8 | 12.1 | 60 | 18 | 13 | 6.6 | | OCT 1991 | 0300 | | | . , , | | 2.0 | 12.1 | | 10 | | | | 25 | 0915 | 5.0 | 208 | 7.3 | 13.5 | .70 | 10.8 | 64 | 31 | 14 | 6.9 | | NOV 1992 | | | | | | | | | | | | | 10 | 0945 | 5.7 | 210 | 7.4 | 6.5 | . 60 | 13.2 | 60 | | 13 | 6.7 | | NOV 1993 | | | | | | | | | | | | | 10<br>NOV 1994 | 1000 | 7.6 | 216 | 7.2 | 5.5 | _ | 13.4 | | | _ | _ | | 04 | 1015 | 4.7 | 223 | 7.4 | 12.0 | _ | 12.1 | | | _ | _ | | 04 | 1010 | | 223 | ,,,, | 12.0 | | TT | | | | | Table 3. Water-quality data from surface-water sites—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 29 | 17 | 36 | 1 | 6.9 | | | 86 | 26 | <0.10 | 14 | | NOV 1982<br>01 | 8.7 | 28 | . 6 | 2.7 | 22 | _ | 9.0 | 15 | - 10 | 9.1 | | NOV 1983 | 0.7 | 20 | . 0 | 2.7 | 22 | | 9.0 | 15 | <.10 | 9.1 | | 02 | 8.3 | 27 | . 5 | 2.6 | 18 | _ | 9.8 | 15 | | 10 | | OCT 1984 | | | | | | | | | | | | 18 | 7.4 | 25 | . 5 | 2.2 | 26 | | 7.5 | 15 | _ | 9.6 | | OCT 1985 | | | - | 6.0 | 20 | | | | | | | 17<br>OCT 1986 | 9.3 | 24 | . 5 | 6.3 | 30 | | 16 | 18 | | 9.7 | | 28 | 9.5 | 25 | . 6 | 5.8 | 29 | | 13 | 17 | | 12 | | OCT 1987 | | | | | | | | | | | | 27 | 8.9 | 26 | .5 | 2.8 | 24 | | 11 | 16 | _ | 9.0 | | OCT 1988 | | | _ | | | | | | | | | 17<br>OCT 1989 | 13 | 30 | .7 | 3.2 | 34 | <del></del> | 11 | 19 | | 9.9 | | 12 | 9.2 | 25 | .5 | 2.7 | 23 | | 10 | 16 | | 9.0 | | OCT 1990 | | | | | | | | | | | | 29 | 9.1 | 24 | . 5 | 2.8 | 42 | | 9.1 | 19 | .20 | 13 | | OCT 1991 | | | _ | | | | | | | | | 25<br>NOV 1992 | 13 | 30 | . 7 | 3.3 | 33 | - | 10 | 23 | .10 | 9.6 | | 10 | 12 | 29 | . 7 | 3.6 | | 18 | 12 | 22 | .10 | 12 | | NOV 1993 | | | | | | | | | | | | 10 | | _ | _ | | | 27 | | | | | | NOV 1994 | | | | | | | | | | | | 04 | | | | | | 40 | _ | 23 | | - | Table 3. Water-quality data from surface-water sites—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMPONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 29 | 234 | _ | 0.32 | - | 3.10 | | | <0.010 | 3.10 | <7.010 | | NOV 1982 | | | | | | | _ | | | | | 01<br>NOV 1983 | 91 | 94 | .12 | 0.84 | 4.56 | 4.56 | 20 | .040 | 4.60 | .050 | | 02 | 104 | 94 | .14 | 1.85 | 4.88 | 4.88 | 22 | .020 | 4.90 | . 030 | | OCT 1984 | 201 | | • | 1.00 | 1.00 | 4.00 | | | 1.50 | | | 18 | 103 | 96 | .14 | 1.95 | 5.25 | 5.25 | 23 | .050 | 5.30 | .080 | | OCT 1985 | | | | | | | | | | | | 17 | 106 | 118 | .14 | 1.83 | 4.98 | 4.98 | 22 | .020 | 5.00 | .050 | | OCT 1986<br>28 | 119 | 115 | .16 | 1.57 | 4.98 | 4.98 | 22 | .020 | 5.00 | .030 | | OCT 1987 | 119 | 113 | .10 | 1.37 | 4.50 | 4.50 | 22 | .020 | 3.00 | .030 | | 27 | 102 | 104 | .14 | 1.35 | 5.48 | 5.48 | 24 | .020 | 5.50 | .020 | | OCT 1988 | | | | | | | | | | | | 17 | | 120 | .16 | 1.52 | 5.09 | 5.09 | 23 | .010 | 5.10 | .020 | | OCT 1989 | | 100 | | 0.70 | F 20 | r 20 | 0.4 | 000 | F 40 | 010 | | 12<br>OCT 1990 | | 103 | .14 | 2.70 | 5.38 | 5.38 | 24 | .020 | 5.40 | .010 | | 29 | | 128 | .17 | 3.09 | 6.68 | 6.68 | 30 | .020 | 6.70 | .070 | | OCT 1991 | | | | | | | | | | | | 25 | _ | 124 | .17 | 1.66 | 5.39 | 5.39 | 24 | .010 | 5.40 | <.010 | | NOV 1992 | | | | | | | | 242 | | | | 10<br>NOV 1993 | | 119 | .16 | 1.84 | 5.96 | 5.96 | 26 | .040 | 6.00 | <.010 | | 10 | | _ | | | 5.99 | 5.99 | 27 | .010 | 6.00 | .020 | | NOV 1994 | | | | | | | | | | | | 04 | _ | | | | 5.48 | 5.48 | 24 | .020 | 5.50 | .020 | Table 3. Water-quality data from surface-water sites—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32)—Continued | | NITRO- | | NITRO- | NITRO- | NITRO- | | | | | | |----------------|----------------------|---------|---------|----------|-----------|---------|---------|---------|----------------------|---------| | | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | | NITRO- | | | PHCS- | | | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | | | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | | DATE | (MG/L | | AS NH <sub>4</sub> ) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | | | (71846) | (00605) | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (006€6) | | OCT 1981 | | | | | | | | | | | | 29 | 0.01 | 1.2 | | 1.2 | 1.3 | 4.3 | 4.4 | 0.170 | 0.52 | 0.060 | | NOV 1982 | | | | | | | | | | | | 01 | .06 | | 0.25 | | .30 | | 4.9 | | | .160 | | NOV 1983 | | | | | | | | | | | | 02 | .04 | | .17 | _ | . 20 | _ | 5.1 | .130 | . 40 | .110 | | OCT 1984 | | | | | | | | | | | | 18 | .10 | _ | .22 | | .30 | - | 5.6 | .100 | - | .080 | | OCT 1985 | | | | | | | | | | | | 17 | .06 | .75 | .55 | .80 | .60 | 5.8 | 5.6 | .090 | . 28 | .070 | | OCT 1986 | | | | | | | | | | | | 28 | .04 | . 97 | . 67 | 1.0 | . 70 | 6.0 | 5.7 | .230 | | .130 | | OCT 1987 | | | | | | | | | | | | 27 | .03 | . 58 | . 68 | .60 | . 70 | 6.1 | 6.2 | .110 | _ | .1.30 | | OCT 1988 | 0.2 | 40 | 40 | F.0 | <b>50</b> | | | 070 | | 200 | | 17 | .03 | .48 | . 48 | .50 | .50 | 5.6 | 5.6 | .270 | _ | .260 | | OCT 1989<br>12 | .01 | . 29 | . 49 | .30 | . 50 | 5.7 | 5.9 | . 090 | | .070 | | OCT 1990 | .01 | . 29 | .45 | .30 | . 50 | 5.7 | 3.9 | .090 | _ | .070 | | 29 | . 09 | 1.1 | .53 | 1.2 | . 60 | 7.9 | 7.3 | .090 | | .070 | | OCT 1991 | . 0 5 | | | 1.2 | | | | .050 | | .0.0 | | 25 | | .30 | | .30 | .20 | 5.7 | 5.6 | .170 | | .170 | | NOV 1992 | | | | | | | | | | | | 10 | | .20 | _ | .20 | .30 | 6.2 | 6.3 | .140 | | .130 | | NOV 1993 | | | | | | | | | | | | 10 | . 03 | _ | | _ | | _ | _ | _ | | | | NOV 1994 | | | | | | | | | | | | 04 | .03 | | | | _ | _ | | | | _ | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32)—Continued | DATE | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT, DIS- SOLVED (µG/L AS CO) (01035) | COPPER, DIS- SOLVED (µG/L AS CU) (01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | |----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 29 | 0.010 | 0.03 | ND | | | <1.0 | <1 | 3 | 4 | 230 | | NOV 1982 | | | | | | _ | | _ | | | | 01<br>NOV 1983 | .150 | . 46 | 1 | | | <1.0 | <1 | <1 | <1 | 34 | | 02 | .110 | . 34 | 1 | | | 1.0 | <1 | | 2 | 46 | | OCT 1984 | .110 | . 34 | 1 | | | 1.0 | | | 2 | 40 | | 18 | .110 | . 34 | <1 | | | <1.0 | 1 | _ | <1 | 35 | | OCT 1985 | | | | | | | _ | | | | | 17 | .070 | .21 | <1 | | | <1.0 | <1 | | 1 | 45 | | OCT 1986 | | | | | | | | | | | | 28 | .110 | . 34 | <1 | _ | | <1.0 | <1 | | 2 | 59 | | OCT 1987 | | | | | | | | | _ | | | 27 | .100 | .31 | <1 | | | <1.0 | 1 | | <1 | 28 | | OCT 1988<br>17 | .240 | .74 | <1 | 22 | <.5 | <1.0 | <5 | <3 | <10 | 27 | | OCT 1989 | .240 | . / 4 | /1 | 22 | <b>\.</b> .5 | <b>\1.0</b> | <b>\</b> 3 | <b>\</b> 3 | /10 | 21 | | 12 | .080 | . 25 | <1 | 21 | <.5 | 1.0 | <5 | <3 | <10 | 33 | | OCT 1990 | | | | | | | _ | | | | | 29 | .080 | . 25 | <1 | 29 | <.5 | <1.0 | <5 | <3 | <10 | 37 | | OCT 1991 | | | | | | | | | | | | 25 | .140 | . 43 | <1 | 32 | <.5 | <1.0 | <5 | <3 | <10 | 34 | | NOV 1992 | | | | | | | | | | | | 10<br>NOV 1993 | .130 | .40 | <1 | 29 | <.5 | <1.0 | <5 | <3 | <10 | 60 | | 10 | .110 | .34 | | | _ | _ | | | | | | NOV 1994 | .110 | | | | | | | | | | | 04 | .070 | .21 | | _ | _ | | _ | | | | Table 3. Water-quality data from surface-water sites—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | OCT 1981 | | | | | | | | | | | | 29 | 13 | _ | 39,000 | 48 | 4 | | _ | _ | 8 | 0.10 | | NOV 1982 | | | | | | | | | | | | 01 | <1 | | 22 | <.1 | <1 | | _ | _ | <4 | .03 | | NOV 1983<br>02 | <1 | | 17 | .7 | <1 | <1.0 | | | 8 | | | OCT 1984 | <1 | | 17 | . , | <1 | <1.0 | _ | | 0 | _ | | 18 | 1 | _ | 17 | <.1 | 1 | <1.0 | | | <3 | | | OCT 1985 | - | | | | - | 12.0 | | | | | | 17 | 1 | | 18 | <.1 | <1 | <1.0 | | _ | 6 | | | OCT 1986 | | | | | | | | | | | | 28 | <5 | _ | 32 | .3 | 3 | <1.0 | - | _ | 20 | | | OCT 1987 | | | | | | | | | | | | 27 | <b>&lt;</b> 5 | _ | 13 | <.1 | <1 | <1.0 | _ | _ | 4 | | | OCT 1988 | | | | | -10 | | | | _ | | | 17<br>OCT 1989 | <10 | <4 | 14 | .1 | <10 | <1.0 | 98 | <6 | 6 | | | 12 | <10 | <4 | 12 | .2 | <10 | <1.0 | 89 | <6 | 6 | | | OCT 1990 | 110 | 7. | | | 110 | 11.0 | 0,5 | 10 | · | | | 29 | <10 | <4 | 32 | <.1 | <10 | <1.0 | 100 | <6 | <3 | | | OCT 1991 | | | | | | | | | | | | 25 | <10 | 5 | 15 | <.1 | <10 | <1.0 | 110 | <6 | 6 | | | NOV 1992 | | | | | | | | | | | | 10 | <10 | <4 | 22 | <.1 | <10 | <1.0 | 110 | <6 | 5 | | | NOV 1993 | | | | | | | | | | | | 10 | _ | _ | | _ | | | _ | | | | | NOV 1994<br>04 | _ | | | _ | | _ | _ | | | | | U4 | _ | | | _ | | | _ | _ | | | Table 3. Water-quality data from surface-water sites—Continued 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 03 | 0915 | _ | 246 | 6.8 | 9.0 | | 10.3 | 97 | _ | 23 | 9.5 | | OCT 1982 | | | | | | | | | | | | | 27 | 0900 | 4.0 | 277 | 6.5 | 6.5 | | 11.3 | 100 | 52 | 25 | 10 | | OCT 1983 | 0000 | | 24.0 | | ~ ^ | | 10.0 | 400 | | | | | 28<br>OCT 1984 | 0830 | 6.9 | 210 | 7.0 | 7.0 | 4.8 | 10.0 | 100 | _ | 24 | 10 | | 26 | 1100 | 7.5 | 275 | 7.9 | 14.0 | 3.4 | 8.8 | 100 | | 24 | 10 | | OCT 1985 | 1100 | 7.5 | 2,0 | ,., | 14.0 | 3.4 | 0.0 | 100 | | 2.1 | 10 | | 24 | 0900 | 5.3 | 265 | 7.1 | 9.5 | 2.0 | 8.4 | 100 | | 24 | 10 | | NOV 1986 | | | | | | | | | | | | | 20 | 0900 | 4.7 | 260 | 7.5 | 3.0 | 2.8 | 10.8 | 110 | | 25 | 11 | | NOV 1987 | | | | | | | | | | | | | 18 | 0900 | 11 | 265 | 7.1 | 13.5 | 3.7 | 10.6 | 100 | | 24 | 10 | | NOV 1988 | | | | | | | | | | | | | 07 | 0845 | 7.1 | 295 | 7.4 | 9.5 | 6.0 | 10.8 | 120 | _ | 28 | 11 | | OCT 1989<br>27 | 0915 | 9.1 | 290 | 7.2 | 11.0 | 3.1 | 11.0 | 110 | 66 | 26 | 11 | | OCT 1990 | 0915 | 3.1 | 290 | 7.2 | 11.0 | 3.1 | 11.0 | 110 | 00 | 20 | 11 | | 18 | 0900 | 5.4 | 299 | 6.2 | 16.0 | 4.0 | 8.2 | 110 | 48 | 27 | 11 | | OCT 1991 | | | | | | | | | | = ' | | | 24 | 0900 | 4.8 | 299 | 7.3 | 13.0 | .70 | 8.0 | 110 | 70 | 26 | 11 | | NOV 1992 | | | | | | | | | | | | | 09 | 0915 | 5.3 | 230 | 7.5 | 3.5 | 2.1 | 13.1 | 110 | _ | 26 | 11 | | OCT 1993 | | | | | | | | | | | | | 19 | 0930 | 7.9 | 308 | 7.2 | 12.0 | _ | 9.8 | | | _ | | | NOV 1994 | 2000 | | 21.5 | | | | | | | | | | 21 | 0900 | 6.0 | 312 | 7.2 | 8.5 | _ | 11.4 | _ | | | | Table 3. Water-quality data from surface-water sites—Continued 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 8.3 | 15 | 0.4 | 4.6 | _ | | 22 | 15 | <0.10 | 16 | | OCT 1982 | | | | | | | | | | | | 27<br>OCT 1983 | 8.8 | 14 | . 4 | 9.6 | 52 | | 30 | 19 | <.10 | 14 | | 28 | 8.4 | 15 | . 4 | 4.5 | 40 | | 33 | 18 | | 16 | | OCT 1984 | • • • | | | | | | | | | | | 26 | 9.5 | 16 | . 4 | 4.7 | 52 | | 30 | 16 | | 14 | | OCT 1985 | | | | | | | | | | | | 24<br>NOV 1986 | 8.3 | 15 | . 4 | 4.0 | 54 | | 28 | 16 | | 11 | | 20 | 8.1 | 13 | . 3 | 6.6 | 50 | | 36 | 17 | | 15 | | NOV 1987 | 0.1 | | | 0.0 | | | | | | 10 | | 18 | 8.4 | 15 | . 4 | 4.5 | 42 | | 29 | 19 | | 12 | | NOV 1988 | | | | | | | | | | | | 07<br>OCT 1989 | 8.7 | 13 | . 4 | 6.9 | 62 | _ | 37 | 17 | _ | 16 | | 27 | 7.5 | 12 | .3 | 4.2 | 44 | | 30 | 17 | _ | 16 | | OCT 1990 | 7.5 | | | 3.6 | | | 30 | -, | | 10 | | 18 | 8.6 | 14 | . 4 | 4.4 | 65 | | 25 | 19 | .10 | 16 | | OCT 1991 | | | | | | | | | | | | 24 | 11 | 17 | . 5 | 2.6 | 40 | | 21 | 28 | .10 | 15 | | NOV 1992<br>09 | 9.7 | 15 | . 4 | 4.4 | | 56 | 31 | 19 | <.10 | 17 | | OCT 1993 | 5.1 | 10 | • • | 7.7 | | 30 | J. | 17 | 10 | <b>-</b> ' | | 19 | _ | _ | | | _ | 46 | _ | _ | _ | | | NOV 1994 | | | | | | | | | | | | 21 | _ | | | | | 44 | | 20 | _ | | Table 3. Water-quality data from surface-water sites—Continued # 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITROGEN, AMMONIA DISSOLVED (1"3/L AS N) (00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 149 | | 0.20 | _ | 5.05 | 5.04 | 22 | 0.060 | 5.10 | 0.020 | | OCT 1982 | | | | | | | | | | | | 27 | 177 | 170 | .24 | 1.91 | 4.85 | 4.85 | 21 | .050 | 4.90 | .070 | | OCT 1983 | | | | | | | | | | | | 28 | 180 | 168 | .24 | 3.35 | 6.67 | 6.67 | 30 | .030 | 6.70 | <.010 | | OCT 1984 | | | | | | | | | | | | 26<br>OCT 1985 | 172 | 167 | .23 | 3.48 | 6.03 | 6.03 | 27 | .070 | 6.10 | . 250 | | 24 | 148 | 165 | .20 | 2.12 | 6.97 | 6.97 | 31 | .030 | 7.00 | .050 | | NOV 1986 | 140 | 103 | .20 | 2.12 | 0.37 | 0.37 | 31 | .030 | 7.00 | .030 | | 20 | 183 | 177 | .25 | 2.32 | 6.17 | 6.17 | 27 | .030 | 6.20 | .160 | | NOV 1987 | | | | | ••• | | -, | ,,,,, | 0.20 | | | 18 | 188 | 163 | .26 | 5.58 | 6.98 | 6.98 | 31 | .020 | 7.00 | <.010 | | NOV 1988 | | | | | | | | | | | | 07 | | 193 | .26 | 3.71 | 6.96 | 6.96 | 31 | .040 | 7.00 | .050 | | OCT 1989 | | | | | | | | | | | | 27 | | 179 | .24 | 4.39 | 9.07 | 9.07 | 40 | .030 | 9.10 | .020 | | OCT 1990 | | | | | | | | | | | | 18 | | 186 | .25 | 2.72 | 8.06 | 8.06 | 36 | .040 | 8.10 | .030 | | OCT 1991<br>24 | | 177 | .24 | 2.30 | 0.64 | 8.64 | 38 | .060 | 0.70 | 040 | | NOV 1992 | _ | 1// | .24 | 2.30 | 8.64 | 0.04 | 36 | .060 | 8.70 | .040 | | 09 | | 192 | .26 | 2.74 | 8.85 | 8.85 | 39 | .050 | 8.90 | .040 | | OCT 1993 | | | | | | | | | | | | 19 | - | | | | 9.78 | 9.78 | 43 | .020 | 9.80 | .030 | | NOV 1994 | | | | | | | | | | | | 21 | | _ | _ | | 9.37 | 9.37 | 41 | .030 | 9.40 | <.015 | Table 3. Water-quality data from surface-water sites—Continued ## 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33)—Continued | | NITRO- | | NITRO- | NITRO- | NITRO- | | | | | | |----------------|----------------------|---------|---------|----------|----------|---------|---------|---------|----------------------|---------| | | GEN, | NITRO- | GEN, | GEN, AM- | GEN, AM- | | NITRO- | | | PHOS- | | | AMMONIA | GEN, | ORGANIC | MONIA + | MONIA + | NITRO- | GEN, | PHOS- | PHOS- | PHORUS, | | | DIS- | ORGANIC | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS, | PHORUS, | DIS- | | | SOLVED | TOTAL | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | TOTAL | SOLVED | | DATE | (MG/L | | AS NH <sub>4</sub> ) | AS N) | AS P) | AS PO <sub>4</sub> ) | AS P) | | | (71846) | (00605) | (00607) | (00625) | (00623) | (00600) | (00602) | (00665) | (71886) | (00666) | | NOV 1981 | | | | | | | | | | | | 03 | 0.03 | 0.68 | 0.66 | 0.70 | 0.68 | 5.8 | 5.8 | 0.100 | 0.31 | 0.050 | | OCT 1982 | | | | | | | | | | | | 27 | .09 | | . 63 | | .70 | _ | 5.6 | _ | | .070 | | OCT 1983 | | | | | | | | | | | | 28 | | | _ | | . 60 | | 7.3 | .090 | .28 | .040 | | OCT 1984 | | | | | | | | | | | | 26 | . 32 | _ | .15 | _ | .40 | _ | 6.5 | .180 | | .140 | | OCT 1985 | | | | | | | | | | | | 24 | .06 | 1.2 | .55 | 1.3 | . 60 | 8.3 | 7.6 | .040 | .12 | .020 | | NOV 1986 | | | | | | | | | | | | 20 | .21 | .74 | .74 | . 90 | . 90 | 7.1 | 7.1 | .150 | - | .130 | | NOV 1987 | | | | | | | | | | | | 18 | | . 60 | | . 60 | .80 | 7.6 | 7.8 | .070 | | .040 | | NOV 1988 | | | | | | | | | | | | 07 | .06 | 2.0 | 1.7 | 2.1 | 1.7 | 9.1 | 8.7 | .160 | | .100 | | OCT 1989 | | | | | | | | | | | | 27 | .03 | .38 | . 58 | .40 | . 60 | 9.5 | 9.7 | .070 | _ | .040 | | OCT 1990<br>18 | .04 | .77 | .87 | .80 | . 90 | 8.9 | 9.0 | .050 | | .030 | | OCT 1991 | .04 | . , , | .07 | . 80 | . 90 | 0.9 | 9.0 | .050 | | .037 | | 24 | . 05 | . 46 | . 36 | .50 | . 40 | 9.2 | 9.1 | .110 | | .069 | | NOV 1992 | .03 | .40 | . 50 | .50 | .40 | 9.2 | 9.1 | .110 | | .007 | | 09 | .05 | . 26 | .26 | .30 | .30 | 9.2 | 9.2 | .060 | | .051 | | OCT 1993 | .55 | .20 | .20 | .50 | .50 | 7.2 | 7.2 | .000 | | .00, | | 19 | . 04 | _ | | | _ | _ | | | | _ | | NOV 1994 | .01 | | | | | | | | | | | 21 | | _ | | | _ | _ | _ | | - | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33)—Continued | DATE | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM, DIS- SOLVED (µG/L AS CD) (01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046 | |----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 0.040 | 0.12 | ND | | | <1.0 | <1 | <1 | <1 | 74 | | OCT 1982 | | | | | | | | | | | | 27 | .050 | .15 | <1 | | | <1.0 | <1 | 1 | 1 | 72 | | OCT 1983<br>28 | .050 | .15 | | | | | | | | 78 | | OCT 1984 | .030 | .13 | | | | | | | | 76 | | 26 | .160 | .49 | <1 | | | <1.0 | <1 | | 3 | 58 | | OCT 1985 | | | | | | | | | | | | 24 | .020 | .06 | <1 | | - | <1.0 | <1 | | <1 | 26 | | NOV 1986 | | | | | | | | | | | | 20 | .090 | .28 | <1 | _ | _ | <1.0 | <1 | _ | 2 | 57 | | NOV 1987<br>18 | .020 | .06 | <1 | | | <1.0 | 1 | | 2 | 37 | | NOV 1988 | .020 | .00 | ~- | | | ~1.0 | • | | - | 3, | | 07 | .080 | .25 | <1 | 64 | <0.5 | <1.0 | <5 | <3 | <10 | 70 | | OCT 1989 | | | | | | | | | | | | 27 | .030 | .09 | <1 | 65 | <.5 | <1.0 | <5 | <3 | <10 | 47 | | OCT 1990 | 242 | 10 | | | | | | | | 4.0 | | 18<br>OCT 1991 | .040 | .12 | <1 | 67 | <.5 | <1.0 | <5 | <3 | <10 | 43 | | 24 | .060 | .18 | _ | _ | | _ | | - | | 40 | | NOV 1992 | ,,,, | ,_, | | | | | | | | •• | | 09 | .030 | .09 | <1 | 65 | <.5 | <1.0 | <5 | <3 | <10 | 65 | | OCT 1993 | | | | | | | | | | | | 19 | .030 | .09 | _ | - | _ | _ | _ | | _ | _ | | NOV 1994 | . 0 0 | | | | | | | | | | | 21 | <.010 | _ | | | _ | _ | | | | _ | Table 3. Water-quality data from surface-water sites—Continued ## 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(µG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>ELUE<br>ACTIVE<br>SUB-<br>STANCE<br>(FG/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 15 | | 80 | <0.1 | 1 | | | _ | <4 | 0.10 | | OCT 1982 | | | | | _ | | | | _ | | | 27<br>OCT 1983 | 1 | | 39 | <.1 | 1 | | | _ | 7 | .06 | | 28 | _ | | 73 | _ | | | | _ | | _ | | OCT 1984 | | | | | | | | | | | | 26 | 1 | <4 | 66 | <.1 | 1 | <1.0 | | _ | 7 | _ | | OCT 1985 | | | | | | | | | | | | 24 | <1 | <4 | 16 | <.1 | 3 | <1.0 | | _ | <3 | _ | | NOV 1986<br>20 | <5 | 5 | 74 | _ | 2 | <1.0 | | | 3 | | | NOV 1987 | <b>\</b> 5 | 5 | 14 | | 2 | <1.0 | _ | _ | 3 | | | 18 | <5 | | 32 | . 9 | 1 | <1.0 | | _ | 7 | _ | | NOV 1988 | | | | | | | | | | | | 07 | <10 | <4 | 41 | <.1 | <10 | <1.0 | 110 | <6 | 9 | _ | | OCT 1989 | | | | _ | | | | | _ | | | 27<br>OCT 1990 | <10 | <4 | 39 | <.1 | <10 | <1.0 | 120 | <6 | 7 | | | 18 | <10 | <4 | 19 | <.1 | <10 | <1.0 | 130 | <6 | 3 | | | OCT 1991 | 110 | ••• | 13 | \. <u>.</u> | 710 | 12.0 | 130 | ν. | 3 | | | 24 | | | 22 | | | | | | _ | | | NOV 1992 | | | | | | | | | | | | 09 | <10 | <4 | 44 | <.1 | <10 | <1.0 | 130 | <6 | 4 | | | OCT 1993 | | | | | | | | | | | | 19<br>NOV 1994 | | | | | | | | | _ | | | 21 | | _ | | | | | | _ | | | | | | | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01578343 - Valley Creek near Atglen, Pa. (Site 34) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS,<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00902) | CALCIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>FIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |----------------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | | 03 | 1130 | _ | 255 | 7.4 | 10.5 | | 10.5 | 110 | | 31 | 7.8 | | OCT 1982 | | | | | | | | | | | | | 27 | 1100 | 4.4 | 279 | 7.2 | 7.5 | | 11.4 | 110 | | 30 | 8.4 | | OCT 1983 | | | | <b>.</b> . | | | | | | | _ | | 28 | 1000 | 5.9 | 266 | 7.4 | 8.5 | 1.9 | 10.5 | 110 | <del></del> | 30 | 9.0 | | OCT 1984<br>26 | 1400 | 6.9 | 275 | 7.7 | 15.5 | 1.3 | 10.0 | 110 | | 28 | 9.0 | | OCT 1985 | 1400 | 0.9 | 2/3 | 7.7 | 13.3 | 1.3 | 10.0 | 110 | | 20 | 9.0 | | 24 | 1100 | 6.4 | 285 | 7.6 | 10.0 | 1.3 | 9.8 | 110 | | 30 | 9.1 | | NOV 1986 | | | | | | | | | | | | | 20 | 1300 | 6.1 | 280 | 7.8 | 4.0 | 1.6 | 12.0 | 110 | | 30 | 9.2 | | NOV 1987 | | | | | | | | | | | | | 18 | 1330 | 15 | 270 | 7.4 | 14.5 | 1.6 | 11.2 | 110 | _ | 30 | 9.4 | | NOV 1988<br>07 | 1000 | E 7 | 202 | 7 - | 10.0 | 2 - | 11 0 | 100 | | 22 | | | OCT 1989 | 1230 | 5.7 | 292 | 7.5 | 10.0 | 2.5 | 11.0 | 120 | <del></del> | 32 | 9.8 | | 27 | 1430 | 9.0 | 295 | 7.5 | 14.5 | 1.3 | 10.8 | 110 | 53 | 29 | 9.4 | | OCT 1990 | | | | | | | | | | | • • • | | 18 | 1100 | 4.4 | 308 | 6.6 | 16.5 | 4.5 | 8.2 | 120 | 18 | 31 | 9.3 | | OCT 1991 | | | | | | | | | | | | | 24 | 1100 | 3.6 | 311 | 7.5 | 13.5 | 1.5 | 9.6 | 120 | 53 | 32 | 9.7 | | NOV 1992 | | | | | | | | | | | | | 09<br>OCT 1993 | 1130 | 4.8 | 308 | 7.7 | 5.5 | .80 | 12.2 | 120 | | 31 | 9.7 | | 19 | 1145 | 5.9 | 328 | 7.2 | 12.5 | _ | 11.8 | | | | _ | | NOV 1994 | -140 | 3.3 | 520 | | 12.0 | | 11.0 | | | | | | 23 | 0900 | 5.3 | 328 | 7.4 | 5.5 | _ | 11.1 | | | | | Table 3. Water-quality data from surface-water sites—Continued 01578343 - Valley Creek near Atglen, Pa. (Site 34)—Continued | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM AD- SORP- TION RATIO (00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | ALKA-<br>LINITY<br>WAT WH<br>TOT IT<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00419) | SULFATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO <sub>4</sub> )<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVEN<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | |----------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 7.6 | 13 | 0.3 | 3.1 | _ | _ | 23 | 16 | <0.10 | 9.1 | | OCT 1982 | 10 | | | | | | 0.4 | 10 | . 10 | | | 27<br>OCT 1983 | 10 | | . 4 | <.10 | 64 | | 24 | 18 | <.10 | 11 | | 28 | 8.9 | 14 | . 4 | 3.6 | 62 | | 27 | 18 | | 12 | | OCT 1984 | | | | • • • • | | | | | | | | 26 | 8.1 | 14 | .3 | 3.6 | 64 | _ | 24 | 15 | | 11 | | OCT 1985 | | | _ | | | | | | | | | 24<br>NOV 1986 | 11 | 17 | . 5 | 3.5 | 74 | | 26 | 19 | _ | 9.3 | | 20 | 8.7 | 14 | . 4 | 5.0 | 64 | | 30 | 19 | | 12 | | NOV 1987 | | | | | | | | | | | | 18 | 9.9 | 15 | . 4 | 4.5 | 61 | | 27 | 24 | _ | 10 | | NOV 1988 | | | | | | | | | | | | 07<br>OCT 1989 | 9.9 | 15 | . 4 | 5.0 | 70 | _ | 28 | 17 | | 12 | | 27 | 7.9 | 13 | .3 | 3.5 | 58 | _ | 23 | 16 | | 11 | | OCT 1990 | | | | | • | | | | | | | 18 | 9.0 | 14 | . 4 | 3.8 | 98 | | 22 | 19 | .10 | 11 | | OCT 1991 | | | | | | | | | | | | 24<br>NOV 1992 | 11 | 16 | . 4 | 4.0 | 67 | | 29 | 22 | .10 | 11 | | 09 | 11 | 16 | . 4 | 4.0 | | 58 | 25 | 18 | <.10 | 12 | | OCT 1993 | | | | | | | | | | | | 19 | | | | | _ | 66 | _ | | | | | NOV 1994 | | | | | | | | | | | | 23 | | _ | | _ | | 69 | | 22 | | _ | Table 3. Water-quality data from surface-water sites—Continued 01578343 - Valley Creek near Atglen, Pa. (Site 34)—Continued | DATE | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>IIS-<br>SCLVED<br>(MG/L<br>AS N)<br>(00608) | |----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 154 | | 0.21 | | 4.31 | 4.32 | 19 | 0.080 | 4.40 | 0.050 | | OCT 1982 | | | | | | | | | | | | 27 | 170 | | .23 | 2.03 | 4.55 | 4.55 | 20 | .050 | 4.60 | .110 | | OCT 1983 | 170 | 176 | 0.4 | 0.04 | | | 20 | | c =0 | - 010 | | 28<br>OCT 1984 | 178 | 176 | . 24 | 2.84 | 6.69 | 6.69 | 30 | .010 | 6.70 | <.010 | | 26 | 167 | 161 | .23 | 3.11 | 5.36 | 5.36 | 24 | .040 | 5.40 | .120 | | OCT 1985 | 10, | 101 | .23 | 3.11 | 3.30 | 3.30 | | .040 | 3.40 | .120 | | 24 | 164 | 180 | .22 | 2.83 | 6.06 | 6.06 | 27 | .040 | 6.10 | .180 | | NOV 1986 | | | | | | | | | | | | 20 | 162 | 175 | . 22 | 2.67 | 5.07 | 5.07 | 22 | .030 | 5.10 | .160 | | NOV 1987 | | | | | | | | | | | | 18 | 176 | 177 | .24 | 7.13 | 5.69 | 5.69 | 25 | .010 | 5.70 | .070 | | NOV 1988<br>07 | | 182 | .25 | 2.80 | 5.65 | 5.65 | 25 | .050 | 5.70 | .160 | | OCT 1989 | | 102 | .23 | 2.00 | 3.63 | 3.63 | 23 | .030 | 3.70 | .160 | | 27 | | 170 | .23 | 4.13 | 7.77 | 7.77 | 34 | .030 | 7.80 | .150 | | OCT 1990 | | | | | | | | | | | | 18 | | 191 | .26 | 2.27 | 5.94 | 5.94 | 26 | .060 | 6.00 | .190 | | OCT 1991 | | | | | | | | | | | | 24 | _ | 184 | .25 | 1.79 | 5.44 | 5.44 | 24 | .060 | 5.50 | .100 | | NOV 1992 | | 170 | 0.4 | 0.21 | 7.04 | 7.04 | 20 | 060 | 7 20 | 100 | | 09<br>OCT 1993 | | 178 | .24 | 2.31 | 7.24 | 7.24 | 32 | .060 | 7.30 | .120 | | 19 | | | | | 8.06 | 8.06 | 36 | .040 | 8.10 | .340 | | NOV 1994 | | | | | 0.00 | 0.00 | | .010 | 0.10 | .540 | | 23 | _ | _ | _ | | 6.36 | 6.36 | 28 | .040 | 6.40 | .340 | Table 3. Water-quality data from surface-water sites—Continued 01578343 - Valley Creek near Atglen, Pa. (Site 34)—Continued | DATE | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N)<br>(00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | |----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 0.06 | 0.65 | 0.57 | 0.73 | 0.62 | 5.1 | 5.0 | 0.160 | 0.49 | 0.140 | | OCT 1982 | | | | | | | | | | | | 27<br>OCT 1983 | .14 | | 1.6 | | 1.7 | _ | 6.3 | | _ | .100 | | 28 | | | | _ | .80 | | 7.5 | .160 | .49 | .120 | | OCT 1984 | | | | | 700 | | | | | | | 26 | .15 | | . 28 | _ | .40 | | 5.8 | .090 | | .110 | | OCT 1985 | | | | | | | | | | | | 24 | .23 | 1.0 | . 32 | 1.2 | .50 | 7.3 | 6.6 | .080 | .25 | .050 | | NOV 1986<br>20 | .21 | .94 | .74 | 1.1 | . 90 | 6.2 | 6.0 | .140 | | .100 | | NOV 1987 | .21 | | | 1.1 | . 50 | 0.2 | 0.0 | .140 | | .100 | | 18 | .09 | .43 | .23 | . 50 | .30 | 6.2 | 6.0 | .140 | _ | .010 | | NOV 1988 | | | | | | | | | | | | 07 | .21 | . 64 | . 54 | .80 | . 70 | 6.5 | 6.4 | .160 | | .140 | | OCT 1989<br>27 | .19 | .75 | . 45 | . 90 | . 60 | 8.7 | 8.4 | .100 | | .080 | | OCT 1990 | .13 | . 73 | .45 | . 30 | . 00 | 0.7 | 0.4 | .100 | | .000 | | 18 | .24 | . 71 | .81 | .90 | 1.0 | 6.9 | 7.0 | .140 | | .080 | | OCT 1991 | | | | | | | | | | | | 24 | .13 | .40 | .30 | .50 | . 40 | 6.0 | 5.9 | .180 | | .160 | | NOV 1992 | | 20 | 20 | 40 | 40 | | | 000 | | 0.50 | | 09<br>OCT 1993 | .15 | .28 | . 28 | . 40 | . 40 | 7.7 | 7.7 | .080 | _ | .060 | | 19 | . 44 | | | | | | | | | | | NOV 1994 | | | | | | | | | | | | 23 | . 44 | | | _ | | _ | | | | _ | Table 3. Water-quality data from surface-water sites—Continued # 01578343 - Valley Creek near Atglen, Pa. (Site 34)—Continued | DATE | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | BARIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS BE)<br>(01010) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(01025) | CHRO-MIUM, DIS-SOLVED (µG/L AS CR) (01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(µG/L<br>AS FE)<br>(01046) | |----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 0.120 | 0.37 | ND | _ | _ | 1.0 | <1 | 1 | 1 | 100 | | OCT 1982 | 222 | | | | | | | | | | | 27<br>OCT 1983 | .090 | . 28 | <1 | | | 1.0 | <1 | <1 | 1 | 53 | | 28 | .120 | . 37 | 1 | | | <1.0 | <1 | | 1 | 66 | | OCT 1984 | | | | | | | _ | | _ | | | 26 | .090 | . 28 | <1 | | | <1.0 | 1 | | 1 | 37 | | OCT 1985 | 252 | | | | | | | | | | | 24<br>NOV 1986 | .050 | .15 | <1 | **** | | <1.0 | <1 | **** | 1 | 26 | | 20 | .080 | . 25 | <1 | | | <1.0 | <1 | | 2 | 63 | | NOV 1987 | | | | | | | | | | | | 18 | .060 | .18 | <1 | _ | | <1.0 | 3 | _ | 2 | 39 | | NOV 1988 | | 2.4 | | - 4 | .0.5 | | | | | 40 | | 07<br>OCT 1989 | .110 | . 34 | <1 | 54 | <0.5 | <1.0 | <5 | <3 | <10 | 48 | | 27 | .070 | .21 | <1 | 47 | <.5 | <1.0 | <5 | <3 | <10 | 34 | | OCT 1990 | | | | | | | | | | | | 18 | .090 | .28 | <1 | 53 | <.5 | <1.0 | <b>&lt;</b> 5 | <3 | <10 | 31 | | OCT 1991 | | | | | _ | | | _ | | | | 24<br>NOV 1992 | .120 | . 37 | 1 | 51 | <.5 | <1.0 | 10 | <3 | <10 | 45 | | 09 | .060 | .18 | <1 | 50 | . 6 | <1.0 | <5 | <3 | <10 | 56 | | OCT 1993 | | , _ , | | | | | | | | ••• | | 19 | .090 | .28 | | _ | | | _ | | | _ | | NOV 1994 | | | | | | | | | | | | 23 | .090 | . 28 | | | | | | | | | Table 3. Water-quality data from surface-water sites—Continued 01578343 - Valley Creek near Atglen, Pa. (Site 34)—Continued | DATE | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | LITHIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(μG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | SILVER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AG)<br>(01075) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS SR)<br>(01080) | VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | |----------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------| | NOV 1981 | | | | | | | | | | | | 03 | 1 | _ | 65 | 0.1 | 3 | _ | | _ | 4 | 0.10 | | OCT 1982 | | | | | | | | | | | | 27 | <1 | _ | 33 | <.1 | <1 | | _ | _ | 4 | .07 | | OCT 1983<br>28 | 1 | | 39 | <.1 | 3 | <1.0 | _ | _ | 4 | | | OCT 1984 | - | | 33 | \.I | 3 | 11.0 | | | 7 | | | 26 | 1 | _ | 25 | <.1 | <1 | <1.0 | _ | _ | 6 | | | OCT 1985 | | | | | | | | | | | | 24 | <1 | | 17 | <.1 | 4 | <1.0 | _ | | 4 | | | NOV 1986 | | | | | | | | | | | | 20<br>NOV 1987 | <5 | _ | 47 | <.1 | <1 | <1.0 | _ | _ | 4 | | | 18 | <5 | | 21 | <.1 | 2 | <1.0 | _ | | <3 | _ | | NOV 1988 | | | | *** | - | -2.0 | | | | | | 07 | <10 | <4 | 29 | .2 | <10 | <1.0 | 140 | <6 | 6 | _ | | OCT 1989 | | | | | | | | | | | | 27 | <10 | <4 | 22 | <.1 | <10 | <1.0 | 130 | <6 | 7 | | | OCT 1990<br>18 | <10 | 4 | 18 | <.1 | <10 | <1.0 | 140 | <6 | <3 | _ | | OCT 1991 | <b>\10</b> | 7 | 10 | \. <u>.</u> | <b>110</b> | 1.0 | 140 | `` | \3 | | | 24 | <10 | 6 | 23 | <.1 | <10 | <1.0 | 140 | <6 | 4 | | | NOV 1992 | | | | | | | | | | | | 09 | <10 | <4 | 30 | <.1 | <10 | 1.0 | 140 | <6 | 10 | | | OCT 1993 | | | | | | | | | | | | 19<br>NOV 1994 | | _ | _ | _ | | | _ | | | _ | | 23 | _ | _ | _ | | | | _ | | | _ | Table 3. Water-quality data from surface-water sites—Continued ## 01578345 - East Branch Octoraro Creek at Steelville, Pa. (Site 35) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>(CUBIC<br>FEET<br>PER<br>SECOND)<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(µS/CM)<br>(00095) | PH<br>WATER<br>WHOLE<br>FIELD<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO <sub>3</sub> )<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | |----------------|----------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------| | NOV 1981<br>03 | 1330 | | 246 | 7.8 | 11.0 | _ | 100 | 27 | 8.1 | 9.5 | 16 | | OCT 1982<br>27 | 1315 | 14 | 272 | 7.6 | 9.0 | 12.2 | 99 | 26 | 8.3 | 8.8 | 15 | | DATE | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT WH<br>TOT FET<br>FIELD<br>(MG/L AS<br>CACO <sub>3</sub> )<br>(00410) | SULFATE, DIS- SOLVED S (MG/L AS SO <sub>4</sub> ) (00945) | DIS-<br>SOLVED<br>(MG/L | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO <sub>2</sub> )<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | (TONS<br>PER | | NOV 1981<br>03 | 0.4 | 3.9 | | 20 | 15 | <0.10 | 10 | 150 | | 0.20 | | | OCT 1982<br>27 | . 4 | 8.5 | 54 | 26 | 19 | <.10 | 10 | 170 | 159 | .23 | 6.47 | | | DATE | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)<br>(00620) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS NO <sub>3</sub> )<br>(71851) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>NO <sub>2</sub> +NO <sub>3</sub><br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH <sub>4</sub> )<br>(71846) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00607) | NITRO-<br>GEN, AM-<br>MOYIA +<br>OF GANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(C0625) | | | 1981<br>3 | 4.24 | 4.24 | 19 | 0.060 | 4.30 | <0.010 | 0.01 | 0.52 | | 0.52 | | OCT | 1982 | | | | | | | | 0.52 | 2.54 | 0.52 | | 2 | 7 | 4.25<br>NITRO- | 4.25 | 19 | .050 | 4.30 | .060 | .08 | PHOS- | 0.64 | | | | DATE | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)<br>(00600) | NITRO-<br>GEN,<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00602) | PHOS-PHORUS, TOTAL (MG/L AS P) (00665) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS PO <sub>4</sub> )<br>(71886) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) | PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO <sub>4</sub> )<br>(00660) | ARSENIC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS AS)<br>(01000) | CADMIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CD)<br>(C1025) | | NOV | 1981 | | | | | | | | | | | | 0 | 3<br>1982 | 0.55 | 4.8 | 4.9 | 0.250 | 0.77 | 0.220 | 0.190 | 0.58 | ND | <1.0 | | | 7 | .70 | _ | 5.0 | | | .180 | .170 | .52 | 1 | <1.0 | | | DATE | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CR)<br>(01030) | COBALT,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(µG/L<br>AS CU)<br>(01040) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | LEAD,<br>DIS-<br>SOLVED<br>(µG/L<br>AS PB)<br>(01049) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(µG/L<br>AS MN)<br>(01056) | MERCURY,<br>DIS-<br>SOLVED<br>(μG/L<br>AS HG)<br>(71890) | NICKEL,<br>DIS-<br>SOLVED<br>(µG/L<br>AS NI)<br>(01065) | ZINC,<br>DIS-<br>SOLVED<br>(µG/L<br>AS ZN)<br>(01090) | METHY-<br>LENE<br>BLUE<br>PCTIVE<br>SUB-<br>STANCE<br>(MG/L)<br>(38260) | | | 1981<br>3 | <1 | <1 | 1 | 150 | <1 | 21 | 0.1 | 1 | <4 | 0.10 | | OCT | 1982<br>7 | <1 | <1 | 3 | 71 | <1 | 13 | <.1 | <1 | <4 | .06 | | - | | | | - | | | | ~·· | | *** | | Table 4. Results of stream-bottom sediment sampling [Concentrations in micrograms per gram; g/kg, gram per kilogram; $\mu$ g/kg, microgram per kilogram; PBC, polychlorinated biphenyls; PCN, polychlorinated napthalenes; <, less than; —, no data] | Station<br>number | Site<br>number | Date | Arsenic,<br>total | Cad-<br>mium,<br>recover-<br>able | Chro-<br>mium,<br>recover-<br>able | Iron,<br>recover-<br>able | Copper,<br>recover-<br>able | Lead,<br>recover-<br>able | Manga-<br>nese,<br>recover-<br>able | Mercury,<br>recover-<br>able | Zinc,<br>recover-<br>able | |-------------------|----------------|----------|-------------------|-----------------------------------|------------------------------------|---------------------------|-----------------------------|---------------------------|-------------------------------------|------------------------------|---------------------------| | 01472080 | 10 | 10-11-85 | | | | _ | | | | | | | 01472109 | 6 | 10-11-85 | _ | | _ | _ | | _ | _ | _ | | | 01472138 | 13 | 10-22-86 | | | | _ | | | _ | _ | | | 01472140 | 12 | 10-10-85 | | | | _ | | _ | _ | _ | _ | | 01472154 | 14 | 10-11-85 | _ | _ | _ | _ | _ | | | | _ | | 01472157 | 15 | 10-28-94 | 1 | <1 | 20 | 24,000 | 20 | 30 | 590 | 0.03 | 100 | | 014721612 | 16 | 10-09-85 | | | _ | _ | | _ | _ | _ | | | 01472170 | 1 | 10-09-87 | _ | | _ | | | _ | | _ | _ | | 01472174 | 2 | 10-07-86 | | | | | | _ | | | | | 014721854 | 3 | 10-08-86 | | _ | _ | _ | | _ | | | _ | | 014721884 | 4 | 10-07-85 | _ | | | _ | | _ | _ | | | | 01472190 | 5 | 10-06-86 | _ | _ | _ | | _ | | _ | | | | | | 10-26-94 | 1 | <1 | 10 | 7,400 | 6 | 20 | 210 | .01 | 40 | | | | 10-28-94 | 2 | <1 | 10 | 17,000 | 20 | 80 | 460 | .03 | 100 | | 01473167 | 49 | 11-07-86 | | | | _ | _ | | _ | | | | | | 11-16-87 | | _ | _ | | _ | | | | | | | | 11-18-93 | 6 | 1 | 40 | 28,000 | 20 | 30 | 760 | .02 | 100 | | 01473168 | 50 | 10-09-85 | _ | _ | _ | | | | | _ | _ | | | | 11-18-93 | 3 | 1 | 20 | 9,300 | 30 | 50 | 360 | .03 | 110 | | 01475840 | 19 | 10-09-86 | | _ | | _ | _ | _ | _ | | _ | | 01476430 | 20 | 10-15-85 | _ | _ | | _ | _ | | _ | | | | 01476435 | 21 | 10-09-86 | _ | _ | _ | | _ | | | | _ | | 01476790 | 22 | 10-15-86 | _ | _ | _ | | | _ | _ | | | | 01476830 | 23 | 10-15-86 | | | | | | _ | _ | | _ | | 01476835 | 24 | 10-16-85 | | _ | | | _ | | _ | | _ | | | | 10-21-94 | <1 | <1 | 20 | 14,000 | 20 | 20 | 190 | .16 | 80 | | 01476840 | 25 | 11-04-88 | 4 | 1 | 30 | | 40 | 60 | | .76 | 170 | | | | 11-19-93 | 1 | <1 | 30 | 15,000 | 20 | 20 | 260 | .40 | 91 | | 01476848 | 51 | 10-16-86 | | _ | _ | _ | _ | | _ | | _ | | | | 10-17-94 | <1 | <1 | 10 | 7,300 | 9 | 20 | 70 | .34 | 51 | | 01478120 | 28 | 10-25-85 | _ | | _ | _ | _ | | _ | _ | | | | | 11-24-93 | <1 | <1 | 10 | 6,000 | 4 | 10 | 190 | <.10 | 27 | | 01478190 | 29 | 12-02-86 | | | _ | _ | | _ | _ | _ | _ | | | | 11-24-93 | 2 | <1 | 20 | 12,000 | 10 | 10 | 240 | .01 | 41 | | 01478220 | 30 | 10-25-85 | | _ | _ | | _ | | | _ | | | | | 11-23-93 | 2 | <1 | 20 | 15,000 | 10 | 10 | 240 | .01 | 57 | | 01479680 | 27 | 11-01-83 | _ | | | | | | | | _ | | | | 11-18-86 | | _ | | | _ | | | | _ | | | | 11-22-93 | <1 | <1 | 20 | 7,300 | 5 | 10 | 150 | .01 | 4^ | | | | 10-17-94 | <1 | <1 | 10 | 7,300 | 9 | 20 | 70 | .34 | 5ባ | | 01479800 | 26 | 10-18-85 | _ | | | _ | | | | _ | _ | | | | 11-22-93 | 1 | <1 | 20 | 10,000 | 7 | 10 | 240 | <.10 | 3^ | | 01480629 | 46 | 10-29-85 | _ | | _ | - | | | _ | _ | _ | | | | 10-30-86 | | | | | | | | | | Table 4. Results of stream-bottom sediment sampling—Continued | Station<br>number | Site<br>number | Date | Arsenic,<br>total | Cad-<br>mium,<br>recover-<br>able | Chro-<br>mium,<br>recover-<br>able | Iron,<br>recover-<br>able | Copper,<br>recover-<br>able | Lead,<br>recover-<br>able | Manga-<br>nese,<br>recover-<br>able | Mercury,<br>recover-<br>able | Zinc,<br>recover-<br>able | |-------------------|----------------|----------|-------------------|-----------------------------------|------------------------------------|---------------------------|-----------------------------|---------------------------|-------------------------------------|------------------------------|---------------------------| | 01480640 | 38 | 10-22-85 | | | _ | _ | | _ | _ | | | | | | 11-15-93 | 2 | <1 | 50 | 17,000 | 10 | 20 | 210 | .03 | 70 | | 01480648 | 48 | 10-29-86 | _ | | | | | _ | _ | | | | 01480653 | 42 | 10-23-85 | _ | | _ | _ | | _ | _ | | | | 01480656 | 47 | 10-29-86 | | _ | _ | | _ | | _ | - | | | 01480700 | 36 | 10-21-85 | | _ | _ | | _ | _ | | _ | _ | | 01480903 | 44 | 10-31-85 | _ | | _ | _ | _ | | _ | _ | _ | | 01480950 | 39 | 11-03-86 | _ | <del></del> | _ | _ | _ | _ | _ | | | | | | 11-16-93 | 2 | <1 | 20 | 12,000 | 10 | 20 | 370 | 0.06 | 60 | | 01481030 | 40 | 10-30-85 | | _ | | | _ | | | | _ | | 01494900 | 31 | 10-28-86 | _ | _ | _ | | _ | | | _ | <del></del> | | | | 11-04-94 | <1 | <1 | 9 | 10,000 | 6 | <10 | 260 | <.01 | 20 | | 01494950 | 32 | 10-17-85 | | _ | _ | | _ | | | | _ | | | | 11-04-94 | 2 | <1 | 10 | 15,000 | 10 | 20 | 540 | .02 | 50 | | 01578340 | 33 | 11-21-94 | 2 | <1 | 50 | 17,000 | 20 | 30 | 360 | .03 | 100 | | 01578343 | 34 | 10-24-85 | | _ | | | | _ | | | | Table 4. Results of stream-bottom sediment sampling—Continued | Station<br>number | Site<br>num <b>be</b> r | Date | Carbon,<br>inorg +<br>organic<br>(gm/kg<br>as C) | Aldrin,<br>total<br>(μg/kg) | Chlor-<br>dane,<br>total<br>(µg/kg) | DDD,<br>recover-<br>able<br>(µg/kg) | DDE,<br>recover-<br>able<br>(µg/kg) | DDT,<br>recover-<br>able<br>(µg/kg), | Dieldrin,<br>total,<br>(μg/kg) | Endo-<br>sulfan,<br>total<br>(µg/kg) | Endrin,<br>total<br>(µg/kg) | |-------------------|-------------------------|----------|--------------------------------------------------|-----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------|--------------------------------------|-----------------------------| | 01472080 | 10 | 10-11-85 | _ | <0.100 | <1.00 | <0.100 | 0.100 | <0.100 | <0.100 | <0.100 | <0.107 | | 01472109 | 6 | 10-11-85 | _ | <.100 | 6.00 | .400 | 1.00 | <.100 | .300 | <.100 | <.107 | | 01472138 | 13 | 10-22-86 | | <.100 | <1.00 | 1.20 | 1.10 | <.100 | .300 | <.100 | <.101 | | 01472140 | 12 | 10-10-85 | _ | <.100 | <1.00 | .300 | .400 | .400 | 4.80 | <.100 | .10า | | 01472154 | 14 | 10-11-85 | - | <.100 | 6.00 | <.100 | .600 | <.100 | .100 | <.100 | <.107 | | 01472157 | 15 | 10-28-94 | 15 | <.100 | <1.00 | .100 | .300 | .200 | <.800 | <.100 | <.101 | | 014721612 | 16 | 10-09-85 | _ | <.100 | 5.00 | <.100 | <.100 | <.100 | .200 | <.100 | <.101 | | | | 10-28-94 | 18 | <.100 | 24.0 | .600 | .600 | .600 | 5.40 | <.100 | <.101 | | 01472170 | 1 | 10-09-87 | _ | <.100 | 2.00 | .300 | .200 | <1.00 | <.100 | <.100 | <.101 | | 01472174 | 2 | 10-07-86 | _ | <.100 | <1.00 | <.200 | .500 | <.100 | <.100 | <.200 | <.101 | | 014721854 | 3 | 10-08-86 | - | <.100 | <1.00 | .300 | .400 | | <.100 | .100 | <.101 | | 014721884 | 4 | 10-07-85 | - | <.100 | <1.00 | <.100 | _ | <.100 | .100 | <.100 | <.107 | | 01472190 | 5 | 10-06-86 | - | <.100 | <1.00 | <.100 | .400 | .300 | <.100 | .300 | <.101 | | | | 10-26-94 | 3.0 | <.100 | <1.00 | <.100 | <.100 | <.100 | <.800 | <.100 | <.80ำ | | 01473167 | 49 | 11-07-86 | | | _ | - | _ | | | _ | _ | | | | 11-16-87 | _ | <1.0 | 13.0 | .300 | <1.0 | <1.0 | .800 | <.100 | <.101 | | | | 11-18-93 | 17 | <.100 | 5.00 | .600 | <.100 | <.400 | 1.10 | .500 | <.100 | | 01473168 | 50 | 10-09-85 | - | <.100 | 5.00 | 1.70 | 1.70 | 3.20 | .100 | <.100 | <.109 | | | | 11-18-93 | 30 | <.100 | 5.00 | 1.40 | 1.0 | 3.60 | .400 | <.100 | <.10 | | 01475840 | 19 | 10-09-86 | | <.100 | 7.00 | .100 | .300 | 2.20 | .100 | <.100 | <.10 | | 01476430 | 20 | 10-15-85 | | <.100 | 7.00 | .600 | .600 | <.100 | .300 | <.100 | <.10 | | 01476435 | 21 | 10-09-86 | _ | <.100 | <1.00 | .100 | .100 | <.100 | <.100 | <.100 | <.100 | | 01476790 | 22 | 10-15-86 | ***** | <.100 | 30.0 | .800 | 1.60 | 1.30 | .500 | <.100 | <.100 | | 01476830 | 23 | 10-15-86 | _ | <.100 | <1.00 | .300 | .600 | <.100 | .400 | <.100 | <.1(^1 | | 01476835 | 24 | 10-16-85 | - | <.100 | 7.00 | <.100 | .300 | <.100 | .100 | <.100 | <.1(^0 | | | | 10-21-94 | 17 | <.100 | 6.00 | .300 | .800 | .300 | .800 | <.100 | <.8(^1 | | 01476840 | 25 | 11-04-88 | 20 | <.100 | 51.0 | 7.50 | 1.90 | 13.0 | 1.80 | <.100 | <.10 | | | | 11-19-93 | 9.2 | <.100 | 10.0 | 2.30 | 1.20 | 12.0 | .200 | <.100 | <.10 | | 01476848 | 51 | 10-16-86 | _ | <.100 | 110 | 5.00 | 2.10 | 1.20 | .600 | <.100 | <.10 | | | | 10-17-94 | 5.0 | <.100 | 2.00 | .700 | .400 | .800 | <.800 | <.100 | <.80 | | 01478120 | 28 | 10-25-85 | _ | <.100 | <1.00 | 6.30 | 2.80 | .400 | .100 | <.100 | <.10 | | | | 11-24-93 | 7.3 | <.100 | <1.00 | <.100 | .900 | <.100 | <.200 | <.100 | <.1(^) | | 01478190 | 29 | 12-02-86 | | <.100 | <1.00 | 1.10 | 1.20 | 1.30 | .100 | <.100 | <.100 | | | | 11-24-93 | 4.4 | <.100 | 1.00 | <.100 | 1.60 | <.100 | <.200 | <.100 | <.100 | | 01478220 | 30 | 10-25-85 | _ | <.100 | <1.00 | | .400 | <.100 | <.100 | <.100 | <.100 | | | | 11-23-93 | 3.4 | <.100 | <1.00 | <.100 | .300 | <.100 | <.200 | <.100 | <.100 | | 01479680 | 27 | 11-01-83 | _ | <1.00 | <10.0 | 260 | _ | 15.0 | 2.50 | <1.00 | <1.00 | | | | 11-18-86 | _ | <.100 | _ | | _ | _ | _ | <.100 | <.100 | | | | 11-22-93 | 5.8 | <.100 | 7.00 | 23.0 | 2.0 | 27.0 | .200 | <.100 | <.200 | | 01479800 | 26 | 10-18-85 | _ | <.100 | 5.00 | 36.0 | 22.0 | 61.0 | <.100 | <.100 | <.100 | | | | 11-22-93 | 1.9 | <.100 | 1.00 | 2.10 | 1.80 | 2.60 | <.100 | <.100 | <.100 | | 01480629 | 46 | 10-29-85 | | <.100 | <1.00 | <.100 | <.100 | <.100 | <.100 | <.100 | <.100 | | 01480632 | 45 | 10-30-86 | _ | <.100 | 4.00 | .600 | 2.10 | <.100 | .700 | <.100 | <.100 | | 01480640 | 38 | 10-22-85 | | <.100 | 3.00 | .600 | .200 | <.100 | .100 | <.100 | <.100 | | | | 11-15-93 | 3.4 | <.200 | 4.00 | 1.30 | 1.40 | 1.00 | .400 | <.100 | <.100 | Table 4. Results of stream-bottom sediment sampling—Continued | Station<br>number | Site<br>number | Dat <b>e</b> | Carbon,<br>inorg +<br>organic<br>(gm/kg<br>as C) | Aldrin,<br>total<br>(μg/kg) | Chlor-<br>dane,<br>total<br>(µg/kg) | DDD,<br>recover-<br>able<br>(µg/kg) | DDE,<br>recover-<br>able<br>(µg/kg) | DDT,<br>recover-<br>able<br>(µg/kg), | Dieldrin,<br>total,<br>(μg/kg) | Endo-<br>sulfan,<br>total<br>(µg/kg) | Endrin,<br>total<br>(µg/kg) | |-------------------|----------------|--------------|--------------------------------------------------|-----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------|--------------------------------------|-----------------------------| | 01480648 | 48 | 10-29-86. | | 0.100 | 1.00 | 0.300 | 1.80 | <0.100 | 0.400 | <0.100 | <0.100 | | 01480653 | 42 | 10-23-85 | | <.100 | <1.00 | <.100 | .200 | <.100 | <.100 | <.100 | <.100 | | 01480656 | 47 | 10-29-86 | _ | <.100 | <1.00 | .400 | | <.100 | .400 | <.100 | <.100 | | 01480700 | 36 | 10-21-85 | | <.100 | <1.00 | .100 | .200 | <.100 | <.100 | <.100 | <.100 | | 01480903 | 44 | 10-31-85 | _ | <.100 | 4.00 | .400 | <.100 | <.100 | .300 | <.100 | <.100 | | 01480950 | 39 | 11-03-86 | _ | <.100 | 32.0 | 4.40 | 4.10 | 1.30 | 3.20 | .200 | <.100 | | | | 11-16-93 | 4.9 | <.100 | 3.00 | .200 | .500 | .300 | .200 | <.100 | <.100 | | 01481030 | 40 | 10-30-85 | | <.100 | 3.00 | 3.60 | 2.50 | <.100 | <.100 | <.100 | <.100 | | 01494900 | 31 | 10-28-86 | | <.100 | 29.0 | 3.20 | 7.40 | .800 | .900 | <.100 | <.100 | | | | 11-04-94 | 1.5 | <.100 | <1.00 | .100 | <.100 | .200 | <.400 | <.100 | <.100 | | 01494950 | 32 | 10-17-85 | _ | <.100 | 1.00 | .800 | 1.00 | 3.10 | <.100 | <.100 | <.100 | | | | 11-04-94 | 10 | <.100 | 1.00 | .600 | .500 | .600 | <.400 | <.100 | <.100 | | 01578340 | 33 | 11-21-94 | 27 | <.100 | 5.00 | 1.10 | 1.10 | 1.20 | <.800 | <.200 | <.300 | | 01578343 | 34 | 10-24-85 | | <.100 | <1.00 | .100 | <.100 | .200 | <.100 | <.100 | <.100 | | | | | | | | | | | | | | Table 4. Results of stream-bottom sediment sampling—Continued | 01472080 10 01472109 6 01472138 13 01472154 14 01472157 15 014721612 16 01472170 1 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01473169 19 01476430 20 01476435 21 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01480629 46 | e<br>ber | Date | Hepta-<br>chlor,<br>total<br>(µg/kg) | Hepta-<br>chlor,<br>epoxide,<br>total<br>(µg/kg) | Lindane,<br>total<br>(µg/kg) | Meth-<br>oxy-<br>chlor,<br>total<br>(μg/kg) | Mirex,<br>total<br>(μg/kg) | Per-<br>thane,<br>total<br>(μg/kg) | Toxa-<br>phene,<br>total<br>(µg/kg) | PCB,<br>total<br>(µg/kg) | PCN,<br>total<br>(µg/い) | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--------------------------------------|--------------------------------------------------|------------------------------|---------------------------------------------|----------------------------|------------------------------------|-------------------------------------|--------------------------|-------------------------| | 01472138 13 01472140 12 01472154 14 01472157 15 014721612 16 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476835 21 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | 1 | 0-11-85 | <0.100 | <0.100 | <0.100 | <0.100 | <0.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01472138 13 01472140 12 01472154 14 01472157 15 014721612 16 01472170 1 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01473168 50 01473168 50 01476430 19 01476435 21 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | 1 | 0-11-85 | <.100 | .200 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 3.00 | <1.00 | | 01472140 12 01472154 14 01472157 15 014721612 16 01472170 1 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-22-86 | <.100 | <.100 | .100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01472154 14 01472157 15 014721612 16 01472170 1 01472174 2 014721854 3 014721884 4 014721890 5 01473167 49 01473168 50 01473468 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-10-85 | <.100 | .400 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01472157 15 014721612 16 01472170 1 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-11-85 | <.100 | .100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 12.0 | <1.00 | | 014721612 16 01472170 1 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476790 22 01476830 23 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-28-94 | <.100 | <.100 | <.100 | <.800 | <.100 | <1.00 | <10.0 | 4.00 | <1.00 | | 01472170 1 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-09-85 | <.100 | .100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 5.00 | <1.00 | | 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-28-94 | .300 | .600 | <.100 | <.800 | <.100 | <1.00 | <10.0 | 18.0 | <1.00 | | 01472174 2 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-09-87 | <.100 | <.100 | <.100 | 2.40 | <.100 | <1.00 | <10.0 | 3.00 | <1.00 | | 014721854 3 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476845 24 01476846 25 01476847 25 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-07-86 | <.100 | <.100 | <.100 | <.800 | <.100 | <1.00 | <10.0 | <5.00 | <1.00 | | 014721884 4 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-08-86 | <.100 | 3.80 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01472190 5 01473167 49 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-07-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 9.00 | <1.00 | | 01473167 49 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-06-86 | <.100 | <.100 | <.100 | <.100 | .200 | <1.00 | <10.0 | <1.00 | <1.00 | | 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-26-94 | <.100 | <.800 | <.100 | <2.40 | <.100 | <1.00 | <10.0 | 1.00 | <1.00 | | 01473168 50 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 1-07-86 | | | | 55.0 | _ | _ | _ | 15,000 | _ | | 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476845 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 1-16-87 | <1.0 | <.100 | <.100 | 13.0 | <1.0 | <1.00 | <10.0 | 540 | <1.00 | | 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 1-18-93 | <.100 | <.100 | <.100 | <.100 | <1.0 | <1.00 | 110 | <1.00 | <1.00 | | 01475840 19 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01479680 27 01479800 26 | | 0-09-85 | .100 | .100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 18.0 | <1.00 | | 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 1-18-93 | <.100 | <.100 | .100 | <.400 | <.100 | <1.00 | <10.0 | 22.0 | <1.00 | | 01476430 20 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-09-86 | <.100 | <.100 | <.100 | <.100 | .700 | <1.00 | <10.0 | 7.00 | <1.00 | | 01476435 21 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-15-85 | <.100 | .400 | .100 | <.100 | <.100 | <1.00 | <10.0 | 5.00 | <1.00 | | 01476790 22 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-09-86 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01476830 23 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-15-86 | <.100 | .100 | .100 | <.100 | <.100 | <1.00 | <10.0 | 8.00 | <1.00 | | 01476835 24 01476840 25 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-15-86 | <.100 | .200 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 4.00 | <1.00 | | 01476840 25 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-16-85 | <.100 | .100 | .400 | <.100 | <.100 | <1.00 | <10.0 | 2.00 | <1.00 | | 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-21-94 | <.100 | <.800 | <.100 | <22.0 | <.100 | <1.00 | <10.0 | 22.0 | <1.00 | | 01476848 51 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 1-04-88 | <.100 | .300 | .300 | <1.00 | <.100 | <1.00 | <10.0 | 120 | <1.00 | | 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 1-19-93 | .100 | <.100 | .100 | <5.00 | <.100 | <1.00 | <10.0 | 16.0 | <1.00 | | 01478120 28 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-16-86 | <.100 | .100 | 1.00 | <.100 | <.100 | <1.00 | <10.0 | 73.0 | <1.00 | | 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-10-00 | <.100 | <.800 | <.100 | <5.20 | <.100 | <1.00 | <10.0 | 10.0 | <1.00 | | 01478190 29 01478220 30 01479680 27 01479800 26 | | 0-25-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01478220 30<br>01479680 27<br>01479800 26 | | 1-24-93 | <.100 | <.100 | <.100 | <.200 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01478220 30<br>01479680 27<br>01479800 26 | | 2-02-86 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 3.00 | <1.00 | | 01479680 27<br>01479800 26 | | 1-24-93 | <.100 | <.100 | <.100 | <.200 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01479680 27<br>01479800 26 | | 0-25-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01479800 26 | | 1-23-93 | <.100 | <.100 | <.100 | <.200 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01479800 26 | | | <1.00 | <1.00 | <1.00 | <.200<br>88.0 | <1.00 | | | | | | | | 1-01-83 | | | | | | <10.0 | <10.0 | 5,600 | <br>-1 00 | | | | 1-18-86 | <.100 | <.100<br><.100 | <.100 | <.100<br><5.00 | .100 | <br>-1 00 | <10.0<br><20.0 | 1,400<br>550 | <1.00<br><1.00 | | | | 1-22-93 | <.100 | | <.100 | | <.100 | <1.00 | | | | | 01490620 46 | | 0-18-85 | - 100 | <.100 | .300 | <.100 | <.100 | <1.00 | <10.0 | 38.0 | 1.00 | | | | 1-22-93 | <.100 | <.100 | <.100 | <.400 | <.100 | <1.00 | <10.0 | 2.00 | <1.00 | | | | 0-29-85 | <.100 | <.100 | <.100 | <.400 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01480632 45 | | 0-30-86 | <.100 | .100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01480640 38 | | 10-22-85<br>11-15-93 | <.100<br><.100 | .100<br><.100 | <.100<br><.100 | <.100<br><.200 | <.100<br><.100 | <1.00<br><1.00 | <10.0<br><10.0 | 11.0<br>12.0 | <1.00<br><1.00 | Table 4. Results of stream-bottom sediment sampling—Continued | Station<br>number | Site<br>number | Date | Hepta-<br>chlor,<br>total<br>(μg/kg) | Hepta-<br>chlor,<br>epoxide,<br>total<br>(µg/kg) | Lindane,<br>total<br>(µg/kg) | Meth-<br>oxy-<br>chlor,<br>total<br>(μg/kg) | Mirex,<br>total<br>(μg/kg) | Per-<br>thane,<br>total<br>(μg/kg) | Toxa-<br>phene,<br>total<br>(μg/kg) | PCB,<br>total<br>(μg/kg) | PCN,<br>total<br>(μg/kg) | |-------------------|----------------|----------|--------------------------------------|--------------------------------------------------|------------------------------|---------------------------------------------|----------------------------|------------------------------------|-------------------------------------|--------------------------|--------------------------| | 01480648 | 48 | 10-29-86 | <0.100 | <0.100 | <0.100 | <0.100 | <0.100 | <1.00 | <10.0 | <1.07 | <1.00 | | 01480653 | 42 | 10-23-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01480656 | 47 | 10-29-86 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 3.00 | <1.00 | | 01480700 | 36 | 10-21-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01480903 | 44 | 10-31-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 40.0 | <1.00 | | 01480950 | 39 | 11-03-86 | <.100 | <.100 | .200 | .200 | <.100 | <1.00 | <10.0 | 14.0 | <1.00 | | | | 11-16-93 | <.100 | <.100 | <.100 | <.200 | <.100 | <1.00 | <10.0 | 3.00 | <1.00 | | 01481030 | 40 | 10-30-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | 6.00 | <1.00 | | 01494900 | 31 | 10-28-86 | .500 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | | | 11-04-94 | <.100 | <.100 | <.100 | <4.00 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01494950 | 32 | 10-17-85 | <.100 | <.100 | <.100 | <4.00 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | | | 11-04-94 | <.100 | .100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | | 01578340 | 33 | 11-21-94 | <.100 | <.100 | <.100 | <14.0 | <.100 | <1.00 | <10.0 | 3.00 | <1.00 | | 01578343 | 34 | 10-24-85 | <.100 | <.100 | <.100 | <.100 | <.100 | <1.00 | <10.0 | <1.00 | <1.00 | Table 5. Benthic-macroinvertebrate data [<, less than; —, not found] 01472054 - Pigeon Creek near Bucktown, Pa. (Site 8) | Date | Oct. 2 | 1, 1981 | Oct. 29, 1982 | | | |-------------------------------|--------|---------|---------------|---------|--| | Total count | 8 | 22 | 9 | 75 | | | Organism | Count | Percent | Count | Percent | | | Platyhelminthes (flatworms) | | | | | | | Turbellaria | | | | | | | Tricladida | | | | | | | Planariidae | 7 | <1 | 1 | <1 | | | Nemertea (proboscis worms) | | | | | | | Enopla | | | | | | | Hoplonemertea | | | | | | | Tetrastemmatidae | | | | | | | Prostoma | _ | | 4 | <1 | | | Mollusca (molluscs) | | | | | | | Gastropoda | | | | | | | Basommatophora | | | | | | | Ancylidae | | | | | | | Ferrissia | 1 | <1 | _ | | | | Physidae | | | | | | | Physa | 1 | <1 | | | | | Annelida (segmented worms) | | | | | | | Oligochaeta | 4 | <1 | 3 | <1 | | | Arthropoda (arthropods) | • | | • | | | | Acariformes | | | | | | | Hydrachnidia | 2 | <1 | 1 | <1 | | | Insecta | | ~1 | • | -1 | | | Ephemeroptera | | | | | | | Baetidae | | | | | | | Baetis | 13 | 2 | 12 | 1 | | | | 13 | L | 2 | <1 | | | Pseudocloeon | _ | | 2 | <1 | | | Ephemerellidae<br>Ephemerella | 57 | 7 | 85 | 9 | | | Ephemerella | 97 | ' | 60 | 9 | | | Heptageniidae | 05 | | 110 | 11 | | | Stenonema | 65 | 8 | 110 | 11 | | | Isonychiidae | _ | _ | _ | _ | | | Isonychia | 2 | <1 | 5 | <1 | | | Plecoptera | | | | | | | Capniidae | | _ | | | | | Allocapnia | 1 | <1 | | | | | Chloroperlidae | 1 | <1 | 10 | 1 | | | Perlidae | | | | | | | Paragnetina | _ | | 1 | <1 | | | Perlodidae | | | | | | | Isoperla | _ | | 1 | <1 | | | Taeniopterygidae | | | | | | | Taeniopt <del>er</del> yx | 27 | 3 | 44 | 4 | | | Megaloptera | | | | | | | Corydalidae | | | | | | | Nigronia | _ | | 1 | <1 | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01472054 - Pigeon Creek near Bucktown, Pa. (Site 8)—Continued | Date | Oct. 2 | 1, 1981 | Oct. 29, 1982 | | | |-------------------|--------|---------|---------------|---------|--| | Total count | 8 | 22 | 9 | 75 | | | Organism | Count | Percent | Count | Percent | | | Trichoptera | | | | | | | Brachycentridae | | | | | | | Micrasema | | | 1 | <1 | | | Glossosomatidae | | | | | | | Glossosoma | 2 | <1 | 29 | 3 | | | Hydropsychidae | | | | | | | Ceratopsyche | 2 | <1 | 18 | 2 | | | Cheumatopsyche | 200 | 24 | 120 | 12 | | | Hydropsyche | 240 | 29 | 190 | 19 | | | Philopotamidae | | | | | | | Chimarra | 37 | 4 | 100 | 10 | | | Polycentropodidae | | | | | | | Polycentropus | | | 1 | <1 | | | Uenoidae | | | | | | | Neophylax | 1 | <1 | 4 | <1 | | | Coleoptera | | | | | | | Dytiscidae | 1 | <1 | | | | | Elmidae | | | | | | | Macronychus | _ | | 1 | <1 | | | Optioservus | 32 | 4 | 14 | 1 | | | Oulimnius | 2 | <1 | | | | | Promoresia | 21 | 3 | 3 | <1 | | | Stenelmis | 5 | <1 | 3 | <1 | | | Psephenidae | | | | | | | Ectopria | | | | | | | E. nervosa | 1 | <1 | 1 | <1 | | | Diptera | | | | | | | Chironomidae | 65 | 8 | 92 | 9 | | | Empididae | | | | | | | Hemerodromia | 12 | 1 | 5 | <1 | | | Simuliidae | | | | | | | Simulium | 12 | 1 | 18 | 2 | | | Tipulidae | | | | | | | Antocha | 8 | 1 | 95 | 10 | | Table 5. Benthic-macroinvertebrate data—Continued 01472065 - Pigeon Creek at Porters Mill, Pa. (Site 9) | Date | Oct. 2 | 0, 1981 | Oct. 29, 1982 | | | |--------------------------------|--------|---------|---------------|---------|--| | Total count | 4 | B2 | 9 | 18 | | | Organism | Count | Percent | Count | Percent | | | Mollusca (molluscs) | | - | | | | | Gastropoda | | | | | | | Basommatophora | | | | | | | Lymnaeidae | | | | | | | Lymnaea | 1 | <1 | _ | | | | Arthropoda (arthropods) | | | | | | | Acariformes | | | | | | | Hydrachnidia | 2 | <1 | 4 | <1 | | | Insecta | | | | | | | Ephemeroptera | | | | | | | Baetidae | | | | | | | Baetis | 2 | <1 | _ | | | | Pseudocloeon | _ | | 4 | <1 | | | Ephemerellidae | | | | | | | Ephemerella . | 4 | <1 | 120 | 13 | | | Heptageniidae | | | | | | | Stenon <del>e</del> ma | 58 | 12 | 150 | 16 | | | Isonychiidae | | | | | | | Isonychia | 27 | 6 | 46 | 5 | | | Plecoptera | | - | | _ | | | Capniidae | _ | | 1 | <1 | | | Perlidae | | | - | | | | Paragnetina | 12 | 2 | 1 | <1 | | | Taeniopterygidae | | _ | _ | | | | Taeniopteryx | 6 | 1 | 5 | <1 | | | Trichoptera | Ū | - | Ū | | | | Brachycentridae | | | | | | | Micrasema | 7 | 2 | 13 | 1 | | | Glossosomatidae | • | L | 15 | • | | | Glossosoma | 5 | 1 | 5 | <1 | | | Goeridae | , | • | 3 | ~1 | | | Goera | | | 1 | <1 | | | Hydropsychidae | _ | | 1 | ~1 | | | Ceratopsyche | 25 | 5 | 78 | 8 | | | Cheumatopsyche | 180 | 37 | 64 | 7 | | | Hydropsyche | 25 | 5 | 51 | 6 | | | Hydroptilidae | 23 | J | 31 | U | | | Hydroptila | | | 14 | 2 | | | Leucotrichia | 2 | <1 | 21 | 2 | | | | ۷. | ~1 | 7.1 | ۷. | | | Leptoceridae<br><i>Oecetis</i> | | | 1 | <1 | | | | _ | | 1 | <1 | | | Philopotamidae | 12 | 2 | 13 | 1 | | | Chimarra | 12 | 4 | 13 | 1 | | | Psychomytidae | 2 | -1 | | | | | Psychomyia | 2 | <1 | _ | | | Table 5. Benthic-macroinvertebrate data—Continued 01472065 - Pigeon Creek at Porters Mill, Pa. (Site 9)—Continued | Date | Oct. 2 | 0, 1981 | Oct. 2 | 9, 1982 | |--------------|--------|---------|--------|---------| | Total count | 4 | 82 | 9 | 18 | | Organism | Count | Percent | Count | Percent | | Coleoptera | | | | | | Elmidae | | | | | | Optioservus | 4 | <1 | 3 | <1 | | Stenelmis | 1 | <1 | _ | | | Psephenidae | | | | | | Ectopria | 1 | <1 | _ | | | Diptera | 1 | <1 | _ | | | Athericidae | | | | | | Atherix | _ | | 1 | <1 | | Chironomidae | 48 | 10 | 220 | 24 | | Empididae | | | | | | Hemerodromia | _ | | 8 | <1 | | Simuliidae | | | | | | Simulium | 6 | 1 | 5 | <1 | | Tipulidae | | | | | | Antocha | 51 | 10 | 89 | 10 | Table 5. Benthic-macroinvertebrate data—Continued 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10) | Date | OGI. 2 | 0, 1981 | Oct. 2 | 9, 1982 | Oct. 2 | 1, 1983 | Oct. 2 | 2, 1984 | Oct. 1 | 1, 1985 | Oct. 1 | 0, 1986 | Nov. 1 | 3, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2, | 785 | 1, | 691 | 9 | 69 | 1, | 492 | 1, | 032 | 1, | 133 | 2, | 390 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planarlidae | 11 | <1 | 8 | <1 | 5 | <1 | 3 | <1 | 1 | <1 | 3 | <1 | 5 | <1 | | Nematoda (nematodes) | _ | | _ | | - | | _ | | _ | | | | 4 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | _ | | _ | | | | _ | | | | _ | | - | | | Physidae | | | | | | | | | | | | | | | | Physa - | _ | | _ | | - | | _ | | | | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | 5 | <1 | 3 | <1 | 4 | <1 | 1 | <1 | | | _ | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | _ | | _ | | _ | | | | | | | | 65 | 3 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 9 | <1 | 3 | <1 | | | 3 | <1 | | | | | 84 | 4 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | | | | | | | | | | | | Cyclopidae | - | | _ | | | | _ | | | | _ | | 2 | <1 | | Amphipoda | | | | | | | | | | | | | _ | • | | Talitridae | | | | | | | | | | | | | | | | Hyallela | | | | | | | | | | | | | | | | H azteca | | | | | | | | | | | | | 1 | -1 | | | _ | | | | _ | | _ | | | | _ | | 1 | <1 | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | _ | | | Caecidotea | _ | | _ | | _ | | _ | | | | | | 1 | <1 | | Podocopa | | | _ | | | | _ | | _ | | _ | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 29 | 1 | 11 | <1 | - | | 1 | <1 | 4 | <1 | 19 | 2 | | | | Pseudocloeon | 14 | <1 | 16 | <1 | 3 | <1 | 7 | <1 | _ | | 7 | <1 | 7 | <1 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 79 | 3 | 84 | 5 | 5 | <1 | 74 | 5 | 41 | 4 | 21 | 2 | 380 | 18 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | _ | | - | | - | | | | _ | | 4 | <1 | | Stenonema | 280 | 10 | 110 | 6 | 81 | 8 | 150 | 10 | 58 | 6 | 48 | 4 | 92 | 4 | | Isonychiidae | _ | | _ | | | | | | | | _ | | _ | | | Isonychia | 57 | 2 | 13 | <1 | 27 | 3 | 38 | 3 | 17 | 2 | 55 | 5 | 12 | <1 | | Leptophlebiidae | | - | _ | - | | - | _ | - | _ | - | | - | _ | = | | Paraleptophlebia | | | _ | | | | _ | | _ | | | | _ | | | Leptohyphidae | _ | | - | | _ | | | | _ | | _ | | _ | | | Lentohunhidae | | | | | | | | | | | | | | | | Nov. 9 | , 1988 | Oct. 1 | 1, 1989 | Oct. 4 | l, 1990 | Oct. 8 | , 1991 | Oct. 1 | 3, 1992 | | , 1993<br> | Oct. 3 | 31, 1994 | D~te | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|------------|--------|----------|------------------------------| | 1 2 | ,397 | 2,2 | 270 | 1,9 | 947 | 1, | 705 | 4 | 40 | 1,1 | 61 | 1, | 599 | Total count | | Count | Percent Organism | | | | | | | | | | | | | _ | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | — | | 7 | <1 | 1 | <1 | 2 | <1 | 3 | <1 | 1 | <1 | 4 | <1 | Plarariidae | | - | | _ | | _ | | | | _ | | _ | | 2 | <1 | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | 4 | <1 | | | 1 | <1 | 1 | <1 | | | 4 | <1 | Prostoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basomr atophora | | | | | | | | | | | | | | | | Ancylidae | | _ | | _ | | _ | | | | _ | | 2 | <1 | _ | | Ferrissia | | | | | | | | | | | | | | | | Physidae | | _ | | | | _ | | _ | | 1 | <1 | _ | | _ | | Physa | | | | | | | | | | | | | | | | Annelida (segmented worms) | | _ | | _ | | _ | | | | _ | | | | _ | | Oligochaeta | | | | | | | | | | | | | | | | Tubificida | | _ | | 4 | <1 | _ | | | | | | _ | | 10 | <1 | Naididae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | _ | | 58 | 3 | 5 | <1 | 12 | <1 | 37 | 8 | 36 | 3 | 39 | 2 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | | | | | | | | | | | | | | | Cyclopo'da | | _ | | | | _ | | _ | | _ | | _ | | | | Cyc'opidae | | | | | | | | | | | | | | | | Amphipada | | | | | | | | | | | | | | | | Talitridae | | | | | | | | | | | | | | | | Hyallela | | - | | | | _ | | | | 1 | <1 | _ | | _ | | H. azteca | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Ase!lidae | | 3 | <1 | _ | | _ | | | | _ | | | | _ | | Caecidotea | | _ | | 1 | <1 | _ | | | | - | | | | _ | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Epheme-optera | | | | | | | | | | | | | | | | Baetidae | | 8 | <1 | 11 | <1 | 54 | 3 | 13 | <1 | 1 | <1 | 11 | <1 | 2 | <1 | Baetis | | - | | 14 | <1 | 20 | 1 | 10 | <1 | _ | | 7 | <1 | 4 | <1 | Pseudocloeon | | | | | | | | | | | | | | | | Ephamerellidae | | 280 | 12 | 240 | 10 | 85 | 4 | 130 | 8 | 4 | 1 | 82 | 7 | 220 | 14 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | 32 | 1 | 6 | <1 | 12 | <1 | 16 | <1 | _ | | 13 | 1 | 5 | <1 | Epeorus | | 110 | 5 | 80 | 3 | 79 | 4 | - | | _ | | | | 1 | <1 | Stenonema | | | | - | | | | 2 | <1 | _ | | _ | | _ | | Isonychiidae | | 53 | 2 | 8 | <1 | 47 | 2 | 9 | <1 | 2 | <1 | 8 | <1 | 17 | 1 | Isonychia | | | | 5 | <1 | 5 | <1 | 50 | 3 | 3 | <1 | 29 | 2 | 47 | 3 | Lep <sup>†</sup> ophlebiidae | | 5 | <1 | _ | | _ | | | | _ | | 5 | <1 | 5 | 4 | Paraleptophlebi | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | | | _ | | 1 | <1 | | | _ | | _ | | Tricorythodes | Table 5. Benthic-macroinvertebrate data—Continued 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10)—Continued | Date | Oct. 2 | 0, 1981 | Oct. 2 | 9, 1982 | Oct. 2 | 1, 1983 | Oct. 2 | 2, 1984 | Oct. 1 | 1, 1985 | Oct. 1 | 0, 1986 | Nov. 1 | 3, 1987 | | |-------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--| | Total count | 2, | 785 | 1,6 | 591 | 9 | 69 | 1,4 | 192 | 1,0 | 032 | 1, | 133 | 2, | 09? | | | Organism | Count | Percent | Count | Forcent | | | Plecoptera | | | | | | - | | | | | | | - | | | | Capniidae | 3 | <1 | _ | | | | _ | | | | _ | | | | | | Allocapnia | _ | | 10 | <1 | 2 | <1 | 38 | 3 | _ | | _ | | 14 | <1 | | | Chloroperlidae | _ | | _ | | _ | | _ | | _ | | _ | | | | | | Perlidae | | | | | | | | | | | | | | | | | Acroneuria | 3 | <1 | _ | | 1 | <1 | _ | | _ | | _ | | _ | | | | Agnetina | _ | | _ | | | | | | _ | | | | _ | | | | Paragnetina | 6 | <1 | 8 | <1 | 4 | <1 | 14 | <1 | 2 | <1 | 3 | <1 | 4 | <1 | | | Perlodidae | | | | | | | | | | | | | | | | | Isoperla | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | | Taeniopterygidae | | | | | | | | | | | | | | | | | Strophopteryx | _ | | | | | | _ | | | | _ | | 13 | <1 | | | Taeniopteryx | 17 | <1 | 23 | 1 | 2 | <1 | 13 | <1 | | | 7 | <1 | 9 | <1 | | | Hemiptera | | • | | • | - | | - • | | | | • | | • | | | | Veliidae | | | | | | | | | | | | | | | | | Rhagovelia | 1 | <1 | | | _ | | 2 | <1 | _ | | _ | | _ | | | | Megaloptera | • | ~• | | | | | - | ~- | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | | Corydalus | 1 | <1 | | | | | | | | | | | 1 | <1 | | | • | | <1 | | | _ | | _ | | _ | | _ | | 1 | <1 | | | Trichoptera | | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | - | | | | Apatania | _ | | _ | | _ | | _ | | _ | | | | 7 | <1 | | | Brachycentridae | 10 | | | | | | | | 10 | • | 110 | 10 | 00 | | | | Micrasema | 17 | <1 | 6 | <1 | 9 | <1 | 8 | <1 | 17 | 2 | 110 | 10 | 82 | 4 | | | Glossosomatidae | • | | | _ | | _ | | | _ | | | | | | | | Glossosoma | 8 | <1 | 77 | 5 | 47 | 5 | 56 | 4 | 3 | <1 | 17 | 2 | 10 | <1 | | | Goeridae | _ | | | | | | | | | | | | _ | _ | | | Goera | 7 | <1 | _ | | | | _ | | | | _ | | 1 | <1 | | | Helicopsychidae | | | | | | | | | | | | | | | | | Helicopsyche | _ | | | | _ | | | | | | _ | | _ | | | | Hydropsychidae | | | | | | | | | | | | | | | | | Ceratopsyche | 760 | 27 | 350 | 21 | 240 | 24 | 210 | 14 | 54 | 5 | 120 | 11 | 130 | 6 | | | Cheumatopsyche | 420 | 15 | 86 | 5 | 35 | 4 | 54 | 4 | 44 | 4 | 40 | 4 | 53 | 3 | | | Hydropsyche | 100 | 4 | 60 | 4 | 91 | 9 | 48 | 3 | 8 | <1 | 80 | 7 | 83 | 4 | | | Hydroptilidae | | | | | | | | | | | | | | | | | Hydroptila | 3 | <1 | 2 | <1 | 1 | <1 | 2 | <1 | | | 1 | <1 | 41 | 2 | | | Leucotrichia | 20 | <1 | 130 | 8 | 210 | 21 | 340 | 23 | 400 | 40 | 360 | 33 | 100 | 5 | | | Leptoceridae | | | | | | | | | | | | | | | | | Oecetis | | | _ | | _ | | | | | | _ | | _ | | | | Philopotamidae | | | | | | | | | | | | | | | | | Chimarra | 94 | 3 | 68 | 4 | 41 | 4 | 43 | 3 | 41 | 4 | 15 | 1 | 62 | 3 | | | Wormaldia | _ | | _ | | | | _ | | _ | | | | _ | | | | Polycentropodidae | | | | | | | | | | | | | | | | | Polycentropus | _ | | _ | | 1 | <1 | | | | | _ | | | | | | Psychomylidae | | | | | | | | | | | | | | | | | Psychomyia | _ | | 2 | <1 | 2 | <1 | 9 | <1 | 21 | 2 | 52 | 5 | 61 | 3 | | | Uenoidae | | | | | - | | - | | | | - | | | | | | | | | | | | | | | | | | | | | | | 93 Oct. 31, 1994 | 1993 | Oct. 8, | 3, 1992 | Oct. 13 | , 1991 | Oct. 8 | , 1990 | Oct. 4 | I, 1989 | Oct. 11 | , 1988 | | |--------------------|---------|---------|-------------|---------|------------|--------|---------|--------|---------|---------|---------|-------| | 1,599 | 61 | 1,1 | <b>\$</b> 0 | 44 | <b>'05</b> | 1,7 | 947 | 1,9 | 270 | 2,2 | 397 | 1 2 | | cent Count Percent | Percent | Count | | | | | | | | | | | | | | | | _ | | _ | | | | | | - | | _ | | | | 3 <1 | | - | | | | | | _ | <1 | 2 | <1 | 11 | | <del></del> | | | | | | | <1 | 1 | | _ | | | | | | | | | | | | | | | | | | | <1 | 3 | | | | | <1 | 9 | <1 | 1 | <1 | 3 | | 2 <1 | | - | | | <1 | 1 | | | <1 | 2 | <1 | 3 | | 1 2 <1 | <1 | 1 | <1 | 1 | | | | _ | | _ | | | | | | | | | | | | | | | | | | | | - | | _ | | _ | | _ | | _ | <1 | 16 | | | | | | | | | | | | | | | | | | _ | | _ | | _ | | _ | | | | | | 1 <1 | | | | | | _ | | _ | <1 | 1 | <1 | 8 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | <1 | 1 | | _ | <1 | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | _ | | _ | | | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 4 <1 | 1 | 14 | | _ | <1 | 7 | 1 | 21 | <1 | 3 | | _ | | | | | | | | | | | | | | | | 3 28 2 | 3 | 31 | 16 | 74 | 11 | 180 | 23 | 460 | 11 | 250 | 3 | 83 | | | | | | | | | | | | | | | | 1 13 <1 | <1 | 3 | <1 | 1 | <1 | 9 | 1 | 21 | <1 | 11 | <1 | 3 | | | | | | | | | | | | | | | | 1 4 <1 | <1 | 6 | 1 | 6 | <1 | 5 | <1 | 5 | <1 | 4 | <1 | 3 | | | | | | | | | | | | | | | | 1 1 <1 | <1 | 1 | | | | | | _ | | | | _ | | | | | | | | | | | | | | | | 0 340 21 | 10 | 120 | 9 | 41 | 12 | 210 | 15 | 300 | 12 | 280 | 10 | 240 | | | 5 | 65 | 1 | 6 | <1 | 14 | 2 | 32 | 3 | 60 | 4 | 99 | | | | 160 | 2 | 7 | 1 | 25 | 1 | 26 | <1 | 20 | 3 | 67 | | | | -00 | _ | - | - | | - | | | | • | • | | 1 1 <1 | <1 | 10 | <1 | 2 | <1 | 1 | | _ | | _ | | _ | | | <1 | 6 | 36 | 160 | 28 | 480 | 8 | 160 | 11 | 260 | 19 | 450 | | | | - | | | | | _ | | | | | - | | 1 <1 | | | 1 | 4 | | | | | <1 | 1 | | | | | | | _ | - | | | | | _ | | | | | 1 37 2 | <1 | 6 | 1 | 4 | 1 | 25 | 3 | 58 | 2 | 51 | 3 | 83 | | | | _ | - | _ | - | _ | • | _ | _ | - | <1 | 5 | | | | | | | | | | | | | | • | | 1 — | <1 | 1 | | _ | <1 | 3 | | _ | <1 | 2 | | | | - | ~- | • | | | ~~ | - | | | ~- | - | | | | 1 13 <1 | <1 | 4 | <1 | 2 | 5 | 80 | 5 | 96 | 9 | 210 | 5 | 120 | | . 10 ~1 | ~1 | - | ~1 | - | 3 | ••• | J | 50 | 3 | 210 | J | 160 | | | | | | | | | <1 | 3 | | | <1 | 13 | Table 5. Benthic-macroinvertebrate data—Continued 01472080 - Pigeon Creek near Parker Ford, Pa. (Site 10)—Continued | Date | Oct. 20 | 0, 1981 | Oct. 2 | 9, 1982 | Oct. 2 | 1, 1983 | Oct. 2 | 2, 1984 | Oct. 1 | 1, 1985 | Oct. 1 | 0, 1986 | Nov. 1 | 3, 1987 | |---------------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2,7 | 785 | 1,0 | 691 | 9 | 69 | 1,4 | 192 | 1,0 | 032 | 1, | 133 | 2,0 | 390 | | Organism | Count | Percent | Coleoptera | | | | | | | | | | | | | | | | Chrysomelidae | 1 | <1 | | | _ | | _ | | | | _ | | _ | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | _ | | 1 | <1 | _ | | | | _ | | _ | | | | | Dytiscidae | 1 | <1 | _ | | _ | | _ | | _ | | _ | | _ | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | | | | | | | | | _ | | 1 | <1 | 2 | <1 | | Macronychus | | | | | | | | | | | | | | | | M. glabratus | | | 1 | <1 | | | | | | | | | _ | | | Optioservus | 31 | 1 | 3 | <1 | 11 | 1 | 10 | <1 | 4 | 1 | 5 | <1 | 20 | <1 | | Oulimnius | | | _ | | _ | | | | 2 | <1 | _ | | 1 | <1 | | Promoresia | | | | | _ | | | | _ | | | | _ | | | Stenelmis | 6 | <1 | | | _ | | 7 | <1 | 2 | <1 | 1 | <1 | 7 | <1 | | Hydrophilidae | | | _ | | _ | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | _ | | _ | | | | | | | | | | | E. nervosa | 1 | <1 | _ | | _ | | | | | | | | 1 | <1 | | Psephenus | 3 | <1 | 1 | <1 | _ | | | | | | | | 5 | <1 | | Hymenoptera | | | 1 | <1 | | | 1 | <1 | 1 | <1 | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | | | | | | _ | | | | 1 | <1 | | Chironomidae | 700 | 25 | 460 | 27 | 93 | 9 | 240 | 16 | 240 | 24 | 91 | 8 | 390 | 19 | | Empididae | | | | | | | _ | | _ | | | | | | | Hemerodromia | 7 | <1 | 11 | <1 | 1 | <1 | 2 | <1 | | | 1 | <1 | 13 | <1 | | Ephydridae | | | _ | | | | | | | | | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 30 | 1 | 27 | 2 | | | 16 | 1 | 13 | 1 | 6 | <1 | 110 | 5 | | Tipulidae | | _ | | _ | | | | - | | - | - | | | - | | Antocha | 61 | 2 | 110 | 6 | 53 | 5 | 100 | 7 | 59 | 6 | 70 | 6 | 220 | 10 | | Dicranota | | | | | | | _ | | _ | | | | | | $<sup>^{1}</sup>$ Extrapolated from a 3/8 subsample. | Nov. 9 | , 1988 | Oct. 1 | 1, 1989 | Oct. 4 | , 1990 | Oct. 8 | 3, 1991 | Oct. 1 | 3, 1992 | Oct. 8 | 3, 1993 | Oct. 3 | 1, 1994 | Erde | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------| | 1 2 | ,397 | 2,2 | 270 | 1,9 | 947 | 1, | 705 | 4 | 40 | 1, | 161 | 1, | 599 | Tota' count | | Count | Percent Org≈nism | | | | | | | | | | | | | | | | Coleopt • ra | | _ | | _ | | | | | | | | | | | | Chrysomelidae | | | | | | | | | | | | | | | | Dryopidae | | | | | | _ | | _ | | | | | | | | Helichus | | | | | | - | | | | _ | | _ | | _ | | Dytiscidae | | | | | | | | | | | | | | | | Elmidae | | | | | | _ | | _ | | 4 | 1 | _ | | | | Dubiraphia | | | | | | | | | | | | | | | | Macronychus | | | | _ | | | | _ | | | | | | _ | | M. glabratus | | 37 | 2 | 99 | 4 | 60 | 3 | 20 | 1 | 28 | 6 | 14 | 1 | 34 | 2 | Optioservus | | | | 16 | <1 | 5 | <1 | | | 2 | <1 | 2 | <1 | | | Oulimnius | | _ | | 1 | <1 | 1 | <1 | 2 | <1 | | | | | 2 | <1 | Promoresia | | 11 | <1 | 34 | 1 | 27 | 1 | 13 | <1 | 6 | 1 | 6 | <1 | 1 | <1 | Stenelmis | | - | | | | _ | | | | | | 1 | <1 | | | Hydrophilidae | | | | | | | | | | | | | | | | Psephenidae | | 3 | <1 | | | | | | | | | | | | | Ectopria | | _ | | 2 | <1 | | | 4 | <1 | | | 2 | <1 | 2 | <1 | E. nervosa | | 5 | <1 | 14 | <1 | 2 | <1 | 4 | <1 | 1 | <1 | 11 | <1 | 7 | <1 | Psephenus | | | | | | | | | | | | | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | 2 | <1 | 2 | <1 | | | _ | | | | | | Atherix | | 520 | 22 | 270 | 12 | 170 | 9 | 260 | 15 | 21 | 5 | 340 | 28 | 430 | 27 | Ch¹ronomidae | | | | | | | | | | | | | | | | Empididae | | 5 | <1 | 20 | <1 | | | 4 | <1 | 5 | 1 | 4 | <1 | 3 | <1 | Hemerodromia | | _ | | _ | | 1 | <1 | _ | | | | | | | | Ephydridae | | | | | | - | - | | | | | | | | | Sirnuliidae | | 8 | <1 | 5 | <1 | 9 | <1 | 1 | <1 | 1 | <1 | 6 | <1 | 10 | <1 | Simulium | | | | - | | | | | | | | | | | | Tipulidae | | 110 | 5 | 210 | 9 | 170 | 9 | 110 | 6 | 11 | 2 | 150 | 13 | 120 | 8 | Antocha | | | - | | - | _ | - | _ | = | | - | _ | | 1 | <1 | Dicranota | Table 5. Benthic-macroinvertebrate data—Continued 01472109 - Stony Run near Spring City, Pa. (Site 6) | Date | Oct. 20 | 0, 1981 | Oct. 1 | 9, 1982 | Oct. 2 | 0, 1983 | Oct. 9 | , 1984 | Oct. 1 | 1, 1985 | Oct. 1 | 0, 1986 | Nov. 1 | 3, 1987 | |-------------------------------|--------------|---------|--------|----------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-------------| | Total count | 1 2, | 760 | 1, | 265 | 2, | 082 | 9 | 98 | 5 | 50 | 6 | 51 | 1, | <b>4</b> E7 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 3 | <1 | 9 | <1 | 83 | 4 | 41 | 4 | 14 | 3 | 10 | 1 | 34 | 2 | | Nematoda (nematodes) | | | | | - | | _ | | _ | | - | | 4 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | _ | | | | Prostoma | _ | | _ | | _ | | _ | | 1 | <1 | 1 | <1 | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | • | | | | | | | | | | _ | | | | | Ferrissia | 2 | <1 | _ | | _ | | | | _ | | 1 | <1 | _ | | | Lymnaeidae | | | | | | _ | | | | | | | | | | Lymnaea | _ | | | | 1 | <1 | _ | | _ | | _ | | | | | Physidae | | | | | | | | | | | | | | | | Physa | 2 | <1 | | | 1 | <1 | | | | | 1 | <1 | 1 | <1 | | Planorbidae | - | | _ | | _ | | | | _ | | _ | | _ | | | Gyraulus | _ | | _ | | _ | _ | | | _ | | _ | | - | _ | | Helisoma | | | | | 2 | <1 | | | | | 3 | <1 | 1 | <1 | | Planorbula | | | | | _ | | | | | | _ | | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | _ | | | Sphaeriidae | 1 | <1 | - | | 11 | <1 | 1 | <1 | 4 | <1 | 8 | 1 | 7 | <1 | | Pisidium | _ | | _ | | | | _ | | _ | | _ | | _ | | | Sphaerium | | | | | _ | | _ | | | | _ | | | | | Annelida (segmented worms) | 120 | | | | 00 | | | | • | | | | | | | Oligochaeta | 120 | 4 | - | | 83 | 4 | _ | | 3 | <1 | _ | | | | | Lumbriculida<br>Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | | | | | | _ | | _ | | | | _ | | | Naididae | | | | | | | | .1 | | | 3 | -1 | 140 | 0 | | Naididae<br>Branchiobdellida | _ | | _ | | | | 1 | <1 | _<br>1 | <1 | 3 | <1 | 140 | 9 | | Arthropoda (arthropods) | | | | | _ | | | | 1 | <1 | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | | | 10 | <1 | | | | | _ | | 38 | 3 | | Crustacea | _ | | _ | | 10 | ~1 | | | _ | | _ | | 30 | 3 | | Cyclopoida | | | | | | | | | | | | | | | | Cyclopidae | _ | | _ | | | | | | | | _ | | 7 | <1 | | Amphipoda | _ | | _ | | | | | | | | | | , | ~1 | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | | | | | | | | | | | 2 | <1 | | Talitridae | _ | | | | | | | | | | _ | | L | <1 | | Hyallela | | | | | | | | | | | | | | | | H. azteca | | | | | 1 | <1 | | | _ | | _ | | _ | | | Isopoda | <del>-</del> | | _ | | | ~1 | _ | | _ | | _ | | _ | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | _ | | 1 | <1 | _ | | , | | , | | | | 3 | <1 | | Lirceus | _ | | 1 | <1<br><1 | _ | | | | _ | | _ | | | <1 | | Podocopa | _ | | _ | ~1 | 5 | <1 | | | | <1 | 1 | <1 | 1 | <1 | | i odowpa | _ | | _ | | J | ~1 | | | L | <1 | 1 | <1 | 1 | <1 | | | 9, 1988 | | 1, 1989 | | 1, 1990 | | 1991 | | , 1992 | | , 1993 | | I, 1994 | Date | |-------|---------|-------|---------|-------|---------|-------|---------|-------|-----------|-------|---------|-------|---------|--------------------------------------| | | B16 | | 122 | | 129 | | 489 | | 71 | | 93 | | 010 | Total count | | Count | Percent Orçanism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladi da | | 61 | 7 | 59 | 3 | 8 | <1 | 7 | <1 | 5 | <1 | 19 | 2 | 8 | <1 | Planariidae | | _ | | | | | | | | | | _ | | 1 | <1 | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplon-mertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | _ | | | | _ | | | | | | _ | | _ | | Prostoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | _ | | | | | | 1 | <1 | 1 | <1 | | | _ | | Ferrissia | | _ | | | | | | 1 | _1 | 1 | <b>~1</b> | _ | | _ | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | _ | | | | _ | | _ | | | | _ | | _ | | | | | | | | | | | | | | | | | .1 | Physidae | | _ | | _ | | _ | | _ | | | | _ | | 1 | <1 | Physa | | _ | | _ | | 6 | <1 | _ | | | | _ | | _ | | Planorbidae | | | | | | | | 1 | <1 | | | | | | | Gyraulus | | _ | | _ | _ | _ | | _ | | | | _ | | _ | | Helisoma | | _ | | 3 | <1 | _ | | | | _ | | | | _ | | Planorbula | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroi da | | _ | | _ | | _ | | 1 | <1 | _ | | 1 | <1 | 1 | <1 | Sphaeriidae | | _ | | 1 | <1 | 1 | <1 | | | | | | | _ | | Pisidium | | | | 6 | <1 | 5 | <1 | _ | | | | | | _ | | Sphaerium | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | _ | | _ | | _ | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | _ | | _ | | _ | | 1 | <1 | | | _ | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | 3 | <1 | 24 | 1 | 19 | <1 | 8 | <1 | 6 | <1 | | | 9 | <1 | Naididae | | _ | _ | _ | | _ | _ | | | _ | _ | _ | | _ | _ | Branchiobdellida | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | 3 | <1 | 97 | 5 | 120 | 6 | 79 | 5 | 50 | 7 | 7 | <1 | 44 | 4 | Hydrachnidia | | ŭ | | ٠, | | 120 | • | | J | 30 | • | • | ~. | | • | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | | | | | | | | | | | | Cyclopidae | | _ | | | | _ | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Garrmaridae<br><i>Gammarus</i> | | _ | | _ | | _ | | | | _ | | _ | | _ | | | | | | | | | | | | | | | | | | Talitridae | | | | | | | | | | | | | | | | Hyallela | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | H. azteca | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Ascilidae | | | | 1 | <1 | | | _ | | | | _ | | _ | | Caecidotea | | _ | | _ | | _ | | | | _ | | | | _ | | Lirceus | | | | 7 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | _ | | 1 | <1 | Podocopa | Table 5. Benthic-macroinvertebrate data—Continued 01472109 - Stony Run near Spring City, Pa. (Site 6)—Continued | Date | Oct. 20 | 0, 1981 | Oct. 1 | 9, 1982 | Oct. 2 | 0, 1983 | Oct. 9 | , 1984 | Oct. 1 | 1, 1985 | Oct. 1 | 0, 1986 | Nov. 1 | 3, 1987 | |--------------------------|---------|---------|--------|---------|--------|---------|--------|---------|--------|-----------------------------------------|--------|---------|--------|-----------| | Total count | 1 2, | 760 | 1, | 265 | 2, | 082 | 9 | 98 | 5 | 50 | 6 | 51 | 1,4 | 167 | | Organism | Count | Percent | Count | Pı.:::eni | | Insecta | ***** | , | · | | | | • | | | *************************************** | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 75 | 3 | 45 | 3 | 16 | <1 | 47 | 5 | 5 | <1 | 34 | 5 | | | | Pseudocloeon | | | _ | | | | 15 | 2 | | | _ | | 89 | 6 | | Caenidae | | | | | | | | | | | | | | | | Caenis | 26 | <1 | 6 | <1 | 95 | 5 | 1 | <1 | 1 | <1 | 4 | <1 | 21 | 1 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 8 | <1 | 5 | <1 | 9 | <1 | 4 | <1 | 1 | <1 | 2 | <1 | 25 | 2 | | Ephemeridae | | | | | | | | | | | | | | | | Ephemera | | | | | 1 | <1 | | | | | | | _ | | | Heptageniidae | | | | | - | | | | | | | | | | | Stenacron | _ | | | | | | | | | | 5 | <1 | | | | Stenonema | 94 | 3 | 120 | 9 | 43 | 2 | 67 | 7 | 5 | <1 | 79 | 12 | 57 | 4 | | Isonychiidae | 37 | J | 120 | 3 | 45 | | 01 | • | 3 | ~1 | 13 | 12 | 31 | 7 | | Isonychidae<br>Isonychia | 7 | <1 | 10 | <1 | 7 | <1 | 6 | <1 | | | 2 | <1 | 1 | <1 | | | ' | <1 | 10 | <1 | , | <1 | 0 | <1 | | | 2 | <1 | 1 | <1 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | | | 1 | <1 | | | | | | | | | | Leptophlebiidae | | | | | | | | | 1 | <1 | 9 | 1 | | | | Paraleptophlebia | | | | | | | | | _ | | _ | | | | | Odonata | | | | | | | | | | | | | | | | Calopterygidae | | | | | | | | | | | | | | | | Hetaerina | 1 | <1 | | | | | | | | | | | _ | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | | | | | | | | | 1 | <1 | | Enallagma | _ | | | | _ | | - | | | | 1 | <1 | - | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | | | | | | | | | | | 2 | <1 | | Chloroperlidae | | | | | _ | | | | | | _ | | 1 | <1 | | Perlidae | | | | | | | | | | | | | | | | Agnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | | | | | 6 | <1 | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | _ | | 3 | <1 | | | | | | | | Gerridae | | | | | | | | | | | | | | | | Trepobates | _ | | _ | | _ | | | | | | 1 | <1 | _ | | | Veliidae | | | | | | | | | | | | | | | | Microvelia | | | | | | | | | _ | | | | | | | Rhagovelia | | | 2 | <1 | | | 2 | <1 | | 9 | 1 | | | | | Megaloptera | | | | | | | | | | _ | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | _ | | | | 1 | <1 | _ | | | | _ | | | | | Sialidae | | | | | • | ~1 | _ | | | | | | | | | Sialis | 4 | <1 | | | | | | | | | 1 | <1 | | | | Trichoptera | * | ~1 | | | | | _ | | | | 1 | ~1 | _ | | | Apataniidae | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 20 | 2 | | Apatania Brookysontridae | | | _ | | | | | | | | | | 29 | 2 | | Brachycentridae | | | | | | | | | | | | | • | | | Micrasema | | | | | | | | | | | _ | | 3 | <1 | | Glossosomatidae | | .• | _ | .4 | | | | | _ | . • | | | | | | Glossosoma | 1 | <1 | 3 | <1 | | | _ | | 2 | <1 | | | | | | Nov. | 9, 1988 | Oct. 1 | 1, 1989 | Oct. 4 | l, 1990 | Oct. 8 | 3, 1991 | Oct. 8 | 3, 1992 | Oct. 8 | 3, 1993 | Nov. 1 | , 1994 | Date | |-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------------| | 1 | 816 | 2, | 122 | 2, | 129 | 1,4 | 489 | 6 | 71 | 9 | 93 | 1,0 | 010 | Total count | | Count | Percent Ornanism | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Bactidae | | 11 | 1 | 130 | 6 | 36 | 2 | 75 | 5 | 16 | 2 | 2 | <1 | 41 | 4 | Baetis | | _ | | _ | | _ | | _ | | _ | | | | 3 | <1 | Pseudocloeon | | | | | | | | | | | | | | | | Caenidae | | 11 | 1 | 3 | <1 | 3 | <1 | 3 | <1 | _ | | 1 | <1 | 3 | <1 | Caenis | | | | | _ | | | | | | _ | | | | | Ephemerellidae | | 5 | <1 | 130 | 6 | 78 | 4 | 70 | 5 | 46 | 7 | 60 | 6 | 37 | 4 | Ephemerella | | | | | | | | | | | | | | | | Ephemeridae | | _ | | | | _ | | _ | | | | 4 | <1 | _ | | Ephemera | | _ | | | | | | | | | | | | | | Hentageniidae | | 3 | <1 | _ | | _ | | _ | | _ | | | | | | Stenacron | | 37 | 5 | 180 | 9 | 160 | 8 | 230 | 15 | 55 | 8 | 60 | 6 | 53 | 5 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | _ | | | | _ | | 37 | 2 | 1 | <1 | 23 | 2 | 4 | <1 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | | | _ | | _ | | | | - | | _ | | Tricorythodes | | | | 3 | <1 | | | _ | | _ | | | | _ | | Ler*ophlebiidae | | 3 | <1 | | | 66 | 3 | 24 | 2 | 51 | 8 | _ | | 27 | 3 | Paraleptophlebia | | | | | | | | | | | | | | | | Odonat | | | | | | | | | | | | | | | | Calopterygidae | | _ | | | | | | _ | | | | | | | | Hetaerina | | | | | | | | | | | | | | | | Coenagrionidae | | _ | | | | 2 | <1 | _ | | | | | | _ | | Argia | | _ | | | | _ | | | | | | | | | | Enallagma | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 3 | <1 | | | | | | | | | _ | | 10 | 1 | Allocapnia | | _ | | _ | | _ | | _ | | | | _ | | | | Chloroperlidae | | | | | | | | | | | | | | | | Perlidae | | _ | | _ | | 1 | <1 | _ | | _ | | | | _ | | Agnetina | | | | | | | | | | | | | | | | Taenlopterygidae | | 3 | <1 | 2 | <1 | _ | | _ | | 1 | <1 | 1 | <1 | | | Taeniopteryx | | | | | | | | | | | | | | | | Hemipt <sup>e</sup> ra | | _ | | | | _ | | _ | | 2 | <1 | _ | | | | Corixidae | | | | | | | | | | | | | | | | Gerridae | | _ | | | | _ | | _ | | _ | | _ | | _ | | Trepobates | | | | | | | | | | | | | | | | Vel idae | | | | _ | | _ | | _ | | 1 | <1 | | | | | Microvelia | | | | 1 | <1 | 14 | <1 | 1 | <1 | 8 | 1 | 4 | <1 | 1 | <1 | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | _ | | _ | | | | _ | | _ | | _ | | Corydalus | | | | | | | | | | | | | | | | Sialidae | | | | _ | | 1 | <1 | 2 | <1 | | | _ | | _ | | Sialis | | | | | | | | | | | | | | | | Trichop*era | | | | | | | | | | | | | | | | Apataniidae | | _ | | _ | | _ | | _ | | | | | | _ | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | _ | | 4 | <1 | 2 | <1 | | | | | | | _ | | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | | | _ | | | | 1 | <1 | _ | | | | 2 | <1 | Glossosoma | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01472109 - Stony Run near Spring City, Pa. (Site 6)—Continued | Total count 12,760 12,265 2,082 9 8 50 6 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 14,61 1 | Date | | 0, 1981 | Oct. 1 | 9, 1982 | Oct. 2 | 0, 1983 | Oct. 9 | 9, 1984 | | 1, 1985 | Oct. 1 | 0, 1986 | Nov. 1 | 3, 1987 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|---------|--------|---------|--------|-----------|--------|---------|-------|---------|--------|---------|--------|---------| | Thichopters Hydropsychidae Ceratopsyche 130 | Total count | 1 2 | ,760 | 1, | 265 | 2, | 082 | 9 | 98 | 5 | 50 | 6 | 51 | 1, | 467 | | Hydropsychidae Caratagopthe 13 140 11 24 1 120 12 44 8 59 9 19 19 Cheumatopsyche 240 9 190 15 280 13 190 19 12 2 59 9 210 19 19 19 19 19 19 19 | Organism | Count | Percent | Count | Pircent | | Ceratopsyche 13 < 1 140 11 24 1 120 12 44 8 59 9 19 Cheumant psyche 130 11 88 7 190 9 190 13 85 15 64 10 86 Cheumant psyche 140 10 115 280 13 190 19 12 2 58 9 210 Cheumant psyche 140 9 190 15 280 13 190 19 12 2 58 9 210 Cheumant psyche 140 150 15 280 13 190 19 12 2 58 9 210 Cheumant psyche 140 150 15 280 13 190 19 12 2 58 9 210 Cheumant psyche 140 150 15 280 13 190 19 12 2 58 9 210 Cheumant psyche 140 150 15 280 13 190 19 12 2 58 9 2 110 Cheumant psyche 140 150 150 150 150 150 150 150 150 150 15 | _ | | | | | | | | | | | | | | | | Cheumatopsyche 240 9 190 15 280 13 190 19 12 2 59 9 210 Hydroptilidae Hydroptilidae Hydroptilidae Hydroptilidae Hydroptilidae Hydroptilidae Leptoceridae Mystadeds Philopotamidae Chimara 35 1 9 <1 19 <1 19 <1 18 3 110 16 62 Polycentropodidae Nyttiaphylax 4 <1 2 <1 2 <1 4 1 <1 2 <1 4 62 Polycentropodidae Nyttiaphylax 4 <1 2 <1 2 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 4 1 <1 2 <1 - 4 1 <1 2 <1 - 4 1 <1 2 < | | | | | | | | | | | | | | | | | Hydropsyche | Ceratopsyche | | | | 11 | | 1 | | | 44 | | | | | 1 | | Hydroptilidae | Cheumatopsyche | 310 | 11 | 88 | 7 | 190 | 9 | 130 | 13 | 85 | 15 | 64 | 10 | 86 | 6 | | Hydroptilis | Hydropsyche | 240 | 9 | 190 | 15 | 280 | 13 | 190 | 19 | 12 | 2 | 59 | 9 | 210 | 14 | | Leptocerichia 5 <1 12 <1 | Hydroptilidae | | | | | | | | | | | | | | | | Leptoceridae Mystacides Mystacides Mystacides Mystacides Mystacides Chimarra 35 1 9 1 19 2 4 4 2 18 3 110 16 62 | Hydroptila | 160 | 6 | 62 | 5 | 120 | 6 | 8 | <1 | 2 | <1 | 1 | <1 | 12 | <1 | | Mystacides | Leucotrichia | 5 | <1 | 12 | <1 | _ | | | | _ | | 5 | <1 | _ | | | Philopotamidae Chimarra 35 1 9 <1 19 <1 4 <1 18 3 110 16 62 Polyeentropodidae Nyctiophylax 4 <1 2 <1 2 <1 4 4 <1 4 | Leptoceridae | | | | | | | | | | | | | | | | Philopotamidae Chimarra 35 1 9 <1 19 <1 4 <1 18 3 110 16 62 Polyeentropodidae Nyctiophylax 4 <1 2 <1 2 <1 4 4 <1 - 4 | Mystacides | | | _ | | _ | | | | _ | | | | _ | | | Chimarra 35 | | | | | | | | | | | | | | | | | Polycentropodidae | | 35 | 1 | 9 | <1 | 19 | <1 | 4 | <1 | 18 | 3 | 110 | 16 | 62 | 4 | | Nyctiophylax | | | _ | • | - | | - | - | - | | _ | | | | _ | | Polycentropus — 9 <1 12 <1 — 1 <1 2 <1 — Psychomylidae Psychomylidae Psychomylidae Psychomylidae Psychomylidae Psychomylidae Psychomylidae Rhyacophilidae Rhyacophilidae Rhyacophilidae Rhyacophilidae Rhyacophilidae Report | | 4 | -1 | 2 | -1 | 2 | <b>~1</b> | _ | | _ | | 4 | -1 | | | | Psychomylidae | | _ | ~1 | | | | | | | 1 | -1 | | | | | | Psychomyla | | | | 3 | ~1 | 12 | _1 | | | | _1 | L | _1 | | | | Rhyacophilidae Rhyacophila Rhyacophila Rhyacophila Rhyacophila Uenoidae Neophylax Neophylax Pyralidae Petrophila Petrophila Petrophila Potrophila Potrophi | · · | 110 | 4 | 150 | 12 | 50 | 9 | 12 | 1 | | | , | -1 | 1 | _1 | | Nephylax | | 110 | 4 | 130 | 12 | วช | 3 | 12 | 1 | _ | | 1 | <1 | 1 | <1 | | Uenoidae Neophylax | | | | | | | | | | | | | | | | | Neophylax | | _ | | | | _ | | _ | | _ | | _ | | _ | | | Lepidoptera Pyralidae Petrophila | | | | | | | | | | | | | | | | | Pyralidae Petrophila - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | | | | _ | | _ | | | | _ | | _ | | _ | | | Petrophila | = = | | | | | | | | | | | | | | | | Dryopidae | Pyralidae | | | | | | | | | | | | | | | | Dryopidae | Petrophila | | | | | _ | | _ | | | | _ | | | | | Helichus | Coleoptera | | | | | | | | | | | | | | | | Dytiscidae | Dryopidae | | | | | | | | | | | | | | | | Elmidae Ancyronyx A. Variegata — — — — — — — — — — — — — — — — — — | Helichus | _ | | | | _ | | _ | | | | | | _ | | | Elmidae Ancyronyx A. Variegata — — — — — — — — — — — — — — — — — — | Dytiscidae | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | | A. Variegata — — — — — — — — — — — — — — — — — — | • | | | | | | | | | | | | | | | | A. variegata — — — — — — — — — — — — — — — — — — | Ancyronyx | | | | | | | | | | | | | | | | Dubiraphia 1 | • • | | | | | | | _ | | _ | | | | | | | Macronychus — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — <th< td=""><td>•</td><td>1</td><td>&lt;1</td><td>1</td><td>&lt;1</td><td>1</td><td>&lt;1</td><td></td><td></td><td>1</td><td>&lt;1</td><td>1</td><td>&lt;1</td><td>4</td><td>&lt;1</td></th<> | • | 1 | <1 | 1 | <1 | 1 | <1 | | | 1 | <1 | 1 | <1 | 4 | <1 | | Optioservus 17 <1 5 <1 50 2 21 2 7 1 5 <1 5 Stenelmis 40 1 26 2 75 4 25 3 9 2 21 3 15 Hydrophilidae Hydrochara — — — — 1 <1 | | | ~* | _ | | | | | | _ | | | | _ | ~* | | Stenelmis 40 | | | _1 | 5 | _1 | 50 | 2 | 21 | 2 | 7 | 1 | | _1 | 5 | <1 | | Hydrochara — — — — 1 <1 — — — — — — — — — — — — — | • | | | | | | | | | | | | | | 1 | | Hydrochara — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | | 40 | 1 | 20 | 4 | 13 | 7 | 23 | J | 3 | 2 | 2,1 | 3 | 13 | | | Psephenidae | | | | | | | | | -1 | | | | | | | | Ectopria — — — — 1 <1 | | _ | | | | | | 1 | <1 | | | | | | | | E. nervosa 2 <1 1 <1 2 <1 | | | | | | | | | | | | | | | | | Psephenus — — 5 <1 2 <1 — 1 <1 — Hymenoptera — — — — 1 <1 | | | | _ | | _ | | | | _ | | 1 | <1 | | | | Hymenoptera — — — — — — — 1 <1 — — — — Diptera Athericidae Atherix — — 1 <1 — — — — — — — — — — — — — — — | | 2 | <1 | _ | | | | | | _ | | | _ | _ | | | Diptera Athericidae Atherix — — 1 <1 — — — — — — — — — — — — — — — | <del>-</del> | _ | | _ | | 5 | <1 | 2 | <1 | _ | | 1 | <1 | _ | | | Athericidae Atherix — — 1 <1 — — — — — — — — — — — — — — — | | _ | | _ | | | | _ | | 1 | <1 | _ | | _ | | | Atherix — — — 1 <1 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —< | <u>-</u> | | | | | | | | | | | | | | | | Ceratopogonidae 1 <1 | | | | | | | | | | | | | | | | | Chironomidae 910 33 220 17 770 37 140 14 320 57 120 18 390 Empididae Hemerodromia 6 <1 10 <1 9 <1 6 <1 1 <1 5 <1 7 Muscidae Limnophora — — — — — — — — — — — — — — — — — — — | | | | | | 1 | <1 | _ | | _ | | _ | | - | | | Chironomidae 910 33 220 17 770 37 140 14 320 57 120 18 390 Empididae Hemerodromia 6 <1 10 <1 9 <1 6 <1 1 <1 5 <1 7 Muscidae Limnophora — — — — — — — — — — — — — — — — Simultidae | Ceratopogonidae | 1 | <1 | _ | | | | _ | | _ | | | | | | | Empididae **Hemerodromia** 6 <1 10 <1 9 <1 6 <1 1 <1 5 <1 7 **Muscidae** **Limnophora** — — — — — — — — — — — — — — — — — Simuliidae | | 910 | 33 | 220 | 17 | 770 | 37 | 140 | 14 | 320 | 57 | 120 | 18 | 390 | 26 | | Hemerodromia | Empididae | | | | | | | | | | | | | | | | Muscidae Limnophora — — — — — — — — — — — — — — — Simuliidae | | 6 | <1 | 10 | <1 | 9 | <1 | 6 | <1 | 1 | <1 | 5 | <1 | 7 | <1 | | Limnophora — — — — — — — — — — — — — — — — — — — | | • | | | | - | | - | | - | | - | | • | | | Simuliidae | | | | | | _ | | _ | | _ | | _ | | _ | | | | • | _ | | _ | | _ | | | | _ | | _ | | _ | | | Similisim 540 10 110 9 20 2 79 9 9 2 2 1 140 | Simulium | 540 | 19 | 110 | 8 | 39 | 2 | 78 | 8 | 8 | 2 | 6 | <1 | 140 | 9 | | 80 10 70 3 270 13 120 8 43 6 200 20 190 19 Cheumatopsycle 190 23 470 22 650 31 180 12 150 22 310 31 120 12 Hydroptyche Hydroptilidae Hydroptilidae 21 3 11 <1 7 <1 9 <1 10 1 9 <1 17 2 Hydroptilia — — — — — — — — Leucotrichia Leptoceridae Mystacides Prilopotamidae 51 6 49 2 78 4 120 8 55 8 83 8 20 2 Chimarra | | , 1988 | Oct. 1 | 1, 1989 | Oct. 4 | 1, 1990 | Oct. 8 | 3, 1991 | Oct. 8 | 3, 1992 | Oct. 8 | 3, 1993 | Nov. 1 | , 1994 | Date | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|--------|---------|------------------|-----------|--------|---------|--------|---------|--------|---------|--------|-----------|-------------------| | Trichorters | 1 8 | 316 | 2, | 122 | 2, | 129 | 1, | 489 | 6 | 71 | 9 | 93 | 1,0 | 010 | Toʻal count | | | Count | Percent Organism | | 12 | | | | | | | | | | | | | | | | | 80 10 70 3 270 13 120 8 43 6 200 20 190 19 Cheumatopyce | | | | | | | | | | | | | | | | | 190 23 470 22 650 31 180 12 150 22 310 31 120 12 Hydropytiklae | 100 | | _ | | | | | | | | _ | | | | | | Hydroptillace | | 10 | | | | | | | | | | | 190 | | Cheumatopsyche | | 21 3 11 <1 7 <1 9 <1 10 1 9 <1 17 2 Hydroptila | 190 | 23 | 470 | 22 | 650 | 31 | 180 | 12 | 150 | 22 | 310 | 31 | 120 | 12 | Hydropsyche | | | | | | | | | | | | | | | | | Hydroptilidae | | Leptoceridae Mystacides Mystacides Mystacides Mystacides Mystacides Pilopotamidae Chimarra Proliverintopodidae All 10 | 21 | 3 | 11 | <1 | 7 | <1 | | | 10 | 1 | 9 | <1 | 17 | 2 | Hydroptila | | | _ | | _ | | - | | 3 | <1 | - | | _ | | _ | | Leucotrichia | | Prilopotantidae | | | | | | | | | | | | | | | | | 51 | _ | | 1 | <1 | 1 | <1 | 2 | <1 | _ | | _ | | _ | | | | Pelycentropodida | | | | | | | | | | | | | | | Pł ilopotamidae | | | 51 | 6 | 49 | 2 | 78 | 4 | 120 | 8 | 55 | 8 | 83 | 8 | 20 | 2 | Chimarra | | | | | | | | | | | | | | | | | Pclycentropodidae | | Psychomylidae | _ | | 7 | <1 | 34 | 2 | 2 | <1 | 12 | 2 | 18 | 2 | 16 | 2 | Nyctiophylax | | 8 | | | 1 | <1 | 1 | <1 | 4 | <1 | 7 | 1 | _ | | 1 | <1 | Polycentropus | | | | | | | | | | | | | | | | | Psychomylidae | | Ri | 8 | 1 | 110 | 5 | 18 | <1 | 20 | 1 | 8 | 1 | 2 | <1 | 7 | <1 | | | Color Colo | | | | | | | | | | | | | | | | | Urnoidae Neophylax Neoph | | | | | _ | | 1 | <1 | _ | | | | | | | | Lepidcrotera Pyralidae Pyralidae Pyralidae Petrophila Coleogrera Diyopidae Telephilae Telephilae Diyopidae Telephilae Telephilae Diyopidae Telephilae Teleph | | | | | | | | | | | | | | | | | Lepidcrotera Pyralidae Pyralidae Pyralidae Petrophila Coleogrera Diyopidae Telephilae Telephilae Diyopidae Telephilae Telephilae Diyopidae Telephilae Teleph | 5 | <1 | 2 | <1 | | | | | _ | | _ | | 29 | 3 | Neophylax | | Pyralidae Pyr | | | | | | | | | | | | | | | Lepidontera | | | | | | | | | | | | | | | | | | | Coleoptera Dryopidae Elmidae Ancyronyx Ancyronyx Ancyronyx Ancyronyx Ancyronyx Ancyronyx Ancyropidae Dryopidae Dry | | | _ | | _ | | _ | | _ | | - | | 2 | <1 | | | Dryopidae | | | | | | | | | | | | | | | | | - 1 <1 1 <1 | | | | | | | | | | | | | | | | | Dytiscidae Elmidae Ancyronyx Ancyr | | | 1 | <1 | 1 | <1 | | | | | _ | | _ | | | | Einidae Ancyronyx | | | | | _ | | | | | | | | _ | | | | Ancyronyx | | | | | | | | | | | | | | | <del>-</del> | | | | | | | | | | | | | | | | | | | - 23 1 8 <1 1 <1 Dubiraphia 1 1 <1 1 <1 Dubiraphia 33 2 18 <1 41 3 39 6 2 <1 29 3 Optioservus 26 3 46 2 73 3 47 3 8 1 45 5 2 <1 Stenelmis Hydrochara Hydrochara 1 <1 2 <1 Hydrochara 1 <1 2 <1 Hydrochara 1 <1 2 <1 Hydrochara Hydrochara 1 <1 2 <1 Hydrochara Hydrochara Hydrochara Hydrochara Hydrochara Hydrochara Hydrochara Hydrochara | | | _ | | _ | | _ | | | | 2 | <1 | 1 | <1 | | | 1 | | | 23 | 1 | 8 | <1 | | | | | _ | | | | = | | — 33 2 18 <1 41 3 39 6 2 <1 29 3 Optioservus 26 3 46 2 73 3 47 3 8 1 45 5 2 <1 Stenelmis — — — — — — — — — — — — — — — — — — — | | | | | | | | | | | | | | | | | 26 | | | 33 | 2 | | | 41 | 3 | 39 | 6 | 2 | <1 | 29 | 3 | | | Hydrophilidae Hydrochara Psophenidae Ectopria 1 <1 2 <1 Enervosa - 1 <1 1 <1 Hymenoptera Diptera 1 <1 Hymenoptera Diptera 1 <1 Ccratopogonidae 1 <1 Ccratopogonidae 170 21 430 20 390 19 330 22 67 10 130 13 250 25 Ct fronomidae | 26 | 3 | | | | | | | | | | | | | | | Hydrochara Psiphenidae Psiphenidae Psiphenidae Psiphenidae Psiphenidae Psiphenidae Psiphenidae Psiphenidae Ectopria E. nervosa | | • | | | | • | | - | • | _ | | • | _ | | | | Ps:phenidae Ectopria 1 <1 1 <1 2 <1 Hymenoptera - 1 <1 1 <1 Hymenoptera Diptera Athericidae 1 <1 Hymenoptera Diptera Atherix 1 <1 Ccratopogonidae 170 21 430 20 390 19 330 22 67 10 130 13 250 25 Ci tronomidae Empididae 3 <1 42 2 19 <1 18 1 - 4 <1 12 1 Hemerodromia Muscidae Limnophora Simuliidae | | | _ | | _ | | _ | | | | | | _ | | | | | | | | | | | | | | | | | | | | | 1 <1 2 <1 Enervosa - 1 <1 1 <1 3 <1 1 <1 Psephenus Hymenoptera Diptera 1 <1 Atherix Ceratopogonidae 170 21 430 20 390 19 330 22 67 10 130 13 250 25 Ci tronomidae Empididae 3 <1 42 2 19 <1 18 1 - 4 <1 12 1 Hemerodromia M:scidae - 1 <1 | | | _ | | _ | | | | - | | | | _ | | | | - 1 <1 1 <1 - 3 <1 1 <1 Psephenus Hymenoptera Diptera Athericidae 1 <1 Atherix Ceratopogonidae 170 21 430 20 390 19 330 22 67 10 130 13 250 25 Ch ronomidae 170 21 42 2 19 <1 18 1 - 4 <1 12 1 Hemerodromia M iscidae - 1 <1 Limnophora Simuliidae | | | | | _ | | 1 | <1 | 2 | <1 | _ | | _ | | E. nervosa | | | | | 1 | <1 | 1 | <b>~1</b> | _ | | _ | ~* | 3 | <1 | 1 | <b>~1</b> | | | Diptera Athericidae Athericidae Athericidae Athericidae Athericidae Athericidae Atherix Ceratopogonidae I70 21 430 20 390 19 330 22 67 10 130 13 250 25 Ch tronomidae Empididae Simuliidae Empididae I I I Hemerodromia Muscidae I Imnophora Simuliidae I Imnophora Simuliidae I I I I I I I I I | | | _ | | _ | ~- | | | _ | | _ | • | _ | ~* | | | Athericidae Athericidae Atherix Atherix Ceratopogonidae 170 21 430 20 390 19 330 22 67 10 130 13 250 25 Chronomidae Empididae Simuliidae Atherix A | | | | | | | | | | | | | | | · • | | 1 <1 | | | | | | | | | | | | | | | | | Ceratopogonidae 170 21 430 20 390 19 330 22 67 10 130 13 250 25 Cl †ronomidae Empididae 3 <1 42 2 19 <1 18 1 - 4 <1 12 1 Hemerodromia Muscidae - 1 <1 Limnophora Simuliidae | | | | | 1 | _1 | | | | | | | | | | | 170 21 430 20 390 19 330 22 67 10 130 13 250 25 Chironomidae Empididae 3 <1 42 2 19 <1 18 1 — 4 <1 12 1 Hemerodromia - | | | | | | ~1 | | | | | _ | | | | | | Empididae 3 <1 42 2 19 <1 18 1 — 4 <1 12 1 | 170 | 21 | 430 | 20 | 300 | 10 | 330 | 22 | 67 | 10 | 130 | 12 | 250 | 25 | | | 3 <1 42 2 19 <1 18 1 — 4 <1 12 1 Hemerodromia Muscidae — 1 <1 — — — — — — Limnophora Simuliidae | 110 | 21 | 430 | 20 | J <del>5</del> U | 19 | 330 | 22 | 01 | 10 | 130 | 13 | 230 | ۵J | | | | 9 | _1 | 42 | • | 10 | .1 | 10 | , | | | 4 | . 1 | 12 | 1 | - | | 1 <1 Limnophora Simuliidae | 3 | <1 | 42 | ۷ | 19 | <1 | 19 | 1 | _ | | 4 | <1 | 12 | 1 | | | Simuliidae | | | | 1 | | | | | | | | | | | | | | | | 1 | <1 | _ | | _ | | _ | | | | - | | | | 11 1 110 3 3 <1 2 <1 4 <1 8 <1 Simultum | 11 | | 110 | _ | - | | • | . 4 | 4 | | | | 0 | .1 | | | | 11 | 1 | 110 | 3 | 3 | <1 | ۷ | <1 | 4 | <1 | _ | | 8 | <1 | Simulum | Table 5. Benthic-macroinvertebrate data—Continued 01472109 - Stony Run near Spring City, Pa. (Site 6)—Continued | Date | Oct. 2 | Oct. 20, 1981 | | Oct. 19, 1982<br>1,265 | | 0, 1983 | Oct. 9 | , 1984 | Oct. 1 | 1, 1985 | Oct. 10, 1986 | | Nov. 13, 1987 | | |-------------|--------|---------------|-------|------------------------|-------|---------|--------|---------|--------|---------|---------------|---------|---------------|-------------| | Total count | 12 | | | | | 2,082 | | 998 | | 550 | | 651 | | <b>4</b> €7 | | Organism | Count | Percent | Diptera | | | | | | | | | | | | | | | | Tabanidae | | | | | | | | | | | | | | | | Tabanus | 1 | <1 | _ | | | | _ | | _ | | _ | | _ | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 20 | <1 | 28 | 2 | 47 | 2 | 71 | 7 | 1 | <1 | 6 | <1 | 49 | 3 | | Hexatoma | | | _ | | | | _ | | | | _ | | _ | | | Tipula | 1 | <1 | _ | | 2 | <1 | _ | | | | 5 | <1 | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 9 | Nov. 9, 1988 | | 1, 1989 | Oct. 4 | , 1990 | Oct. 8 | 3, 1991 | Oct. 8 | 3, 1992 | Oct. 8 | 3, 1993 | Nov. | I, 1994 | Date | |--------|--------------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|-------------| | 1 8 | 316 | 2, | 122 | 2, | 129 | 1,4 | 489 | 6 | 671 | | 93 | 1,0 | 010 | Total count | | Count | Percent Onanism | | | | | | | | - | | | | | | | | Diptera | | | | | | | | | | | | | | | | Tat anidae | | | | | | | | _ | | _ | | _ | | | | Tabanus | | | | | | | | | | | | | | | | Tip didae | | 5 | <1 | 63 | 3 | 28 | 1 | 32 | 2 | 5 | <1 | 3 | <1 | 31 | 3 | Antocha | | 3 | <1 | | | _ | | _ | | _ | | _ | | _ | | Hexatoma | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued 01472110 - Stony Run at Spring City, Pa. (Site 7) | Date | Oct. 2 | 0, 1981 | Oct. 19, 1982 | | | | |-----------------------------|--------|---------|---------------|-----|--|--| | Total count | | 507 | | 787 | | | | Organism | | Percent | | | | | | Platyhelminthes (flatworms) | | 1 0.00 | | | | | | Turbellaria | | | | | | | | Tricladida | | | | | | | | Planarlidae | 110 | 7 | 120 | 7 | | | | Mollusca (molluscs) | | | | | | | | Gastropoda | | | | | | | | Basommatophora | | | | | | | | Ancylidae | | | | | | | | Ferrissia | 1 | <1 | _ | | | | | Planorbidae | | | | | | | | Helisoma | 1 | <1 | | | | | | Bivalvia | | | | | | | | Veneroida | | | | | | | | Sphaeriidae | _ | | 2 | <1 | | | | Annelida (segmented worms) | | | | | | | | Oligochaeta | 8 | <1 | 30 | 2 | | | | Arthropoda (arthropods) | | | | | | | | Acariformes | | | | | | | | Hydrachnidia | _ | | 1 | <1 | | | | Crustacea | | | | | | | | Isopoda | | | | | | | | Asellidae | 1 | <1 | | | | | | Caecidotea | 25 | 2 | 14 | <1 | | | | Insecta | | | | | | | | Ephemeroptera | | | | | | | | Baetidae | | | | | | | | Baetis | 52 | 3 | 130 | 7 | | | | Caenidae | | | | | | | | Caenis | 7 | <1 | 1 | <1 | | | | Ephemerellidae | | | | | | | | Ephemerella | 8 | <1 | 2 | <1 | | | | Heptageniidae | | | | | | | | Stenonema | 180 | 12 | 58 | 3 | | | | Isonychiidae | | | | | | | | Isonychia | 61 | 4 | 1 | <1 | | | | Odonata | | | | | | | | Coenagrionidae | | | | | | | | Argia | 12 | <1 | _ | | | | | Hemiptera | | | | | | | | Veliidae | | | | | | | | Rhagovelia | | | 1 | <1 | | | | Megaloptera | | | | | | | | Sialidae | | | | | | | | Sialis | 2 | <1 | _ | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01472110 - Stony Run at Spring City, Pa. (Site 7)—Continued | Date | Oct. 2 | 0, 1981 | Oct. 19, 1982 | | | | |-------------------|--------|---------|---------------|---------|--|--| | Total count | 1,5 | 507 | 1,7 | 787 | | | | Organism | Count | Percent | Count | Percent | | | | Trichoptera | | | | | | | | Glossosomatidae | | | | | | | | Glossosoma | 4 | <1 | 1 | <1 | | | | Hydropsychidae | | | | | | | | Ceratopsyche | 4 | <1 | 4 | <1 | | | | Cheumatopsyche | 200 | 13 | 110 | 6 | | | | Hydropsyche | 230 | 15 | 150 | 8 | | | | Hydroptilidae | | | | | | | | Hydroptila | 14 | <1 | 22 | 1 | | | | Leucotrichia | | | 19 | 1 | | | | Philopotamidae | | | | | | | | Chimarra | 200 | 13 | 51 | 3 | | | | Polycentropodidae | | | | | | | | Nyctiophylax | 2 | <1 | _ | | | | | Polycentropus | 6 | <1 | | | | | | Coleoptera | | | | | | | | Elmidae | | | | | | | | Dubiraphia | | | 1 | <1 | | | | Optioservus | 45 | 3 | 5 | <1 | | | | Stenelmis | 36 | 2 | 29 | 2 | | | | Psephenidae | | | | | | | | Ectopria | 1 | <1 | | | | | | Psephenus | 13 | <1 | 3 | <1 | | | | Diptera | | | | | | | | Athericidae | | | | | | | | Atherix | 3 | <1 | | | | | | Chironomidae | 250 | 17 | 320 | 18 | | | | Empididae | | | | | | | | Hemerodromia | 4 | <1 | 17 | <1 | | | | Simuliidae | | | | | | | | Simulium | 18 | 1 | 680 | 38 | | | | Tabanidae | | | | | | | | Tabanus | 1 | <1 | | | | | | Tipulidae | | | | | | | | Antocha | 4 | <1 | 14 | <1 | | | | Tipula | 4 | <1 | 1 | <1 | | | Table 5. Benthic-macroinvertebrate data—Continued 01472126 - French Creek at Trythall, Pa. (Site 41) | Date | Oct. 2 | 6, 1982 | |----------------------------|--------|---------| | Total count | | 15 | | Organism | Count | Percent | | Nemertea (proboscis worms) | | | | Enopla | | | | Hoplonemertea | | | | Tetrastemmatidae | | | | Prostoma | 5 | 3 | | Mollusca (molluscs) | • | • | | Gastropoda | | | | Basommatophora | | | | Ancylidae | | | | Ferrissia | 1 | <1 | | Annelida (segmented worms) | | | | Oligochaeta | | | | Tubificida | | | | Naididae | 2 | 1 | | Arthropoda (arthropods) | | | | Acariformes | | | | Hydrachnidia | 2 | 1 | | Insecta | | | | Ephemeroptera | | | | Ephemerellidae | | | | Ephemerella | 10 | 5 | | Heptageniidae | | | | Stenonema | 10 | 5 | | Plecoptera | | | | Taeniopterygidae | | | | Taeniopteryx | 32 | 15 | | Megaloptera | | | | Corydalidae | | | | Nigronia | 1 | <1 | | Trichoptera | | | | Brachycentridae | | | | Brachycentrus | 3 | 2 | | Glossosomatidae | | | | Glossosoma | 3 | 2 | | Goeridae | | | | Goera | 3 | 2 | | Hydropsychidae | | | | Ceratopsyche | 2 | 1 | | Cheumatopsyche | 72 | 33 | | Hydropsyche | 11 | 5 | | Leptoceridae | | _ | | Oecetis | 13 | 6 | | Polycentropodidae | _ | _ | | Nyctiophylax | 1 | <1 | | Polycentropus | 1 | <1 | Table 5. Benthic-macroinvertebrate data—Continued 01472126 - French Creek at Trythall, Pa. (Site 41)—Continued | Date | Oct. 2 | 6, 1982 | |--------------|--------|---------| | Total count | 2 | 15 | | Organism | Count | Percent | | Coleoptera | | | | Elmidae | | | | Optioservus | 1 | <1 | | Promoresia | 1 | <1 | | Stenelmis | 1 | <1 | | Diptera | | | | Chironomidae | 33 | 15 | | Empididae | | | | Hemerodromia | 5 | 3 | | Ephydridae | | | | Simuliidae | | | | Simulium | 1 | <1 | | Tipulidae | | | | -<br>Tipula | 1 | <1 | Table 5. Benthic-macroinvertebrate data—Continued 01472129 - French Creek near Knauertown, Pa. (Site 11) | Date | Oct. 2 | 2, 1981 | Oct. 2 | 6, 1982 | |-----------------------------|--------|---------|--------|---------| | Total count | 1,0 | 078 | 2, | 186 | | Organism | Count | Percent | Count | Percent | | Platyhelminthes (flatworms) | | | | | | Turbellaria | | | | | | Tricladida | | | | | | Planariidae | 7 | <1 | 29 | 1 | | Nematoda (nematodes) | 1 | <1 | | | | Nemertea (proboscis worms) | | | | | | Enopla | | | | | | Hoplonemertea | | | | | | Tetrastemmatidae | | | | | | Prostoma | _ | | 3 | <1 | | Mollusca (molluscs) | | | | | | Gastropoda | | | | | | Mesogastropoda | | | | | | Hydrobildae | | | | | | Amnicola | _ | | 1 | <1 | | Annelida (segmented worms) | | | | | | Oligochaeta | | | | | | Tubificida | | | | | | Naididae | 5 | <1 | _ | | | Arthropoda (arthropods) | | | | | | Acariformes | | | | | | Hydrachnidia | 41 | 4 | 36 | 2 | | Crustacea | | | | | | Amphipoda | | | | | | Talitridae | | | | | | Hyallela | | | | | | H. azteca | 1 | <1 | 4 | <1 | | Insecta | | | | | | Ephemeroptera | | | | | | Baetidae | | | | | | Baetis | 38 | 3 | 27 | 1 | | Pseudocloeon | 6 | <1 | 6 | <1 | | Ephemerellidae | | | | | | Ephemerella | 55 | 5 | 55 | 3 | | Heptageniidae | | | | | | Stenonema | 42 | 4 | 60 | 3 | | Isonychiidae | | | | | | Isonychia | 15 | 1 | 10 | <1 | | Leptohyphidae | | | | | | Tricorythodes | 2 | <1 | _ | | | Leptophlebiidae | | | | | | Paraleptophlebia | 1 | <1 | 10 | <1 | | Plecoptera | | | | | | Capniidae | | | | | | Allocapnia | _ | | 11 | <1 | | Chloroperlidae | _ | | 5 | <1 | | Perlidae | | | | | | Acroneuria | | | 2 | <1 | | Paragnetina | | | 1 | <1 | | Taeniopterygidae | | | | | | Strophopteryx | 23 | 2 | _ | | | Taeniopteryx | 18 | 2 | 53 | 2 | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01472129 - French Creek near Knauertown, Pa. (Site 11)—Continued | Date | Oct. 2 | 2, 1981 | Oct. 26, 1982 | | | | |-------------------------|--------|---------|---------------|---------|--|--| | Total count | 1,0 | 078 | 2, | 186 | | | | Organism | Count | Percent | Count | Percent | | | | Megaloptera | | | | | | | | Corydalidae | | | | | | | | Nigronia | 2 | <1 | 1 | <1 | | | | Trichoptera | | | | | | | | Aptaniidae | | | | | | | | Apatania | _ | | 2 | <1 | | | | Brachycentridae | | | | | | | | Brachycentrus | 1 | <1 | _ | | | | | Micrasema | _ | | 2 | <1 | | | | Glossosomatidae | | | | | | | | Glossosoma | 91 | 8 | 35 | 2 | | | | Hydropsychidae | | | | | | | | Ceratopsyche | 26 | 2 | 290 | 13 | | | | Cheumatopsyche | 54 | 5 | 260 | 12 | | | | Hydropsyche | 230 | 21 | 76 | 3 | | | | Hydroptilidae | | | | | | | | Hydroptila | 71 | 6 | 120 | 5 | | | | Leucotrichia | 6 | <1 | _ | | | | | Leptoceridae | | | | | | | | Mystacides | _ | | 5 | <1 | | | | Oecetis | 1 | <1 | _ | | | | | Triaenodes | 1 | <1 | _ | | | | | Philopotamidae | - | • | | | | | | Chimarra | 71 | 6 | 120 | 5 | | | | Polycentropodidae | • • | · | 120 | | | | | Nyctiophylax | | | 1 | <1 | | | | Polycentropus | 1 | <1 | 1 | <1 | | | | Psychomyiidae | • | | • | ~1 | | | | Psychomyia | 3 | <1 | _ | | | | | Rhyacophilidae | • | | | | | | | Rhyacophila | | | 2 | <1 | | | | Coleoptera | | | - | ~. | | | | Dryopidae | | | | | | | | Helichus | | | 1 | <1 | | | | Elmidae | | | | ~1 | | | | Ancyronyx | | | | | | | | A.variegata | _ | | 1 | <1 | | | | Optioservus | 35 | 3 | 57 | 3 | | | | Oulimnius | 1 | <1 | 8 | <1 | | | | Promoresia | 6 | <1 | 4 | <1 | | | | Stenelmis | 9 | <1 | 11 | <1 | | | | Psephenidae | 3 | <1 | 11 | <1 | | | | Ectopria | | | | | | | | E. nervosa | 1 | <1 | | | | | | | 1 | <1 | | | | | | Diptera<br>Chiranamidae | 170 | 15 | 560 | 25 | | | | Chironomidae | 170 | 15 | 560 | 23 | | | | Empididae | c | _1 | 2 | .1 | | | | Hemerodromia | 6 | <1 | 2 | <1 | | | | Ephydridae | _ | | 1 | <1 | | | | Simuliidae | 10 | | 270 | 10 | | | | Simulium | 12 | 1 | 270 | 12 | | | | Tipulidae | 0.5 | ^ | 40 | • | | | | Antocha | 25 | 2 | 43 | 2 | | | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01472138 - French Creek near Coventryville, Pa. (Site 13) | Date | Oct. 21, 1981 | | Nov. | 1, 1982 | Oct. 1 | 8, 1983 | Oct. 1 | 0, 1984 | Oct. 1 | 0,1985 | Oct. 22, 1986 | | Oct. 16, 1987 | | |--------------------------------------|---------------|---------|-------|---------|--------|---------|--------|---------|--------|---------|---------------|---------|---------------|---------| | Total count | 1, | 542 | 1 2 | ,380 | 11 | ,615 | 11 | ,295 | 5 | 35 | 1, | 395 | 1,338 | | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 1 | <1 | 5 | <1 | 3 | <1 | | | 12 | 2 | 7 | <1 | | | | Nematoda (nematodes) | _ | | _ | | _ | | | | _ | | | | | | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | 5 | <1 | | | 1 | <1 | _ | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 8 | <1 | 3 | <1 | 11 | <1 | 64 | 5 | 8 | 2 | 21 | 2 | 10 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | | | | | _ | | | | _ | | | | | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | _ | | | | _ | | | | _ | | | | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaerlidae | | | | | | | | | 1 | <1 | | | _ | | | Pisidium | | | 3 | <1 | _ | | _ | | | | | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | _ | | | | _ | | _ | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | 15 | <1 | 3 | <1 | _ | | 3 | <1 | 1 | <1 | | | 4 | <1 | | Tubificida | | _ | _ | _ | | | _ | - | - | | | | _ | - | | Naididae | 4 | <1 | 3 | <1 | | | _ | | _ | | | | | | | Arthropoda (arthropods) | • | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 18 | 1 | | | _ | | _ | | | | 13 | <1 | 21 | 2 | | Crustacea | 10 | • | | | | | | | | | 10 | ~* | | _ | | Cladocera | _ | | | | _ | | | | | | | | | | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | _ | | | | | | _ | | _ | | _ | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | | | | | | | | | | | | | | | _ | | | | | | | | | | _ | | _ | | | Podocopa | _ | | | | _ | | | | | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | 4 | .4 | n | .4 | _ | | 11 | | , | .4 | | | | | | Baetis | 4 | <1 | 8 | <1 | 5 | <1 | 11 | <1 | 4 | <1 | 3 | .4 | - | . 1 | | Pseudocloeon | 3 | <1 | | | 13 | <1 | 13 | 1 | 9 | 2 | 3 | <1 | 10 | <1 | | Caenidae | • | | | | | | | | | | | | | | | Caenis | 2 | <1 | | | | | | | _ | | _ | | | | | Ephemerellidae | | _ | | _ | | _ | 40 | | | _ | •• | _ | | _ | | Ephemerella | 55 | 3 | 51 | 2 | 40 | 3 | 48 | 4 | 13 | 2 | 32 | 2 | 16 | 1 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | 7 | <1 | 21 | <1 | 16 | 1 | 19 | 1 | _ | | _ | | 1 | <1 | | Stenonema | 170 | 11 | 96 | 4 | 88 | 6 | 85 | 7 | 18 | 3 | 49 | 3 | 23 | 2 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 91 | 6 | 43 | 2 | 43 | 3 | 56 | 4 | 6 | 1 | 65 | 5 | 13 | 1 | | Oct. | 20, 1988 | Oct. 2 | 3, 1989 | Nov. 1 | 6, 1990 | Oct. | 9, 1991 | Oct. 1 | 5, 1992 | Oct. 1 | 4, 1993 | Oct. 2 | 7, 1994 | Date | |---------|-----------|---------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|--------|---------|----------------|---------|--------|----------|------------------------------------------------------------------------------------------| | 1 | ,846 | 1,6 | 643 | 1, | 507 | 5 | 97 | 5 | 73 | 7 | 32 | 1, | 029 | Total count | | Coun | t Percent | Count | Percent | Organism | | _ | | 3 4 | <1<br><1 | 13<br>3 | <1<br><1 | 1 1 | <1<br><1 | _ | - | 19 | 3 | 2 2 | <1<br><1 | Platyhelminthes (flatv°orms) Turbellaria Tricladida Planariidae Nematoda (nematodea) | | | | | | | | - | • | | | | | - | • | Nemertea (proboscis vorms) Enopla Hoplonemerta Tetrastemmatidae | | | | 10 | <1 | 1 | <1 | _ | | _ | | | | _ | | Prostoma Mollusca (molluscs) Gastropoda Basommatophora Ancylida: | | 3 | <1 | 10 | <1 | 6 | <1 | 21 | 3 | 10 | 2 | 15 | 2 | 45 | 5 | Ferri via | | _ | | 1 | <1 | 1 | <l< td=""><td>_</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>Physidae<br/><i>Physi</i><br/>Planorbidae</td></l<> | _ | | - | | - | | - | | Physidae<br><i>Physi</i><br>Planorbidae | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | Gyra ı lus | | | | | | | | | | | | | | | | Bivalvia | | | | _ | | | | _ | | | | _ | | | | Veneroida<br>Sphaeriic'ae | | _ | | 2 | <1 | 2 | <1 | _ | | _ | | _ | | | | Pisid'um | | _ | | | | _ | | _ | | 9 | 2 | 3 | <1 | 2 | <1 | Annelida (segmented worms) Oligochaeta | | | | | | | | | | · | - | · | ~1 | - | ~1 | Lumbriculida | | | | 24 | 1 | 12 | <1 | 3 | <1 | _ | | | | | | Lumbriculidae<br>Tubificida | | _ | | 5 | <1 | _ | | 2 | <1 | | | 4 | <1 | 1 | <1 | Naididae | | | | | | | | | | | | | | | | Arthropoda (arthropods) Acariformes | | _ | | 200 | 12 | 45 | 3 | 4 | <1 | 14 | 2 | 54 | 7 | 46 | 5 | Hydrachnidia<br>Crustacea | | | | 2 | <1 | | | _ | | | | | | _ | | Cladocera | | | | 3 | <1 | 1 | <1 | _ | | _ | | 1 | <1 | 1 | <1 | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | | 1 | <1 | _ | | _ | | | | | | | | Gammaridae<br><i>Gammarus</i> | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeropte <sup>-</sup> a<br>Baetidae | | _ | | 1 | .1 | _<br>4 | .1 | 1 | <1 | | | 1 | <1 | | | Baeti:<br>Pseudocloeon | | 11 | <1 | 1 | <1 | 4 | <1 | 36 | 6 | | | 2 | <1 | _ | | <i>Pseutocioeon</i> Caenidae | | _ | | | | _ | | _ | | _ | | _ | | _ | | Caen's | | | | | | | | | | | | | | | | Ephemenellidae | | 24 | 1 | 73 | 4 | 70 | 5 | 5 | <1 | 7 | 1 | 8 | 1 | 11 | 1 | Ephemerella | | 2 | <1 | 9 | <1 | 9 | _1 | | | | | , | .1 | | | Heptageriidae | | 3<br>32 | <1<br>2 | 3<br>69 | <1<br>4 | 2<br>25 | <1<br>2 | 39 | 6 | 98 | 17 | 1<br><b>42</b> | <1<br>6 | 16 | 2 | Epeorus<br>Stenonema | | - | - | | • | _• | - | | • | | | | • | | - | Isonychiidae | | 64 | 3 | 110 | 6 | 8 | <1 | | | 27 | 5 | 22 | 3 | 23 | 2 | Isonychia | Table 5. Benthic-macroinvertebrate data—Continued 01472138 - French Creek near Coventryville, Pa. (Site 13)—Continued | Date | Oct. 21, 1981 Nov. 4, 198 | | | 1, 1982 | Oct. 1 | 8, 1983 | Oct. 10, 1984 | | Oct. 10,1985 | | Oct. 22, 1986 | | Oct. 1€, 1987 | | |------------------|---------------------------|---------|-------|---------|--------|---------|---------------|---------|--------------|---------|---------------|---------|---------------|---------| | Total count | 1, | 542 | 12 | ,380 | 1 1, | ,615 | 1 1 | ,295 | 5 | 35 | 1,395 | | 1,338 | | | Organism | Count | Percent | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | _ | | _ | | | | | | _ | | _ | | | Gomphidae | _ | | | | _ | | | | _ | | _ | | _ | | | Ophiogomphus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 3 | <1 | 24 | 1 | 5 | <1 | | | 1 | <1 | 1 | <1 | 11 | <1 | | Chloroperlidae | 1 | <1 | 5 | <1 | | | 3 | <1 | _ | | 1 | <1 | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | 10 | <1 | - | | 3 | <1 | 3 | <1 | 1 | <1 | 4 | <1 | 1 | <1 | | Agnetina | 6 | <1 | 3 | <1 | _ | | _ | | _ | | - | | _ | | | Paragnetina | - | | | | | | _ | | _ | | 1 | <1 | 2 | <1 | | Taeniopterygidae | | | | | | | | | | | | | | | | Strophopteryx | 16 | 1 | 150 | 6 | 3 | <1 | | | | | _ | | | | | Taeniopteryx | 32 | 2 | 29 | 1 | 56 | 3 | 16 | 1 | 3 | <1 | 14 | 1 | 80 | 6 | | Hemiptera | | | | | | | | | | | | | | | | Saldidae | _ | | _ | | 3 | <1 | | | _ | | _ | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 1 | <1 | - | | _ | | - | | 1 | <1 | 1 | <1 | _ | | | Nigronia | | | _ | | _ | | | | 1 | <1 | | | | | | Sialidae | | | | | | | | | | | | | | | | Sialis | | | - | | _ | | | | _ | | _ | | _ | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | 19 | 1 | 11 | <1 | 5 | <1 | 3 | <1 | 1 | <1 | _ | | 2 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Brachycentrus | _ | | _ | | _ | | | | 1 | <1 | | | _ | | | Micrasema | 170 | 11 | 72 | 3 | 130 | 8 | 3 | <1 | 22 | 4 | 60 | 4 | 21 | 2 | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 14 | <1 | 29 | 1 | 24 | 2 | 32 | 2 | | | 7 | <1 | 1 | <1 | | Protoptila | 1 | <1 | _ | | _ | | _ | | | | _ | | _ | | | Goeridae | | | | | | | | | | | | | | | | Goera | 5 | <1 | _ | | 11 | <1 | _ | | _ | | _ | | _ | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | | | _ | | _ | | _ | | _ | | _ | | _ | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 92 | 6 | 260 | 11 | 240 | 15 | 200 | 15 | 39 | 7 | 98 | 7 | 31 | 2 | | Cheumatopsyche | 250 | 16 | 120 | 5 | 150 | 9 | 130 | 10 | 17 | 3 | 36 | 3 | 8 | <1 | | Hydropsyche | 1 | <1 | 5 | <1 | 5 | <1 | 5 | <1 | 1 | <1 | 5 | <1 | 91 | 7 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 2 | <1 | 11 | <1 | 8 | <1 | _ | | _ | | _ | | 5 | <1 | | Leucotrichia | 48 | 3 | 16 | <1 | 310 | 19 | 320 | 25 | 32 | 6 | 240 | 17 | 55 | 4 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | _ | | 3 | <1 | _ | | _ | | - | | | | _ | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | | | _ | | _ | | _ | | _ | | _ | | | Oecetis | _ | | _ | | 3 | <1 | _ | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 25 | 2 | 51 | 2 | 77 | 5 | 11 | <1 | 6 | 1 | 23 | 2 | 5 | <1 | | Dolophilodes | _ | | _ | | 3 | <1 | 3 | <1 | _ | | 4 | <1 | _ | | | Wormaldia | | | _ | | _ | | _ | | _ | | | | _ | | | Oct. 2 | 20, 1988 | Oct. 2 | 3, 1989 | Nov. 1 | 6, 1990 | Oct. 9 | 9, 1991 | Oct. 1 | 5, 1992 | Oct. 1 | 4, 1993 | Oct. 2 | 27, 1994 | Date: | |--------|----------|---------|----------|--------|---------|--------|-----------|--------|---------|--------|---------|--------|-----------|--------------------------------| | 1, | ,846 | 1, | 643 | 1,: | 507 | 5 | 97 | 5 | 73 | 7 | 32 | 1, | .029 | Total ocunt | | Count | Percent Organiam | | | | | - | | | | | | | | | | | Odonata | | | | | - | | | | | | | | | | | Coenagrionidae | | | | 1 | <1 | | | | | _ | | | | _ | | Argia | | | | 1 | <1 | | | _ | | | | _ | | _ | | Gomphi lae | | | | | | | | | | 1 | <1 | | | | | Oph ogomphus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | _ | | 7 | <1 | 1 | <1 | | | _ | | 2 | <1 | _ | | Allorapnia | | | | | | _ | | | | _ | | | | 1 | <1 | Chloroparlidae | | | | | | | | | | | | | | | | Perlidae | | 3 | <1 | 3 | <1 | 1 | <1 | 2 | <1 | 15 | 3 | 1 | <1 | 1 | <1 | Acroneuria | | _ | | _ | | _ | | _ | | _ | | _ | | | | Agn:tina | | 3 | <1 | 1 | <1 | | | | | _ | | | | _ | | Para onetina | | | | | | | | | | | | | | | | Taeniopt rygidae | | | | | | 12 | <1 | _ | | | | - | | _ | | Strophopteryx | | 91 | 5 | 15 | <1 | 5 | <1 | 9 | 2 | | | 13 | 2 | 9 | <1 | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | _ | | | | _ | | Saldidae | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | _ | | 1 | <1 | | | | | 1 | <1 | 1 | <1 | Corydalus | | | | _ | | _ | | 1 | <1 | _ | | | | | | Nigmnia | | | | | | | | | | | | | | | | Sialidae | | | | _ | | 1 | <1 | | | _ | | | | _ | | Sialis | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apatanii dae | | 13 | <1 | 6 | <1 | 10 | <1 | 21 | 3 | 4 | <1 | 10 | 1 | | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | | | _ | | | | | | _ | | | | 9 | <1 | Brachycentrus | | 48 | 3 | 74 | 4 | 75 | 5 | 23 | 4 | 1 | <1 | 28 | 4 | 4 | <1 | Micrasema | | | | | | | | | | | | | | | | Glossoscmatidae | | 3 | <1 | 10 | <1 | 7 | <1 | | | | | 8 | 1 | 8 | <1 | Glos osoma | | | | | | | | | | | | | | _ | | Protoptila | | | | | | | | | | | | | | | | Goeridae | | | | | | _ | | | | | | | | _ | | Goera | | | | | | | | | | | | | | | | Helicopsychidae | | | | | | 1 | <1 | _ | | | | | | _ | | Helicopsyche | | | | | | - | | | | | | | | | | Hydropsychidae | | 350 | 18 | 76 | 4 | 180 | 12 | 34 | 6 | 74 | 13 | 94 | 13 | 69 | 7 | Cera+opsyche | | 32 | 2 | 27 | 2 | 49 | 3 | 25 | 4 | 11 | 2 | 82 | 11 | 91 | 9 | Chermatopsyche | | 40 | 2 | 20 | 1 | 45 | 3 | 12 | 2 | 54 | 9 | 24 | 3 | 130 | 13 | Hyd rapsyche | | 10 | - | | • | | • | | _ | ٠. | Ū | | · | 100 | 10 | Hydroptilidae | | | | 10 | <1 | 6 | <1 | 3 | <1 | 16 | 3 | 1 | <1 | 12 | 1 | Hyd roptila | | 240 | 13 | 49 | 3 | 99 | 7 | 4 | <1 | 18 | 3 | 55 | 7 | 60 | 6 | Leucotrichia | | 240 | 15 | 45 | 3 | 33 | • | - 7 | <b>\1</b> | 10 | | 33 | • | w | U | Lepidostomatidae | | | | | | 1 | <1 | | | | | | | | | Lepidost mandae<br>Lepidostoma | | | | | | 1 | ~1 | | | | | | | _ | | Leptoceridae | | | | 4 | <1 | 2 | <1 | 2 | <1 | | | | | | | Mystacides | | <br>5 | .1 | 4<br>10 | <1<br><1 | | <1 | 3<br>2 | <1<br><1 | | | | | 1 | <b>_1</b> | Mysracides<br>Oecetis | | э | <1 | 10 | <1 | | | 2 | <1 | _ | | | | 1 | <1 | | | 21 | | 20 | • | 40 | 2 | | | , | . 1 | 10 | • | | | Philopot midae | | 21 | 1 | 30 | 2 | 46 | 3 | | | 1 | <1 | 18 | 2 | _ | | Chimarra | | | | | | | | **** | | **** | | _ | | | | Dolo philodes | | _ | | 3 | <1 | | | | | _ | | | | _ | | Wormaldia | Table 5. Benthic-macroinvertebrate data—Continued 01472138 - French Creek near Coventryville, Pa. (Site 13)—Continued | Date | | 21, 1981 | | 4, 1982 | | 8, 1983 | | 0, 1984 | Oct. 1 | 0,1985 | | 2, 1986 | | 6, 1987 | |-----------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------|---------|-------|---------|--------|------------------------------------------------------------|--------|---------|-------|---------| | Total count | 1 | ,542 | 1 2 | ,380 | 1 1 | ,615 | 1 1 | ,295 | 5 | 35 | 1, | 395 | 1, | 309 | | Organism | Count | Percent | Trichoptera | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | | | | | 11 | <1 | | | | | 4 | <1 | 2 | <1 | | Nyctiophylax | 1 | <1 | 3 | <1 | | | _ | | | | _ | | | | | Polycentropus | | | | | 3 | <1 | | | | | | | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyta | 59 | 4 | 61 | 3 | 13 | <1 | 8 | <1 | 37 | 7 | 21 | 2 | 20 | 2 | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | 6 | <1 | | | 5 | <1 | 11 | <1 | 1 | <1 | 5 | <1 | 1 | <1 | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | 7 | <1 | | | | | | | _ | | | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | _ | | | | | | _ | | | | _ | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 24 | 2 | 11 | <1 | 11 | <1 | | | 1 | <1 | 11 | <1 | 1 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | | | _ | | | | _ | | _ | | _ | | _ | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | | | | A.variegata | | | | | | | _ | | | | | | _ | | | Dubiraphia | | | | | _ | | _ | | 1 | <1 | | | | | | Macronychus | _ | | | | | | _ | | _ | | | | _ | | | Optioservus | 47 | 3 | 45 | 2 | 21 | 1 | 11 | <1 | 13 | 2 | 1 | <1 | 13 | 1 | | Oulimnius | 1 | <1 | 3 | <1 | | | _ | | 1 | <l< td=""><td>_</td><td></td><td>1</td><td>&lt;1</td></l<> | _ | | 1 | <1 | | Stenelmis | 7 | <l< td=""><td>5</td><td>&lt;1</td><td>16</td><td>1</td><td>11</td><td>&lt;1</td><td>2</td><td>&lt;1</td><td>_</td><td></td><td>1</td><td>&lt;1</td></l<> | 5 | <1 | 16 | 1 | 11 | <1 | 2 | <1 | _ | | 1 | <1 | | Psephenidae | • | | _ | | | _ | | | _ | - | | | _ | | | Psephenus | 2 | <1 | _ | | 3 | <1 | _ | | 2 | <1 | 1 | <1 | _ | | | Hymenoptera | _ | | _ | | _ | ~- | _ | | 2 | <1 | _ | | _ | | | Diptera | | | | | | | | | - | ~1 | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | 1 | <1 | | | | | _ | | | | | | _ | | | Chironomidae | 280 | | 1,000 | 42 | 210 | 13 | 170 | 13 | 230 | 42 | 590 | 42 | 800 | 62 | | Empididae | 200 | 10 | 1,000 | 72 | 210 | 10 | 170 | 13 | 230 | 72 | 330 | 72 | 500 | UL. | | Chelifera | | | | | | | | | | | | | | | | Hemerodromia | 6 | <1 | 11 | <1 | 3 | <1 | _ | | 1 | <1 | 3 | <1 | _ | | | Ephydridae | υ | <1 | | <1 | J | <1 | _ | | 1 | <1 | -<br>- | <1 | _ | | | Epnydridae<br>Simuliidae | | | _ | | _ | | _ | | _ | | _ | | _ | | | Simulidae<br>Simulium | | | 16 | <1 | 8 | <1 | 32 | 2 | 34 | 6 | 12 | _1 | 55 | 4 | | | | | 10 | <1 | ō | <1 | 32 | Z | 34 | O | 12 | <1 | 33 | 4 | | Tipulidae<br><i>Antocha</i> | 27 | 2 | 200 | | E 1 | 9 | 24 | 2 | 11 | 2 | en | | 33 | 9 | | | 27 | 2 | 200 | 8 | 51 | 3 | 24 | 2 | 11 | 2 | 62 | 4 | 33 | 3 | | Tipula | | | | | | | | | _ | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | | 0, 1988 | | 3, 1989 | | 6, 1990 | | 9, 1991 | | 5, 1992<br> | | 4, 1993 | | 7, 1994 | Date | |-------|---------|-------|---------|-------|-----------|-------|-----------|-------|-------------|-------|---------|-------|---------|----------------------| | 1,8 | 846 | 1,6 | 643 | 1, | 507 | 5 | 97 | 5 | 73 | 7 | 32 | 1, | 029 | Total count | | Count | Percent Organis <sup>m</sup> | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Polycentmoodidae | | 3 | <1 | | | | | 5 | <1 | 1 | <1 | - | | | | Neur∽lipsis | | _ | | | | | | | | _ | | _ | | _ | | Nyct'ophylax | | 3 | <1 | _ | | 1 | <1 | 1 | <1 | _ | | _ | | 1 | <1 | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 27 | 1 | 7 | <1 | 54 | 4 | 19 | 3 | 1 | <1 | 14 | 2 | 54 | 5 | Psychomyia | | | | | | | | | | | | | | | | Rhyacophilidae | | 3 | <1 | 11 | <1 | 7 | <1 | 3 | <1 | 9 | 2 | 2 | <1 | _ | | Rhya:ophila | | | | | | | | | | | | | | | | Uenoidae | | | | 3 | <1 | 1 | <1 | _ | | 5 | <1 | _ | | _ | | Neophylax | | | | | | | | | | | | | | | | Lepidoptera | | 3 | <1 | _ | | | | _ | | _ | | _ | | _ | | Noctuida a | | | | | | | | | | | | | | | | Pyralidae | | 8 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | _ | | Petro~hila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | _ | | | | _ | | _ | | 1 | <1 | _ | | _ | | Helichus | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | 3 | <1 | _ | | _ | | _ | | 1 | <1 | _ | | A.variegata | | | | 3 | <1 | 2 | <1 | | | 1 | <1 | 1 | <1 | _ | | Dubi ¬aphia | | _ | | | | 1 | <1 | 1 | <1 | | | _ | | _ | | Macranychus . | | 16 | <1 | 47 | 3 | 21 | 1 | 1 | <1 | 14 | 2 | 2 | <1 | 2 | <1 | Opticservus - | | _ | | 4 | <1 | _ | | | | | | 2 | <1 | | | Oulimnius | | 8 | <1 | 11 | <1 | 6 | <1 | 3 | <1 | _ | | 2 | <1 | 6 | <1 | Stene¹mis | | | | | | | | | | | | | | | | Psepheni lae | | 8 | <1 | | | _ | | 1 | <1 | _ | | 1 | <1 | 2 | <1 | Psephenus | | _ | | | | | | _ | - | _ | | _ | - | _ | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | _ | | | | | | _ | | 2 | <1 | _ | | _ | | Atherix | | 680 | 36 | 390 | 23 | 520 | 35 | 250 | 41 | 140 | 24 | 120 | 16 | 360 | 36 | Chironomidae | | | | 555 | | | | | | | | | | 555 | - | Empididae | | _ | | | | 2 | <1 | | | _ | | | | _ | | Chelifera | | 11 | <1 | 140 | 8 | 12 | <1 | 10 | 2 | _ | | 17 | 2 | 10 | 1 | Hemerodromia | | | ~. | 1 | <1 | | ~1 | | - | _ | | | - | | • | Ephydridae | | _ | | • | ~. | _ | | _ | | _ | | _ | | _ | | Simuliidae | | 37 | 2 | 11 | <1 | 4 | <1 | 1 | <1 | 19 | 3 | 13 | 2 | 1 | <1 | Simu <sup>n</sup> um | | 31 | _ | 11 | ~1 | 7 | <b>~1</b> | 1 | <b>~1</b> | 19 | 3 | 13 | L | 1 | ~1 | Tipulidae | | 53 | 3 | 140 | 8 | 140 | 9 | 49 | 8 | 18 | 3 | 46 | 6 | 48 | 5 | Antocha | | JJ | J | 140 | o | 140 | J | 73 | o | 10 | ა<br><1 | 40 | υ | 40 | J | Antosia<br>Tipula | [<, less than; —, not found] Table 5. Benthic-macroinvertebrate data—Continued 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12) | Date | | 1, 1981 | Nov. 4 | l, 1982 | Oct. 1 | 8, 1983 | Oct. 1 | 0, 1984 | Oct. 1 | 0, 1985 | Oct. 2 | 2, 1986 | Oct. 1 | 6. 1987 | |-------------------------------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 11 | ,197 | 12 | ,649 | 11 | ,697 | 1 1 | ,563 | 7 | 85 | 1, | 312 | 2, | D14 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | _ | | | | 5 | <1 | 3 | <1 | 8 | 1 | 1 | <1 | 2 | <1 | | Nematoda (nematodes) | _ | | | | _ | | | | | | _ | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | 1 | .1 | | Prostoma | _ | | - | | | | | | _ | | _ | | 1 | <1 | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda<br>Basommatophora | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ancylidae<br><i>Ferrissia</i> | 11 | <1 | | | | | | | | | | | 4 | <1 | | | 11 | <1 | | | _ | | _ | | | | | | 4 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | <i>Lymnaea</i><br>Physidae | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Physia<br>Physa | | | | | | | | | | | | | | | | Planorbidae | | | _ | | _ | | | | _ | | _ | | _ | | | Gyraulus | _ | | | | | | | | | | | | | | | Bivalvia | | | | | _ | | _ | | _ | | _ | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaerlidae | _ | | _ | | | | | | | | _ | | | | | Pisidium | _ | | | | | | _ | | | | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | _ | | | | _ | | | | | | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | _ | | | | _ | | | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | _ | | | | _ | | | | | | | | 1 | <1 | | Tubificidae | _ | | | | | | | | _ | | _ | | 1 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | | | | | | | _ | | 19 | 1 | 1 | <1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | _ | | _ | | _ | | _ | | | | | | | Podocopa | _ | | | | _ | | | | | | _ | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 16 | 1 | 5 | <1 | 3 | <1 | 32 | 2 | 16 | 2 | 4 | <1 | 27 | 1 | | Pseudocloeon | 8 | <1 | _ | | 3 | <1 | 8 | <1 | | | | | 13 | <1 | | Caenidae | | | | | | | | | | | | | | | | Caenis | _ | | _ | | _ | | | | _ | | _ | | 1 | <1 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 80 | 7 | 280 | 10 | 160 | 9 | 130 | 8 | 57 | 7 | 170 | 13 | 92 | 5 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | 13 | <1 | 40 | 2 | 8 | <1 | | | 60 | 5 | 29 | 1 | | Stenonema | 150 | 13 | 100 | 4 | 180 | 11 | 77 | 5 | 65 | 8 | 110 | 8 | 52 | 3 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 32 | 3 | 27 | 1 | 53 | 3 | 11 | <1 | 13 | 2 | 26 | 2 | 20 | 1 | | | 0, 1988 | | 3, 1989 | | 6, 1990 | Oct. 9 | | | 5, 1992 | | 4, 1993 | | 27, 1994 | € Cate | |-------|---------|-------|---------|-------|---------|--------|---------|-------|---------|-------|---------|-------|----------|-----------------------------| | | 70 | | 147 | | 43 | | 737 | | 336 | | 432 | | 565 | Tota¹ count | | Count | Percent Organism | | | | | | | | | | | | | | | | Platyhelminthes (f atworms) | | | | | | | | | | | | | | | | Turbellaria | | _ | | | | | | | | | | | | | | Tricladida | | 4 | <1 | 14 | <1 | 1 | <1 | 1 | <1 | 12 | <1 | 13 | <1 | _ | | Planariidae | | | | 2 | <1 | | | _ | | _ | | _ | | _ | | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonernertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | 3 | <1 | | | _ | | _ | | 6 | <1 | _ | | Prostoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | 1 | <1 | 3 | <1 | 4 | <1 | 12 | <1 | 22 | 2 | 11 | <1 | 10 | 2 | Ferrissia | | | | | | | | | | | | | | | | Lymraeidae | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | L.ymnaea | | | | | | | | | | | | | | | | Physidae | | - | | 2 | <1 | _ | | _ | | _ | | | | 1 | <1 | F*vsa | | | | | | | | | | | | | | | | Planc rbidae | | _ | | | | | | _ | | 5 | <1 | | | _ | | Gyraulus | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | _ | | - | | _ | | _ | | 2 | <1 | _ | | _ | | Sphaeriidae | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | | | F'sidium | | | | | | | | | | | | | | | | Annelida (segmented worms) | | _ | | _ | | _ | | | | 1 | <1 | _ | | _ | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | | | _ | | _ | | _ | | 1 | <1 | _ | | Lumt riculidae | | | | | | | | | | | | | | | | Tubificida | | 6 | <1 | 19 | <1 | 1 | <1 | 2 | <1 | _ | | 20 | 1 | _ | | Naididae | | _ | | _ | | _ | | _ | | | | _ | | _ | | Tubif cidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | 19 | <1 | 26 | 1 | 2 | <1 | 12 | <1 | 28 | 2 | 34 | 2 | 7 | 1 | Hydrachridia | | | | | | | | | | | | | | | | Crustacea | | | | | | _ | | _ | | _ | | 1 | <1 | | | Cyclopoida | | | | _ | | _ | | 1 | <1 | _ | | 1 | <1 | | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemercotera | | | | | | | | | | | | | | | | Baetidae | | 27 | <1 | 5 | <1 | _ | | 15 | <1 | 2 | <1 | 1 | <1 | | | F~otis | | 4 | <1 | 4 | <1 | 2 | <1 | 6 | <1 | 2 | <1 | 2 | <1 | 5 | <1 | Freudocloeon | | | | | | | | | | | | | | | | Caen†dae | | - | | | | _ | | _ | | | | _ | | | | Caenis | | | | | | | | | | | | | | | | Ephemerellidae | | 80 | 6 | 430 | 17 | 63 | 10 | 110 | 6 | 71 | 5 | 54 | 4 | 11 | 2 | Ephemerella | | - | - | | | | | | - | | - | | - | | _ | Heptageniidae | | 70 | 5 | 200 | 8 | 60 | 9 | 72 | 4 | 30 | 2 | 23 | 2 | 5 | <1 | Epeorus | | 80 | 6 | 67 | 3 | 16 | 2 | 97 | 6 | 29 | 2 | 44 | 3 | 10 | 2 | Stenonema | | | • | ٠. | 3 | | - | ٠. | • | 23 | _ | •• | • | | - | Isonychiidae | | | | | | | | | | | | | | | | 2501170111000 | Table 5. Benthic-macroinvertebrate data—Continued 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12)—Continued | Date | Oct. 2 | 1, 1981 | Nov. 4 | 1, 1982 | Oct. 1 | 8, 1983 | Oct. 1 | 0, 1984 | Oct. 1 | 0, 1985 | Oct. 2 | 2, 1986 | Oct. 1 | €, 1987 | |------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------|---------| | Total count | 11 | ,197 | 12 | ,649 | 11 | ,697 | 1 1 | ,563 | 7 | 85 | 1,3 | 312 | 2, | 014 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Leptophlebiidae | _ | | _ | | _ | | _ | | _ | | 2 | <1 | _ | | | Paraleptophlebia | _ | | | | _ | | _ | | 2 | <1 | _ | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | _ | | | | | | | | _ | | | Gomphidae | | | | | | | | | | | | | | | | Gomphus | 5 | <1 | | | _ | | _ | | _ | | _ | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 5 | <1 | 8 | <1 | 5 | <1 | _ | | | | 1 | <1 | 5 | <1 | | Chloroperlidae | 3 | <1 | 59 | 2 | 11 | <1 | 13 | <1 | 9 | 1 | 11 | <1 | _ | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | _ | | _ | | | | | | 5 | <1 | 2 | <1 | 1 | <1 | | Agnetina | 11 | <1 | | | | | | | | - | | - | | | | Paragnetina | | • | | | | | | | 1 | <1 | 1 | <1 | 9 | <1 | | Perlodidae | | | | | | | | | • | ~- | • | ~* | • | 7. | | Isoperla | | | | | | | | | | | | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Strophopteryx | | | 13 | <1 | | | | | | | | | | | | Taeniopteryx | 32 | 3 | 16 | <1 | 24 | 1 | 5 | <1 | 7 | <1 | 5 | <1 | <br>28 | 1 | | | 32 | 3 | 10 | <1 | 24 | 1 | J | <1 | ' | <1 | J | <1 | 20 | 1 | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | • | .1 | • | | • | .1 | | | | | 2 | .1 | | | | Corydalus | 3 | <1 | 3 | <1 | 3 | <1 | | | 1 | | 2 | <1 | 1 | <1 | | Nigronia | 3 | <1 | _ | | | | | | 1 | <1 | | | | | | Trichoptera | | | | | | | | | _ | | | | | | | Apataniidae | _ | | _ | | | | | | 2 | <1 | _ | | _ | _ | | Apatania | _ | | - | | _ | | | | _ | | 7 | <1 | 2 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | 19 | 2 | 75 | 3 | 45 | 3 | 3 | <1 | 21 | 3 | 68 | 5 | 44 | 2 | | Glossosomatidae | | | | | | | | | | | | | | | | Culoptila | | | _ | | _ | | _ | | _ | | _ | | | | | Glossosoma | 8 | <1 | 5 | <1 | 8 | <1 | 21 | 1 | 4 | <1 | 31 | 2 | 20 | 1 | | Protoptila - | 5 | <1 | _ | | _ | | 5 | <1 | | | | | _ | | | Goeridae | | | | | | | | | | | | | | | | Goera | _ | | _ | | 8 | <1 | | | 13 | 2 | 1 | <1 | | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | _ | | | | | | _ | | | | _ | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 120 | 10 | 270 | 10 | 430 | 25 | 310 | 19 | 130 | 16 | 140 | 11 | 490 | 25 | | Cheumatopsyche | 360 | 30 | 380 | 14 | 440 | 26 | 300 | 19 | 140 | 18 | 82 | 6 | 90 | 5 | | Hydropsyche | 3 | <1 | 21 | <1 | 24 | 1 | 32 | 2 | 10 | 1 | 170 | 13 | 180 | 9 | | Macrostemum | 3 | <1 | 21 | <1 | 3 | <1 | 3 | <1 | | | 3 | <1 | 5 | <1 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 3 | <1 | 21 | <1 | 3 | <1 | | | _ | | | | 2 | <1 | | Leucotrichia | 3 | <1 | 53 | 2 | 37 | 2 | 160 | 10 | 23 | 3 | 150 | 12 | 41 | 2 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | | | | | | | | | | | _ | | 2 | <1 | | Leptoceridae | | | | | | | | | | | | | _ | _ | | Mystacides | _ | | | | _ | | | | | | | | _ | | | Oecetis | 5 | <1 | _ | | _ | | _ | | 1 | <1 | _ | | | | | Philopotamidae | J | ~1 | | | _ | | _ | | 1 | ~1 | | | _ | | | Chimarra | 13 | 1 | 45 | 2 | 8 | <1 | 8 | <1 | 18 | 2 | 17 | 1 | 23 | 1 | | Dolophilodes | 13 | 1 | - T-J | L | | ~1 | 0 | ~1 | 10 | <1 | 11 | 1 | <b>Z</b> 3 | 1 | | Wormaldia | | | | | _ | | | | 1 | ~1 | | | 1 | <1 | | MADITUMICIN | | | | | | | | | _ | | _ | | 1 | < 1 | | Oct. 2 | 0, 1988 | Oct. 23 | 3, 1989 | Nov. 1 | 6, 1990 | Oct. 9 | , 1991 | Oct. 1 | 5, 1992 | Oct. 14 | 4, 1993 | Oct. 2 | 7, 1994 | Date | |--------|---------|---------|---------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|---------------------------| | 3,0 | 070 | 2,4 | 147 | 6 | 43 | 1,7 | 737 | 1, | 336 | 1,4 | 432 | 5 | 65 | Total count | | Count | Percent Orçanism | | | | , | - | | | | | | | | | | | Ephemeroptera | | _ | | _ | | _ | | _ | | - | | | | _ | | Leptophlebiidae | | _ | | _ | | _ | | _ | | | | | | _ | | Paraleptophlebia | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coeragrionidae | | _ | | _ | | _ | | 1 | <1 | | | | | _ | | Argia | | | | | | | | | | | | | | | | Gomnhidae | | _ | | _ | | _ | | _ | | _ | | | | | | Gomphus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Caprildae | | 19 | <1 | 4 | <1 | 1 | <1 | | | 1 | <1 | | | | | Allocapnia | | _ | | 8 | <1 | 5 | <1 | 7 | <1 | 10 | <1 | 4 | <1 | 4 | <1 | Chlomperlidae | | | | | | | | | | | | | | | | Perli-lae | | 7 | <1 | 1 | <1 | 6 | <1 | 1 | <1 | 3 | <1 | 3 | <1 | | | Acroneuria | | _ | | _ | | | | _ | | | | 1 | <1 | _ | | Agnetina | | 5 | <1 | _ | | _ | | | | _ | | | | _ | | Paragnetina | | | | | | | | | | | | | | | | Perlo didae | | 7 | <1 | _ | | _ | | | | _ | | _ | | _ | | Isoperla | | | | | | | | | | | | | | | | Taen'opterygidae | | _ | | _ | | _ | | _ | | | | _ | | _ | | Strophopteryx | | 48 | 2 | 4 | <1 | 1 | <1 | 6 | <1 | 5 | <1 | 3 | <1 | 9 | 2 | Taeniopteryx | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | 2 | <1 | _ | | 2 | <1 | 1 | <1 | 4 | <1 | _ | | Corydalus | | _ | | | | _ | | _ | | _ | | _ | | _ | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | _ | | _ | | _ | | | | _ | | | | _ | | Apat~niidae | | 1 | <1 | _ | | 7 | 1 | 16 | <1 | 43 | 3 | 7 | <1 | 4 | <1 | Apatania | | | | | | | | | | | | | | | | Bracl recentridae | | 30 | <1 | 16 | <1 | 22 | 3 | 150 | 9 | 160 | 12 | 100 | 7 | 5 | <1 | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | _ | _ | 25 | 1 | _ | _ | _ | | _ | | _ | | _ | | Culoptila | | 2 | <1 | 20 | <1 | 24 | 4 | 5 | <1 | 5 | <1 | 7 | <1 | 7 | 1 | Glossosoma | | 3 | <1 | _ | | 5 | <1 | 35 | 2 | 51 | 4 | 26 | 2 | | | Protoptila | | | | | | _ | | | | | | | | | | Goer'dae | | | | _ | | 5 | <1 | 1 | <1 | 3 | <1 | 4 | <1 | _ | | Goera | | | | | | | | | | _ | | _ | | | | Helicopsychidae | | _ | | _ | | | | _ | | 3 | <1 | 2 | <1 | _ | | Helicopsyche | | | | | | | | | | | | | | | | Hydmosychidae | | 360 | 12 | 400 | 16 | 100 | 15 | 340 | 20 | 320 | 25 | 190 | 14 | 180 | 32 | Ceratopsyche | | 230 | 7 | 280 | 11 | 32 | 5 | 180 | 11 | 42 | 3 | 150 | 11 | 44 | 8 | Cheumatopsyche | | 510 | 16 | 82 | 3 | 7 | 1 | 30 | 2 | 31 | 2 | 9 | <1 | 13 | 2 | Hydropsyche | | 5 | <1 | 8 | <1 | 1 | <1 | 2 | <1 | _ | | _ | | _ | | Macrostemum | | | | | | | _ | _ | | _ | | | | _ | _ | Hydrootilidae | | _ | _ | _ | | 1 | <1 | 2 | <1 | 9 | <1 | _ | _ | 3 | <1 | Hydroptila | | 210 | 7 | 140 | 6 | 9 | 1 | 240 | 14 | 57 | 4 | 130 | 9 | 21 | 4 | Leucotrichia | | _ | | | | | _ | _ | | _ | | | | | | Lepidostomatidae | | 2 | <1 | _ | | 13 | 2 | 4 | <1 | 2 | <1 | _ | | | | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | _ | 4 | _ | | | | _ | | 1 | <1 | _ | | _ | .1 | Mystacides | | 6 | <1 | | | | | 6 | <1 | 1 | <1 | | | 1 | <1 | Oecetis | | 110 | | 00 | | c | 1 | | • | o | .1 | co | , | _ | .1 | Philopotamidae | | 110 | 4 | 99 | 4 | 6 | <1 | 55 | 3 | 8<br>2 | <1 | 60 | 4 | 4 | <1 | Chimarra | | _ | | 2 | <1 | _ | | _ | | 2 | <1 | _ | | _ | | Dolophilodes<br>Wormaldia | | _ | | ۲. | ~1 | _ | | _ | | | | | | _ | | vvoi niaidia | Table 5. Benthic-macroinvertebrate data—Continued 01472140 - South Branch French Creek at Coventryville, Pa. (Site 12)—Continued | | | | | 4, 1982 | | 8, 1983 | | 0, 1984 | Oct. 1 | -, | | 2, 1986 | | 6, 1987 | |-------------------|-------|---------|-------|---------|-------|---------|-------|---------|--------|-------------------------------------------------------|-------|---------|-------|---------| | Total count | 11 | ,197 | 1 2 | ,649 | 1 1 | ,697 | 1 1 | ,563 | 7 | 85 | 1, | 312 | 2, | 014 | | Organism | Count | Percent | Trichoptera | | | | | | | | | | *********** | | | - | , | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | 11 | <1 | _ | | 5 | <1 | | | | | 1 | <1 | 1 | <1 | | Nyctiophylax | | | 8 | <1 | 8 | <1 | 5 | <1 | 14 | 2 | 7 | <1 | 10 | <1 | | Polycentropus | | | _ | | _ | | | | _ | | 1 | <1 | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | | | 11 | <1 | 8 | <1 | 21 | 1 | 5 | <1 | 6 | <1 | 6 | <1 | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | _ | | 5 | <1 | | | 5 | <1 | 2 | <1 | 1 | <1 | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | 8 | <1 | | | | | _ | | _ | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | | | | | | | _ | | _ | | 2 | <1 | _ | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | | | 3 | <1 | 3 | <1 | | | | | _ | | | | | Optioservus | 85 | 7 | 54 | 2 | 35 | 2 | 40 | 3 | 56 | 7 | 24 | 2 | 22 | 1 | | Oulimnius | | | 3 | <1 | | | _ | | 1 | <1 | 1 | <1 | | | | Promoresia | _ | | 3 | <1 | | | | | | | 1 | <1 | 2 | <1 | | Stenelmis | 16 | 1 | 29 | 1 | 5 | <1 | 5 | <1 | 14 | 2 | 1 | <1 | 10 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | _ | | | | | E. nervosa | | | 3 | <1 | _ | | | | _ | | _ | | _ | | | Psephenus | _ | | _ | | 3 | <1 | | | 3 | <1 | 2 | <1 | 3 | <1 | | Hymenoptera | _ | | | | _ | | | | 1 | <l< td=""><td>_</td><td></td><td>_</td><td></td></l<> | _ | | _ | | | Diptera | | | | | | | | | - | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | 5 | <1 | | | | | | | | | 1 | <1 | _ | | | Chironomidae | 160 | | 1,000 | 37 | 110 | 6 | 320 | 20 | 110 | 14 | 120 | 9 | 660 | 33 | | Empididae | | 10 | | 0. | | • | | 20 | | •• | | • | | 00 | | Chelifera | | | | | | | | | | | | | | | | Hemerodromia | 3 | <1 | | <1 | _ | | _ | | 2 | <1 | | | _ | | | Simuliidae | | ~1 | J | ~1 | _ | | | | | ~1 | | | _ | | | Simulium | 5 | <1 | 11 | <1 | 16 | <1 | 19 | 1 | 22 | 3 | 16 | 1 | 100 | 5 | | Tipulidae | J | ~1 | 11 | ~1 | 10 | ~1 | 13 | 1 | LL | J | 10 | • | 100 | J | | Antocha | 11 | <1 | 88 | 3 | 11 | <1 | 19 | 1 | 8 | 1 | 45 | 3 | 12 | <1 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 2 | 0, 1988 | Oct. 2 | 3, 1989 | Nov. 1 | 6, 1990 | Oct. 9 | 9, 1991 | Oct. 1 | 5, 1992 | Oct. 1 | 4, 1993 | Oct. 2 | 7, 1 <del>994</del> | L'ate | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------------------|----------------------------| | 3, | 070 | 2, | 447 | 6 | 43 | 1, | 737 | 1, | 336 | 1, | 432 | 5 | 65 | Total count | | Count | Percent Org:anism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Polycentropodidae | | 21 | <1 | _ | | _ | | 1 | <1 | 2 | <1 | _ | | 1 | <1 | Neureclipsis | | 9 | <1 | 13 | <1 | 9 | 1 | 12 | <1 | 9 | <1 | 5 | <1 | _ | | I lyctiophylax | | | | _ | | _ | | 2 | <1 | 1 | <1 | | | _ | | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 2 | <1 | 32 | 1 | 8 | 1 | 24 | 1 | 10 | <1 | 31 | 2 | 11 | 2 | Psychomyia | | | | | | | | | | | | | | | | Rhyacophilidae | | _ | | 2 | <1 | 7 | 1 | _ | | 3 | <1 | 2 | <1 | _ | | Rhyacophila | | | | | | | | | | | | | | | | Uencidae | | 2 | <1 | 19 | <1 | 10 | 2 | _ | | _ | | _ | | 3 | <1 | I <sup>r</sup> eophylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | _ | | _ | | 1 | <1 | 2 | <1 | 15 | 1 | 8 | 1 | P•trophila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | _ | | | | _ | | _ | | | | | | | | Dubiraphia | | 30 | <1 | 38 | 2 | 38 | 6 | 36 | 2 | 40 | 3 | 58 | 4 | 7 | 1 | Optioservus | | _ | | 1 | <1 | | | 1 | <1 | 1 | <1 | 3 | <1 | _ | | Oulimnius | | - | | 1 | <1 | | | _ | | _ | | _ | | _ | | Promoresia | | 4 | <1 | 3 | <1 | 4 | <1 | 11 | <1 | 30 | 2 | 18 | 1 | _ | | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | 1 | <1 | | | | | _ | | _ | | | | _ | | Fctopria | | | | _ | | _ | | | | | | _ | | | | E. nervosa | | 4 | <1 | | | | | 2 | <1 | | | 1 | <1 | | | P∾ephenus | | | | | | | | _ | | | | | | _ | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | _ | | _ | | _ | | 1 | <1 | | | _ | | Atherix | | 80 | 19 | 300 | 12 | 120 | 18 | 160 | 9 | 170 | 13 | 260 | 19 | 120 | 21 | Chircnomidae | | 1 | <1 | _ | | _ | | | | _ | | | | _ | | Empididae | | | | | | 1 | <1 | _ | | _ | | _ | | _ | | Chelifera | | 5 | <1 | 16 | <1 | _ | | 4 | <1 | 6 | <1 | 4 | <1 | 1 | <1 | I <sup>r</sup> emerodromia | | | | | | | | | | | | | | | | Simu <sup>14</sup> idae | | 98 | 3 | 56 | 2 | 9 | 1 | 7 | <1 | 14 | 1 | 19 | 1 | 28 | 5 | Simulium | | | | | | | | | | | | | | | | Tipul'dae | | 27 | <1 | 16 | <1 | 42 | 6 | 40 | 2 | 76 | 6 | 56 | 4 | 19 | 3 | Antocha | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; ---, not found] 01472154 - French Creek near Pughtown, Pa. (Site 14) | Date | | 1, 1981 | | 2, 1982 | | 0, 1983 | | 0, 1984 | Oct. 1 | 1, 1985 | | 1, 1986 | | 4. 1987 | |-----------------------------|-------|---------|-------|---------|-------|---------|-------|---------|--------|---------|-------|---------|-------|---------| | Total count | 1, | 760 | 1, | 543 | 1, | 432 | 1, | 716 | 4 | 21 | 1, | 416 | 1, | 331 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 2 | <1 | _ | | 13 | <1 | | | _ | | 4 | <1 | 1 | <1 | | Nematoda (nematodes) | _ | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | | | 6 | <1 | _ | | _ | | _ | | 5 | <1 | | Mollusca (molluscs) | | | | | _ | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Pleuroceridae | | | | | | | | | | | | | | | | Goniobasis | | | _ | | 1 | <1 | | | | | | | | | | Basommatophora | _ | | | | 1 | ~1 | | | _ | | _ | | _ | | | | | | | | | | | | | | | | | | | Ancylidae | 21 | | 22 | | 120 | • | | | | | | <1 | 5 | .1 | | Ferrissia | 21 | 1 | 22 | 1 | 120 | 9 | _ | | | | 8 | <1 | 3 | <1 | | Physidae | | _ | | | _ | | | | | | | | | | | Physa | 1 | <1 | _ | | 2 | <1 | | | _ | | | | _ | | | Planorbidae | | | | | | | | | | | | | | | | Helisoma | | | _ | | 2 | <1 | _ | | - | | - | | _ | | | Gyraulus | _ | | _ | | _ | | | | _ | | _ | | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | _ | | _ | | _ | | _ | | | | | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | _ | | _ | | _ | | 3 | <1 | - | | _ | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | _ | | 1 | <1 | 1 | <1 | | | _ | | 1 | <1 | | Tubificida | | | | | | | | | | | | | | | | Naididae | _ | | _ | | | | _ | | | | _ | | 18 | 1 | | Tubificidae | _ | | | | | | _ | | | | _ | | _ | _ | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 1 | <1 | 3 | <1 | 3 | <1 | | | 1 | <1 | 27 | 2 | | | | Crustacea | 1 | ~1 | 3 | ~1 | 3 | ~1 | | | 1 | ~1 | 21 | 2 | _ | | | Cyclopoida | | | | | | | | | | | | | | | | | _ | | _ | | _ | | | | | | _ | | _ | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | _ | | _ | | | | | | _ | | _ | | _ | | | Podocopa | _ | | _ | | _ | | | | | | _ | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 21 | 1 | 1 | <1 | 24 | 2 | 19 | 1 | _ | | _ | | 7 | <1 | | Pseudocloeon | _ | | _ | | 2 | <1 | 23 | 1 | 3 | <1 | _ | | 12 | <1 | | Caenidae | | | | | | | | | | | | | | | | Caenis | _ | | _ | | _ | | _ | | 4 | 1 | _ | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 120 | 7 | 40 | 3 | 80 | 6 | 53 | 3 | 34 | 8 | 51 | 4 | 5 | <1 | | | 1, 1988 | Oct. 2 | 4, 1989 | Nov. 1 | 5, 1990 | Oct. 1 | 5, 1991 | Oct. 1 | 4, 1992 | Oct. 1 | 3, 1993 | Oct. 2 | 7, 1994 | Da* <del>9</del> | |--------------------|---------|--------|----------|--------|---------|---------|----------|--------|----------|--------|----------|--------|---------|--------------------------------------------------------------| | 1 2 | ,589 | 1, | 489 | 7 | 47 | 1, | 545 | 1,0 | 025 | 7 | 65 | 1,2 | 212 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms)<br>Turbellaria<br>Tricladida | | 11 | <1 | 14 | <1 | 6 | <1 | 2 | <1 | 5 | <1 | 2 | <1 | 8 | <1 | Planar'idae | | _ | | | | | | _ | | 1 | <1 | 1 | <1 | 1 | <1 | Nematoda (nematodes) Nemertea (probosci worms) Enopla | | | | | | | | | | 1 | <1 | | | | | Hoplonemertea<br>Tetrastemmatidae<br>Prestoma | | | | | | | | _ | | • | ~1 | _ | | | | Mollusca (molluscs) Gastropoda Mesogastropoda Pleuro zeridae | | _ | | _ | | _ | | | | _ | | | | _ | | <i>Geniobasis</i><br>Basommatophora | | 3 | <1 | 2 | <1 | 3 | <1 | 100 | 6 | 24 | 2 | 10 | 1 | 5 | <1 | Ancyli ¹ae<br><i>Fe⊤issia</i><br>Physidae | | | | _ | | | | | | | | | | | | Physa<br>Planorhidae | | _ | | | | _ | | 1 | <1 | 4 | <1 | 1 | <1 | _ | | Helisoma<br>Gyraulus<br>Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | - | | 1 | <1 | _ | | _ | | _ | | 1 | <1 | Sphaeriidae<br>Annelida (segmented worms) | | _ | | _ | | _ | | _ | | | | 2 | <1 | _ | | Oligochaeta<br>Lumbriculi da | | _ | | 29 | 2 | 20 | 3 | 2 | <1 | | | | | 2 | <1 | Lumbriculidae<br>Tubificida | | _ | | 9 | <1 | _ | | _ | | 8 | <1 | _ | | 6<br>— | <1 | Naididae<br>Tubificidae | | | | 10 | <1 | 6 | <1 | 2 | <1 | 31 | 3 | 15 | 2 | 23 | 2 | Arthropoda (arthropods)<br>Acariformes<br>Hydrachnidia | | _ | | 1 | <1<br><1 | _ | ~1 | _ | ν, | | 3 | | | | č | Crustacea<br>Cyclopoida | | | | | | | | | | | | | | | | Isopoda<br>Asellidae | | _ | | 1 | <1 | 2 | <1 | _ | | | | | | | | Caecidotea Podocopa | | | | | | | | | | | | | | | | Insecta<br>Ephemeroptera<br>Baetid e | | 88<br>1 <b>4</b> 0 | 3<br>5 | 2<br>— | <1 | _ | | 11<br>4 | <1<br><1 | 8<br>2 | <1<br><1 | 5<br>1 | <1<br><1 | _ | | Baetis<br>Pseudocloeon | | | | 3 | <1 | 5 | <1 | _ | | 1 | <1 | _ | | 2 | <1 | Caenidae<br><i>Caenis</i><br>Ephemerellidae | | 180 | 7 | 130 | 9 | 43 | 6 | 130 | 8 | 70 | 7 | 23 | 3 | 97 | 8 | Ephemerella | Table 5. Benthic-macroinvertebrate data—Continued 01472154 - French Creek near Pughtown, Pa. (Site 14)—Continued | Date | Oct. 2 | 1, 1981 | Nov. 2 | 2, 1982 | Oct. 2 | 0, 1983 | Oct. 10 | 0, 1984 | Oct. 1 | 1, 1985 | Oct. 3 | 1, 1986 | Oct. 1 | 4, 1987 | |----------------------------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 760 | 1, | 543 | 1,4 | 432 | 1,7 | 716 | 4 | 21 | 1,4 | 416 | 1, | 331 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | · | | | | | | | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | | | | | | | | | 37 | 3 | | | | Heptagenia | - | | | | | | | | | | | | | | | Stenacron | _ | | | | | | | | | | | | | | | Stenonema | 110 | 6 | 78 | 5 | 140 | 10 | 79 | 5 | 47 | 11 | 35 | 3 | 16 | 1 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 260 | 14 | 67 | 4 | 190 | 14 | 130 | 8 | 25 | 6 | 44 | 3 | 28 | 2 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | 2 | <1 | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 6 | <1 | 2 | <1 | 5 | <1 | _ | | | | | | 1 | <1 | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | - | | 2 | <1 | | | 8 | <1 | 2 | <1 | _ | | 12 | <1 | | Chloroperlidae | | | | | | | | | | | 16 | 1 | | | | Peltoperlidae | | | | | | | | | | | | | | | | Peltoperla | _ | | | | | | _ | | | | | | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | 2 | <1 | | | 4 | <1 | 4 | <1 | 2 | <1 | | | | | | Agnetina | | | | | | | | | _ | | | | 5 | <1 | | Paragnetina | 2 | <1 | 4 | <1 | 2 | <1 | 6 | <1 | | | | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Strophopteryx | | | | | | | | | | | 20 | 1 | | | | Taeniopteryx | 12 | <1 | 8 | <1 | 16 | 1 | 3 | <1 | 12 | 3 | 6 | <1 | 43 | 3 | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | _ | | | | 1 | <1 | _ | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | | | | | 2 | <1 | _ | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 3 | <1 | 3 | <1 | 2 | <1 | 3 | <1 | 1 | <1 | | | 1 | <1 | | Nigronia | 1 | <1 | | | 1 | <1 | _ | | _ | | | | | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae | | | | | | | | | | | | | | | | Climacia | | | | | | | | | | | | | | | | C. areolaris | 1 | <1 | | | | | | | _ | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | 9 | <1 | 5 | <1 | 2 | <1 | 4 | <1 | | | 9 | <1 | 1 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | 31 | 2 | 4 | <1 | 22 | 2 | 4 | <1 | 1 | <1 | 100 | 7 | 17 | 1 | | Glossosomatidae | | | | | | | | | | | | | | | | Culoptila | | | _ | | | | | | _ | | 1 | <1 | | | | Glossosoma | 7 | <1 | 10 | <1 | 7 | <1 | 16 | <1 | 5 | 1 | 13 | <1 | | | | Protoptila | | | | | | | | | | | | | _ | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | | | | | | | | | _ | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 260 | 14 | 88 | 6 | 140 | 10 | 330 | 19 | 71 | 17 | 70 | 5 | 14 | 1 | | Cheumatopsyche | 300 | 17 | 260 | 16 | 180 | 13 | 180 | 11 | 31 | 7 | 17 | 1 | 13 | 1 | | | | | | | | | 10 | <1 | 7 | 2 | 110 | 8 | 59 | 5 | | Hydronsyche | | | | | | | | | | | | | | - | | Hydropsyche<br>Macrostemum | 4 | <1 | 1 | <1 | 3 | <1 | 1 | <1 | 1 | <1 | | | | | | Oct. 2 | 1, 1988 | Oct. 2 | 4, 1989 | Nov. 1: | 5, 1990 | Oct. 1 | 5, 1991 | Oct. 1 | 4, 1992 | Oct. 1 | 3, 1993 | Oct. 2 | 27, 1994 | Da <sup>*</sup> | |--------|---------|--------|---------|---------|---------|--------|---------|--------|----------|--------|---------|--------|----------------|--------------------------| | 1 2 | ,589 | 1, | 489 | 7- | 47 | 1, | 545 | 1, | 025 | 7 | 65 | 1, | 212 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | 8 | <1 | 38 | 3 | 5 | <1 | 34 | 2 | 14 | 1 | | | 14 | 1 | Epwrus | | 3 | <1 | _ | | | | | | | | | | | | Hentagenia | | 3 | <1 | _ | | | | | | _ | | | | _ | | Stenacron | | 80 | 7 | 46 | 3 | 25 | 3 | 74 | 5 | 25 | 3 | 15 | 2 | 45 | 4 | Stenonema | | | | | | | | | | | | | | | | Isonycł 'idae | | 80 | 7 | 51 | 3 | 12 | 2 | 58 | 4 | 9 | <1 | 9 | 1 | 21 | 2 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | | | | | | | _ | | | | | | Tricorythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | _ | | | | | | | | _ | | _ | | | | Antia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 8 | <1 | 37 | 2 | _ | | 1 | <1 | 4 | <1 | 2 | <1 | 3 | <1 | Allocapnia | | 13 | <1 | 28 | 2 | _ | | 3 | <1 | 3 | <1 | | | 4 | <1 | Chloroperlidae | | | | | - | | | - | | - | | | | • | - <del>-</del> | Peltoperlidae | | 3 | <1 | | | _ | | _ | | _ | | _ | | _ | | Peltoperla | | | ~1 | | | | | | | | | | | | | Perlida? | | 3 | <1 | 9 | <1 | 10 | 1 | _ | | 5 | <1 | 1 | <1 | 5 | <1 | Acroneuria | | J | ~1 | 1 | <1 | 10 | 1 | 3 | <1 | 2 | <1 | | <1 | J | <1 | Agnetina | | 5 | <1 | 1 | <1 | 4 | <1 | 3 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | | | J | <1 | | | 4 | <1 | _ | | _ | | 1 | <1 | 1 | <1 | Paragnetina | | | | | | | | | | | .4 | | | 10 | 2 | Taeniopterygidae | | | | <br>26 | • | 3 | .1 | 6 | .1 | 1 | <1<br><1 | _ | .1 | 18 | 2 | Stranhopteryx | | 00 | 4 | 20 | 2 | 3 | <1 | 0 | <1 | 4 | <1 | 5 | <1 | 7 | <1 | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | _ | | | | Corixidae | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | _ | | | | Rha qovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | _ | | | _ | | | | _ | _ | | _ | Corydalidae | | _ | | 1 | <1 | | | 1 | <1 | | | 1 | <1 | 1 | <1 | Corydalus | | | | _ | | _ | | | | | | _ | | | | Nigronia | | | | | | | | | | | | | | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae | | | | | | | | | | | | | | | | Cli nacia | | | | _ | | _ | | | | | | | | _ | | C. areolaris | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apatan <sup>11</sup> dae | | 16 | <1 | | | 17 | 2 | 2 | <1 | 37 | 4 | 7 | <1 | 10 | <1 | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | 19 | <1 | 15 | 1 | 88 | 12 | 58 | 4 | 150 | 15 | 220 | 28 | 40 | 3 | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | | | _ | | | | | | | | | | | | Cu.¹optila | | | | 55 | 4 | 16 | 2 | | | | | | | 5 | <1 | Glcssosoma | | _ | | | | 1 | <1 | 2 | <1 | 1 | <1 | | | _ | | Protoptila | | | | | | | | | | | | | | | | Helicor«ychidae | | _ | | | | _ | | _ | | 1 | <1 | _ | | _ | | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | 80 | 15 | 280 | 19 | 110 | 14 | 110 | 7 | 83 | 8 | 19 | 2 | 290 | 24 | Ceratopsyche | | 74 | 3 | 130 | 9 | 70 | 9 | 60 | 4 | 29 | 3 | 10 | 1 | 160 | 13 | Chrumatopsych | | 80 | 3 | 26 | 2 | 15 | 2 | 58 | 4 | 19 | 2 | 120 | 15 | 43 | 4 | Hydropsyche | | 3 | <1 | 5 | <1 | 5 | <1 | 1 | -<br><1 | | - | 2 | <1 | 3 | <1 | Marrostemum | | - | | • | | • | | - | - | | | _ | - | _ | | Potamyia | Table 5. Benthic-macroinvertebrate data—Continued 01472154 - French Creek near Pughtown, Pa. (Site 14)—Continued | Date | Oct. 2 | 1, 1981 | Nov. 2 | 2, 1982 | Oct. 2 | 0, 1983 | Oct. 1 | 0, 1984 | Oct. 1 | 1, 1985 | Oct. 3 | 1, 1986 | Oct. 1 | 4, 1987 | |---------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 760 | 1, | 543 | 1, | 432 | 1, | 716 | 4 | 21 | 1, | 416 | 1, | 331 | | Organism | Count | Percent | Trichoptera | | | | | | | | | | | | | | | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 3 | <1 | 1 | <1 | 6 | <1 | _ | | | | 2 | <1 | _ | | | Leucotrichia | 120 | 7 | 430 | 27 | 300 | 21 | 390 | 23 | 83 | 19 | 310 | 22 | 57 | 4 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | _ | | _ | | | | _ | | | | _ | | | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | | | _ | | | | | | _ | | | | | Oecetis | | | | | 2 | <1 | _ | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 32 | 2 | 21 | 1 | 31 | 2 | 57 | 3 | 10 | 2 | 20 | 1 | 11 | <1 | | <b>Dolophilodes</b> | _ | | _ | | _ | | _ | | | | _ | | _ | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | 6 | <1 | 3 | <1 | 18 | 1 | 1 | <1 | 1 | <1 | 2 | <1 | _ | | | Polycentropus | | | _ | | | | _ | | _ | | 1 | <1 | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | 18 | 1 | 17 | 1 | 33 | 2 | 14 | <1 | 2 | <1 | 24 | 2 | 6 | <1 | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | | | | | _ | | _ | | | | 1 | <1 | | | | R. fuscula | 1 | <1 | | | | | | | _ | | | | _ | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | 7 | <1 | 2 | <1 | _ | | _ | | _ | | | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 12 | <1 | _ | | 1 | <1 | _ | | | | 2 | <1 | 2 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | | | | A.variegata | _ | | | | | | _ | | | | _ | | | | | Optioservus | 16 | <1 | 1 | <1 | 2 | <1 | 6 | <1 | 5 | 1 | 5 | <1 | 22 | 2 | | Oulimnius | 1 | <1 | | | | | _ | | | | _ | | | | | Stenelmis | | | | | 6 | <1 | | | _ | | 1 | <1 | 1 | <1 | | Hydrophilidae | | | | | | | | | | | | | | | | Helophorus | _ | | | | _ | | 1 | <1 | _ | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | _ | | | | 1 | <1 | | | _ | | | | _ | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 340 | 19 | 430 | 27 | 46 | 3 | 330 | 19 | 63 | 15 | 440 | 31 | 940 | 72 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 3 | <1 | 8 | <1 | 2 | <1 | 2 | <1 | _ | | 1 | <1 | 1 | <1 | | Ephydridae | _ | | | | _ | | _ | | | | _ | | _ | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 18 | 1 | 2 | <1 | 2 | <1 | 22 | 1 | 6 | 2 | 6 | <1 | 12 | <1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 9 | <1 | 28 | 2 | 13 | <1 | 13 | <1 | 4 | 1 | 32 | 2 | 9 | <1 | | Tipula | _ | | | | _ | | 1 | <1 | | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 2 | 1, 1988 | Oct. 2 | 4, 1989 | Nov. 1 | 5, 1990 | Oct. 1 | 5, 1991 | Oct. 1 | 4, 1992 | Oct. 1 | 3, 1993 | Oct. 2 | 7, 1994 | Date | |--------|---------|--------|----------|--------|---------|--------|---------|--------|------------|--------|---------|--------|---------|-------------------------------| | 1 2 | ,589 | 1,4 | 489 | 7- | 47 | 1, | 545 | 1,0 | 025 | 7 | 65 | 1, | 212 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Hydrop <sup>+</sup> llidae | | _ | | 1 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 5 | <1 | 7 | <1 | Hydroptila | | 100 | 4 | 120 | 8 | 73 | 10 | 230 | 14 | 190 | 19 | 130 | 17 | 120 | 10 | Leucotrichia | | | | | | | | | | | | | | | | Lepidos omatidae | | 16 | <1 | | | 3 | <1 | 4 | <1 | 3 | <1 | | | 4 | <1 | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | | | | | | | | | 1 | <1 | | | _ | | Mystacides | | | | | | _ | | | | _ | | 2 | <1 | | | <b>Oeartis</b> | | | | | | | | | | | | | | | | Philopotamidae | | 61 | 2 | 120 | 8 | 37 | 5 | 65 | 4 | 10 | 1 | 10 | 1 | 83 | 7 | Chimarra | | | | 3 | <1 | | | | | | | _ | | | | Dolophilodes | | | | - | | | | | | | | | | | | Polycentropodidae | | 5 | <1 | | | | | 2 | <1 | | | | | | | Neursclipsis | | | | _ | | _ | | _ | | | | | | _ | | Polycentropus | | | | | | | | | | | | | | | | Psychomytidae | | 11 | <1 | 6 | <1 | 1 | <1 | 33 | 2 | 1 | <1 | 6 | <1 | 24 | 2 | Psychomyia | | •• | | · | ~1 | - | ~- | 55 | - | - | ~1 | v | ~1 | 21 | - | Rhyacophilidae | | | | | | | | | | 1 | <1 | | | | | Rhyacophila | | | | _ | | _ | | | | 1 | <b>~</b> 1 | | | _ | | R. fuscula | | | | | | | | | | _ | | | | _ | | <i>R. Iuscuia</i><br>Uenoida∘ | | | | - | _ | | _ | | | | | | | _ | | | | | | 33 | 2 | 1 | <1 | | | | | _ | | 6 | <1 | Neophylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralida | | 3 | <1 | 1 | <1 | 1 | <1 | 3 | <1 | _ | | 3 | <1 | 2 | <1 | Petraohila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Anc <sub>\(\tau\)</sub> ronyx | | | | | | _ | | | | _ | | | | 2 | <1 | A.variegata | | 21 | <1 | 7 | <1 | 19 | 3 | 14 | <1 | 21 | 2 | 4 | <1 | 3 | <1 | Opt'oservus | | | | | | | | | | | | | | | | Oul mnius | | 3 | <1 | | | 1 | <1 | 1 | <1 | | | 2 | <1 | _ | | Stenelmis | | | | | | | | | | | | | | | | Hydrophilidae | | | | | | | | | | | | _ | | | | Helcphorus | | | | | | | | | | | | | | | | Psephenidae | | | | | | 1 | <1 | | | 4 | <1 | | | 1 | <1 | Pserhenus | | | | | | - | -4 | | | • | | | | • | | Diptera | | 530 | 20 | 190 | 13 | 100 | 13 | 430 | 27 | 230 | 23 | 100 | 13 | 130 | 11 | Chironomidae | | | | 200 | -3 | 100 | 10 | | | 200 | 23 | 200 | | 100 | ** | Empidicae | | | | 8 | <1 | | | 9 | <1 | 5 | <1 | _ | | 1 | <1 | Empleic ∢e<br>Herr∙rodromia | | _ | | 1 | <1<br><1 | _ | | 3 | ~1 | J | ~1 | _ | | 1 | ~1 | Ephydri †ae | | _ | | 1 | <1 | | | _ | | _ | | | | | | Epnydri ⊤ae<br>Simuliidae | | 200 | 10 | 10 | .4 | | .• | , | | ^ | . 4 | 10 | • | | | | | 320 | 12 | 10 | <1 | 3 | <1 | 4 | <1 | 2 | <1 | 16 | 2 | 1 | <1 | Simulium | | | | | - | | - | | _ | | | | _ | | | Tipulida | | 19 | <1 | 40 | 3 | 39 | 5 | 26 | 2 | 14 | 1 | 14 | 2 | 13 | 1 | Antocha | | | | | | | | _ | | | | 1 | <1 | _ | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued 01472157 - French Creek near Phoenixville, Pa. (Site 15) | Date | | 1, 1981 | | 2, 1982 | | 0, 1983 | | 0, 1984 | Oct. 1 | 1, 1985 | Dec. | 5, 1986 | Oct. 1 | 4, 1987 | |-----------------------------|-------|---------|-------|---------|----------------|---------|-------|---------|--------|---------|-------|---------|--------|---------| | Total count | 1 3 | ,427 | 1 | 548 | <sup>1</sup> 1 | ,141 | 1 | 821 | 2 | 26 | 7 | 12 | 6 | 00 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | ,,, | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planarlidae | 69 | 2 | _ | | 5 | <1 | 5 | <1 | 1 | <1 | 5 | <1 | 2 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | 3 | <1 | | | _ | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | | | | | | | | | | | | | | | Amnicola | _ | | | | | | | | 2 | 1 | 30 | 4 | 9 | 2 | | Pleuroceridae | | | | | | | | | | | | | | | | Goniobasis | _ | | | | 3 | <1 | _ | | 4 | 2 | 1 | <1 | 3 | <1 | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 11 | <1 | 5 | 1 | 8 | <1 | 8 | 1 | | | 19 | 3 | 3 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | 3 | <1 | | | _ | | | | _ | | _ | | | | | Physidae | | | | | | | | | | | | | | | | Physa | 5 | <1 | | | | | | | 1 | <1 | 1 | <1 | _ | | | Planorbidae | | | | | | | | | | | | | | | | Helisoma | 67 | 2 | | | _ | | | | 2 | 1 | 5 | <1 | | | | Gyraulus | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaerlidae | | | | | | | | | | | _ | | | | | Musculium | | | | | _ | | | | | | | | 2 | <1 | | Pisidium | 3 | <1 | | | _ | | | | _ | | _ | | 1 | <1 | | Annelida (segmented worms) | | ~* | | | | | | | | | | | • | • | | Oligochaeta | | | | | | | | | | | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | | | | | 1 | <1 | 4 | <1 | _ | | | Tubificida | | | | | | | | | • | | • | | | | | Naididae | _ | | | | _ | | _ | | _ | | _ | | 22 | 4 | | Tubificidae | | | | | | | | | | | 2 | <1 | | * | | Hirudinea | _ | | _ | | _ | | _ | | _ | | _ | ~1 | 1 | -1 | | Arthropoda (arthropods) | | | | | _ | | | | | | | | • | <1 | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | | | | | | | | | 11 | 2 | | | | Crustacea | _ | | | | _ | | _ | | _ | | 11 | 2 | | | | Crustacea Cladocera | | | | | | | | | | | | | | | | Cyclopoida | _ | | _ | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | | | | Amphipoda<br>Gammaridae | | | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | Gammarus | | | _ | | 3 | <1 | | | _ | | _ | | | | | | 9, 1988 | | 3, 1989 | | 5, 1990 | | l, 1991 | | 4, 1992 | | 5, 1993 | | 28, 1994 | Da⁴• | |-------|---------|-------|---------|-------|---------|----------------|---------|-------|---------|-------|-----------|-------|----------|-----------------------------| | 12 | ,496 | 2 | 03 | 2 | 71 | 1,2 | 254 | 8 | 25 | 5 | 87 | 1 | ,045 | Total count | | Count | Percent Organism | | | | | | | | <del>'''</del> | | | | ···· | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 11 | <1 | 16 | 7 | 5 | 2 | 1 | <1 | | | 6 | 1 | 3 | <1 | Planaritdae | | | | | | | | | | | | | | | | Nemertea (proboscia worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | _ | | | | | | | | 2 | <1 | | | _ | | Prostoma . | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastronoda | | | | | | | | | | | | | | | | Hydrobiidae | | | | 5 | 3 | 6 | 2 | 2 | <1 | 14 | 2 | | | _ | | Amnicola | | | | - | _ | • | _ | _ | - | | _ | • | | | | Pleuroceridae | | 3 | <1 | | | 1 | <1 | 1 | <1 | 3 | <1 | 3 | <1 | 1 | <1 | Goniobasis | | • | | | | - | | - | | • | | Ū | | • | ** | Basommatcohora | | | | | | | | | | | | | | | | Ancylidae | | 21 | <1 | 7 | 3 | 42 | 15 | 26 | 2 | 14 | 2 | 29 | 5 | 49 | 4 | Ferrissia | | •• | -1 | • | | XL. | 13 | 20 | _ | ** | | 20 | J | 40 | 7 | Lymnaridae | | 8 | <1 | _ | | | | | | | | | | 10 | <1 | Lymnaea | | • | | | | | | | | | | | | 10 | ~• | Physidae | | _ | | | | 4 | 2 | | | 3 | <1 | 1 | <1 | | | Physa | | _ | | | | 7 | L | _ | | J | ~1 | 1 | ~1 | _ | | Planorbidae | | | | | | | | | | | | | | | | He¹lsoma | | 3 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | 6 | <1 | 2 | <1 | 2 | <1 | Gyraulus | | 3 | ~1 | 1 | _1 | • | -1 | L | ~1 | J | -1 | L | -1 | | ~1 | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | 16 | 2 | 1 | <1 | | | Sphaer'idae | | | | | | | | | | 10 | L | 1 | ~1 | | | Musculium | | 3 | <1 | 1 | <1 | | | 2 | <1 | _ | | _ | | | | Pisidium | | 3 | <1 | 1 | <1 | | | 2 | <1 | | | | | _ | | Annelida (segmented worms) | | | | | | | | | | 2 | <1 | | | | | Oligochaeta | | | | _ | | | | _ | | 2 | <1 | _ | | _ | | Lumbriculida | | 5 | <1 | 2 | , | 1 | <1 | | | | | | | | | Lumbriculidae | | 3 | <1 | 2 | 1 | 1 | <1 | | | | | | | | | | | 5 | <1 | 10 | E | | | | | 2 | . 1 | | | | | Tubificida<br>Naidid ™ | | J | <1 | 10 | 5 | _ | | _ | | 2 | <1 | _ | | _ | | Naidid 'e<br>Tubific'dae | | | | | | | | | | _ | | | | | | | | _ | | | | | | _ | | _ | | _ | | _ | | Hirudinea | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | 2 | _1 | o | | E | 2 | 10 | , | 25 | 2 | | <b>_1</b> | 50 | | Acariformes | | 3 | <1 | 8 | 4 | 5 | 2 | 13 | 1 | 25 | 3 | 4 | <1 | 50 | 5 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | _ | | 9 | 4 | | | _ | | | | - | | _ | | Cladocera | | | | 29 | 13 | _ | | | | _ | | _ | | | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | _ | | _ | | - | | | | | | | | _ | | Gammarus | Table 5. Benthic-macroinvertebrate data—Continued 01472157 - French Creek near Phoenixville, Pa. (Site 15)—Continued | Date | | 1, 1981 | | 2, 1982 | | 0, 1983 | Oct. 1 | 0, 1984 | Oct. 1 | 1, 1985 | Dec. | 5, 1986 | Oct. 1 | 4, 1987 | |------------------|------------|----------------|-------|---------|-------|---------|--------|---------|--------|---------|-------|-----------|--------|----------------| | Total count | 1 3 | ,427 | 1 ; | 548 | 11 | ,141 | 1 ; | B21 | 2 | 26 | 7 | '12 | | 00 | | Organism | Count | Percent | Coun* | Percent | | nsecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | _ | | _ | _ | | | | _ | | Baetis | 16 | <1 | _ | | _ | | 3 | <1 | 5 | 2 | | | 14 | 2 | | Pseudocloean | 24 | <1 | _ | | | | 5 | <1 | | | _ | | | | | Caenidae | | | | | | | | | | | | | | | | <i>Cae</i> nis | | | | | | | | | 11 | 5 | _ | | 1 | <1 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 43 | 1 | 11 | 2 | 11 | 1 | 8 | 1 | 6 | 3 | 140 | 19 | 7 | 1 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | 37 | 1 | 21 | 4 | 29 | 3 | 3 | <1 | _ | | 77 | 11 | 1 | <1 | | Stenonema | 80 | 2 | 35 | 6 | 64 | 6 | 91 | 11 | 13 | 5 | 22 | 3 | 16 | 3 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 37 | 1 | 8 | 2 | 8 | <1 | 8 | 1 | 4 | 2 | 3 | <1 | 13 | 2 | | Leptohyphidae | • | - | • | - | | | | - | - | _ | • | | | _ | | Tricorythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | _ | | | | | Argia | 29 | <1 | | | | | | | | | 3 | <1 | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | | | 3 | <1 | 13 | 2 | | | | | | | | Chloroperlidae | 24 | <1 | 5 | 1 | 5 | <1 | 11 | 1 | | | 9 | 1 | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | 3 | <1 | | | | | 3 | <1 | 1 | <1 | 5 | <1 | 2 | <1 | | Agnetina | 3 | <1 | | | | | | | | | | | 2 | <1 | | Paragnetina | | · <del>-</del> | | | | | | | | | 3 | <1 | | · <del>-</del> | | Taeniopterygidae | | | | | | | | | | | • | | | | | Strophopteryx | | | | | | | 3 | <1 | | | 3 | <1 | | | | | 11 | <1 | 13 | 2 | 11 | 1 | 8 | 1 | 4 | 2 | 3 | <b>~1</b> | 2 | <1 | | Taeniopteryx | 11 | <1 | 13 | Z | 11 | 1 | 0 | 1 | 4 | 2 | | | Z | <1 | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | | | | | | | | | | | | | | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | 13 | <1 | 13 | 2 | 11 | 1 | | | 2 | 1 | 60 | 8 | 14 | 2 | | Brachycentridae | | | | | | | _ | | _ | | 49 | 7 | 20 | 3 | | Micrasema | 220 | 6 | 8 | 2 | 85 | 8 | 11 | 1 | 18 | 8 | | | | | | Glossosomatidae | | • | Ū | - | - | • | | • | | • | | | | | | Glossosoma | | | 19 | 3 | | | 64 | 8 | 31 | 13 | 3 | <1 | 23 | 4 | | Protoptila | 2,200 | 65 | 5 | 1 | 590 | 54 | 35 | 4 | | 15 | 3 | ~1 | 25 | 7 | | | 2,200 | 03 | 3 | 1 | 390 | 34 | 33 | 4 | | | | | | | | Helicopsychidae | | | | | | | | | | | | _ | | | | Helicopsyche | | | _ | | | | | | - | | 21 | 3 | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 29 | <1 | 37 | 7 | 59 | 5 | 53 | 6 | 21 | 9 | 21 | 3 | 8 | 1 | | Cheumatopsyche | 56 | 2 | 21 | 4 | 45 | 4 | 37 | 4 | 9 | 4 | 10 | 1 | 6 | 1 | | Hydropsyche | 3 | <1 | 3 | <1 | 3 | <1 | _ | | | | 13 | 2 | 14 | 2 | | Macrostemum | | | | | | | _ | | | | | | - | | | Potamyia | | | | | | | | | | | | | 2 | <1 | | Hydroptilidae | | | | | | | | | | | | | - | | | Hydroptila | 5 | <1 | | | | | | | | | | | | | | Leucotrichia | 24 | <1 | 160 | 29 | 24 | 2 | 59 | 7 | 27 | 11 | 12 | 2 | 16 | 3 | | 123431113114 | <b>4</b> 4 | ~1 | 100 | 43 | 44 | 4 | J | 1 | 41 | 11 | 14 | 4 | 10 | J | | Oct. 1 | 9, 1988 | Oct. 2 | 3, 1989 | Nov. 1 | 5, 1990 | Oct. 4 | , 1991 | Oct. 1 | 4, 1992 | Oct. 1 | 5, 1993 | Oct. 2 | 28, 1994 | [^ate | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|----------|----------------------------| | 12 | ,496 | 2 | 03 | 2 | 71 | 1,2 | 254 | ε | 325 | 5 | 587 | 1 | ,045 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baeti lae | | 40 | 2 | _ | | _ | | 42 | 3 | 7 | <1 | 4 | <1 | 2 | <1 | Raetis | | 5 | <1 | _ | | 2 | <1 | 18 | 1 | 10 | 1 | 2 | <1 | _ | | Pseudocloeon | | | | | | | | | | | | | | | | Caen'dae | | _ | | _ | | | | | | | | _ | | 1 | <1 | Caenis | | | | | | | | | | | | | | | | Ephemerellidae | | 13 | <1 | 8 | 4 | 9 | 3 | 48 | 4 | 38 | 5 | 2 | <1 | 20 | 2 | Γnhemerella | | | | | | | | | | | | | | | | Hept <sup>¬</sup> geniidae | | 35 | 1 | 1 | <1 | 2 | <1 | 11 | <1 | 28 | 3 | 23 | 4 | 7 | <1 | Греогия | | 64 | 3 | 6 | 3 | 20 | 7 | 67 | 5 | 12 | 1 | 12 | 2 | 43 | 4 | Stenonema | | 0. | Ū | Ū | Ū | 20 | • | ٠, | J | 10 | • | 12 | - | 70 | <b>T</b> | Isonychiidae | | 45 | 2 | | | 5 | 2 | 5 | <1 | 16 | 2 | 9 | 2 | 7 | <1 | I onychia | | 43 | 2 | _ | | 3 | 2 | 3 | <1 | 10 | 2 | 9 | 2 | ′ | <1 | | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | _ | | _ | | | | 1 | <1 | _ | | 1 | <1 | Tricorythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | _ | | _ | | | | | | Coenagrionidae | | 5 | <1 | _ | | | | 2 | <1 | 3 | <1 | _ | | 1 | <1 | Argia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | _ | | 4 | 2 | 1 | <1 | _ | | 1 | <1 | _ | | _ | | Allocapnia | | _ | | _ | | | | 2 | <1 | 6 | <1 | _ | | 7 | <1 | Chloroperlidae | | | | | | | | | | | | | | | | Perlidae | | 8 | <1 | 2 | 1 | | | | | _ | | 1 | <1 | 1 | <1 | Acroneuria | | _ | | 2 | 1 | _ | | | | _ | | 1 | <1 | | | Agnetina | | | | | | _ | | | | | | _ | | | | Paragnetina | | | | | | | | | | | | | | | | Taeninpterygidae | | | | _ | | _ | | | | | | | | 5 | <1 | Strophopteryx | | 5 | <1 | 4 | 2 | _ | | 1 | <1 | 8 | 1 | 1 | <1 | _ | • | Taeniopteryx | | · | ~- | * | - | | | • | ~- | ŭ | • | - | ~- | | | Megaloptra | | | | | | | | | | | | | | | | Corydalidae | | 3 | <1 | | | | | | | | | | | | .1 | | | 3 | <1 | | | | | | | 1 | | _ | | 1 | <1 | Corydalus | | | | | | _ | | | | 1 | <1 | | | | | 1 Tigronia | | | | | | | | | | | | | | | | Trichoptera | | | _ | _ | _ | | | _ | _ | | _ | | _ | | _ | Apatantidae | | 77 | 3 | 6 | 3 | | | 5 | <1 | 24 | 3 | 28 | 5 | 71 | 6 | Anatania | | _ | | _ | | | | _ | | - | | _ | | _ | | Brachycentridae | | 69 | 3 | 3 | 2 | 10 | 4 | 53 | 4 | 15 | 2 | 44 | 7 | 69 | 6 | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | 11 | <1 | | | 2 | <1 | 7 | <1 | 7 | <1 | 3 | <1 | 2 | <1 | Glossosoma | | 790 | 32 | 15 | 7 | | | 6 | <1 | 81 | 10 | 210 | 35 | 110 | 10 | Protoptila | | | | | | | | | | | | | | | | Helicapsychidae | | 5 | <1 | 6 | 3 | _ | | 10 | <1 | 19 | 2 | 21 | 3 | 44 | 4 | Fi-licopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | 140 | 6 | 1 | <1 | | | 140 | 11 | 42 | 5 | 8 | 1 | 150 | 14 | Ceratopsyche | | 11 | <1 | 3 | 2 | 1 | <1 | 21 | 2 | 3 | <1 | 14 | 2 | 48 | 4 | Cheumatopsyche | | 69 | 3 | _ | - | 8 | 3 | 38 | 3 | 4 | <1 | _ | - | 5 | <1 | F <sup>3</sup> ydropsyche | | 3 | <1 | _ | | _ | , | | • | | ~1 | | | 1 | <1 | Macrostemum | | _ | ~1 | _ | | _ | | _ | | | | | | _ 1 | ~1 | Frianyia | | _ | | | | | | | | | | _ | | | | _ | | | | | | | | | | | | | | | . • | Hydroptilidae | | | 0= | _ | | | ^ | _ | 40 | | | | 4. | 1 | <1 | Fydroptila | | 680 | 27 | 1 | <1 | 9 | 3 | 560 | 43 | 80 | 10 | 65 | 11 | 82 | 7 | Leucotrichia | Table 5. Benthic-macroinvertebrate data—Continued 01472157 - French Creek near Phoenixville, Pa. (Site 15)—Continued | Date | Oct. 2 | 1, 1981 | Nov. 2 | 2, 1982 | Oct. 2 | 0, 1983 | Oct. 1 | 0, 1984 | Oct. 1 | 1, 1985 | Dec. | 5, 1986 | Oct. 1 | 4, 1987 | |-------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|--------|---------| | Total count | 1 3 | ,427 | 1 ( | 548 | 1 1, | ,141 | 1 ( | B21 | 2 | 26 | 7 | 12 | 6 | 00 | | Organism | Count | Percent | Coun* | Percent | | Trichoptera | | | | | | | | | | | | | | | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | | | | | | | | | | | | | | | Ceraclea | - | | _ | | | | | | | | _ | | | | | Mystacides | | | | | _ | | _ | | _ | | 1 | <1 | | | | Oecetis | | | | | 3 | <1 | _ | | _ | | _ | | _ | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 110 | 3 | 5 | 1 | 32 | 3 | 27 | 3 | 5 | 2 | 16 | 2 | 9 | 2 | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | _ | | 3 | <1 | _ | | | | | | _ | | | | | Nyctiophylax | _ | | | | | | 5 | <1 | 1 | <1 | | | 1 | <1 | | Polycentropus | | | | | | | | | | | | | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | | | | | 13 | 1 | 27 | 3 | 6 | 3 | | | 1 | <1 | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | 160 | 5 | | | | | 3 | <1 | | | | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 3 | <1 | _ | | 8 | <1 | 5 | <1 | 2 | 1 | 2 | <1 | 1 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Microcylloepus | 3 | <1 | | | | | | | | | | | _ | | | Optioservus | 13 | <1 | 3 | <1 | 11 | 1 | 5 | <1 | 6 | 3 | 7 | 1 | 24 | 4 | | Oulimnius | | | | | | | | | | | | | | | | Promoresia | | | | | | | | | | | | | | | | Stenelmis | | | | | 3 | <1 | 5 | <1 | 4 | 2 | | | | | | Gyrinidae | | | | | | | | | | | | | | | | Dineutus | | | 5 | 1 | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | | | | | | | | | | | | | | | | Psephenus | | | | | 3 | <1 | | | 5 | 2 | 1 | <1 | 14 | 2 | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | | | | | | _ | | | | | | | Ceratopogonidae | | | | | | | | | | | | | | | | Chironomidae | 120 | 4 | 160 | 29 | 85 | 8 | 310 | 37 | 24 | 10 | 130 | 18 | 340 | 56 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | | | | | | | | | 2 | 1 | 2 | <1 | 1 | <1 | | Simuliidae | | | | | | | | | - | _ | _ | _ | _ | = | | Prosimulium | | | | | | | | | | | 1 | <1 | | | | Simulium | 3 | <1 | 3 | <1 | | | 3 | <1 | 5 | 2 | _ | | 1 | | | Tipulidae | - | - | - | - | | | - | - | - | - | | | - | | | Antocha | | | 5 | 1 | 13 | 1 | 3 | <1 | 3 | 1 | 18 | 3 | 4 | <1 | | Tipula | | | - | - | | - | - | - | - | - | 2 | <1 | - | - | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | | 9, 1988 | Oct. 2 | 3, 1989 | Nov. 1 | 5, 1990 | Oct. 4 | 1, 1991 | Oct. 1 | 4, 1992 | Oct. 1 | 5, 1993 | Oct. 2 | 8, 1994 | Date | |-------|-----------|--------|---------|--------|-----------|--------|---------|--------|---------|--------|---------|--------|---------|---------------------------------| | 12 | ,496 | 2 | 03 | 2 | 71 | 1, | 254 | 8 | 25 | 5 | 87 | 1,0 | 045 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Lepido~tomatidae | | | | 3 | 2 | _ | | 7 | <1 | 8 | 1 | 2 | <1 | 1 | <1 | Leridostoma | | | | | | | | | | | | | | | | Leptoceridae | | _ | | 3 | 2 | _ | | 2 | <1 | _ | | | | 1 | <1 | Ceraclea | | | | | | | | _ | | _ | | 1 | <1 | 5 | <1 | My∗tacides | | 5 | <1 | | | | | 1 | <1 | 1 | <1 | 2 | <1 | | | Oe::etis | | | | | | | | | | | | | | | | Philopetamidae | | 29 | 1 | 4 | 2 | | | 6 | <1 | 13 | 2 | 13 | 2 | 14 | 1 | Ch'marra | | | | | | | | | | | | | | | | Polycertropodidae | | 3 | <1 | _ | | _ | | 7 | <1 | 5 | <1 | | | 15 | 1 | Neureclipsis | | _ | | _ | | _ | | | | _ | | | | 3 | <1 | Nyctiophylax | | _ | | | | _ | | 3 | <1 | _ | | 2 | <1 | 4 | <1 | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 5 | <1 | | | | | 11 | <1 | 2 | <1 | 3 | <1 | 22 | 2 | Psychomyia | | | | | | | | | | | | | | | | Uenoid∘e | | | | 7 | 3 | 5 | 2 | _ | | _ | | _ | | 25 | 2 | Nerohylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralid ** | | | | | | 9 | 3 | 17 | 1 | 18 | 2 | 3 | <1 | 5 | <1 | Pet~ophila | | | | | | _ | _ | | _ | | _ | • | | | | Coleoptera | | | | | | | | | | | | | | | | Elmida? | | | | | | | | _ | | | | | | | | Mi ~ocylloepus | | 27 | 1 | 7 | 3 | 1 | <1 | 2 | <1 | 1 | <1 | | | 3 | <1 | Optioservus | | _ | • | | J | 2 | <1 | | ~1 | _ | ~1 | | | | ~1 | Oulimnius | | | | 1 | <1 | _ | ~1 | | | 1 | <1 | | | _ | | Premoresia | | 8 | <1 | | ~1 | 1 | <1 | _ | | 2 | <1 | _ | | 1 | <1 | Stenelmis | | 0 | <b>\1</b> | | | 1 | <b>\1</b> | | | L | <1 | _ | | 1 | <1 | Gyrinidae | | | | | | | | | | | | | | | | Dineutus | | | | _ | | _ | | _ | | _ | | | | | | | | • | | | | | | | | | | | | | | Psephenidae | | 3 | <1 | | | _ | | _ | | _ | | | | _ | | Ectroria | | _ | | _ | | 2 | <1 | | | _ | _ | | _ | _ | _ | E. nervosa | | 5 | <1 | _ | | _ | | 1 | <1 | 8 | 1 | 4 | <1 | 4 | <1 | Pscohenus | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | _ | | _ | | _ | | _ | | _ | | | | 1 | <1 | Atl∾rix | | _ | _ | 1 | <1 | | | _ | _ | _ | | | _ | _ | | Ceratopogonidae | | 30 | 9 | 23 | 10 | 71 | 25 | 98 | 8 | 250 | 30 | 56 | 9 | 97 | 9 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | 3 | <1 | 1 | <1 | _ | | _ | | 5 | <1 | | | 2 | <1 | Hemerodromia | | | | | | | | | | | | | | | | Simulii dae | | - | | _ | | _ | | _ | | _ | | _ | | _ | | Prc <imulium< td=""></imulium<> | | 11 | <1 | 2 | 1 | | | 7 | <1 | 2 | <1 | _ | | 1 | <1 | Simulium | | | | | | | | | | | | | | | | Tipulid - e | | 27 | 1 | 1 | <1 | 45 | 16 | 9 | <1 | 16 | 2 | 7 | 1 | 47 | 4 | An+ocha | | _ | | | | 1 | <1 | _ | | _ | | | | _ | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16) | Date | Oct. 2 | 3, 1981 | Nov. 2 | 2, 1982 | Oct. 2 | 0, 1983 | Oct. 1 | 0, 1984 | Oct. 9 | , 1985 | Oct. 3 | 1, 1986 | Oct. 1 | 3, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-----------------| | Total count | 2 | 40 | 6 | 19 | 3 | 43 | 2, | 247 | ; | 72 | e | 05 | 4 | 89 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 1 | <1 | | | 45 | 13 | 17 | <1 | 1 | 2 | 8 | 1 | 12 | 2 | | Nematoda (nematodes) | _ | | _ | | _ | | | | _ | | 2 | <1 | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | 9 | 2 | 6 | 2 | 16 | <1 | _ | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | | | | | | | | | | | | | | | <b>Amn</b> icola | | | _ | | _ | | _ | | _ | | _ | | 3 | <1 | | Pleuroceridae | | | | | | | | | | | | | | | | Goniobasis | | | | | _ | | _ | | _ | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | _ | | 18 | 3 | 9 | 3 | 10 | <1 | _ | | 1 | <1 | 1 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | | | | 9 | 3 | | | _ | | | | _ | | | Physidae | | | | | • | _ | | | | | | | | | | Physa | 10 | 4 | | | 81 | 4 | 14 | <1 | | | 1 | <1 | 1 | <1 | | Planorbidae | 10 | • | | | 01 | • | •• | • | | | _ | | | ~* | | Gyraulus | | | | | | | | | | | | | _ | | | Helisoma | | | | | 23 | 7 | 1 | <1 | _ | | | | | | | Bivalvia | | | | | 20 | • | • | ~1 | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | | | | | | | | | | | | Spriaer nuae<br>Pisidium | | | _ | | _ | | | | _ | | | | _ | | | | | | | | _ | | _ | | _ | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Polychaeta | | | | | | | | | | | | | | | | Sabellida | | | | | | | | | | | | | | | | Sabellidae | | | | | _ | | | | | | | | | | | Manayunkia speciosa | _ | | | | 3 | <1 | _ | | _ | _ | | | | | | Oligochaeta | | | _ | | | | | | 1 | 2 | | | _ | | | Lumbriculida | | | | | | | | | | | | | _ | | | Lumbriculidae | 1 | <1 | _ | | _ | | | | _ | | | | 3 | <l< td=""></l<> | | Tubificida | | | | | | | | | | | | | | | | Naididae | 5 | 2 | 480 | 76 | 120 | 35 | 280 | 12 | | | 6 | 1 | 6 | 1 | | Tubificidae | | | 9 | 2 | 8 | 2 | 49 | 2 | _ | | _ | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | 3 | <1 | 2 | <1 | 1 | <1 | 2 | 3 | 3 | <1 | 12 | 2 | | Crustacea | | | | | | | | | | | | | | | | Cladocera | | | | | | | 1 | <1 | _ | | | | _ | | | Cyclopoida | | | _ | | _ | | | | _ | | _ | | _ | | | Amphipoda | | | | | | | | | | | | | | | | Crangonyctidae | | | | | | | | | | | | | | | | Crangonyx | | | | | | | _ | | | | _ | | _ | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | 1 | <1 | | | | | | | | | | | | | | Oct. 19 | 9, 1988 | Oct. 24 | 1, 1989 | Nov. 1 | 5, 1990 | Oct. 2 | 1, 1991 | Oct. 1 | 3, 1992 | Oct. 18 | 8, 1993 | Oct. 2 | 8, 1994 | Dat: | |-----------------|---------|---------|---------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|------------------------------------------------------------------------------------------| | <sup>1</sup> 1, | ,340 | 2 | 70 | 1 | 13 | 7: | 27 | 1 | 15 | 9 | 85 | 6 | 56 | Total count | | Count | Percent Organ <sup>i</sup> sm | | | | | | | | | | | | | - | | | Platyhelminthes (flatworms)<br>Turbellaria<br>Tricladida | | _ | | 7 | 3 | 8 | 7 | 1 | <1 | 5 | 5 | 44 | 4 | 11 | 2 | Planariidae | | _ | | | | _ | | | | _ | | _ | | _ | | Nematoda (nematod :s) Nemertea (proboscis worms) Enopla Hoploneme-tea Tetraste~matidae | | 3 | <1 | 8 | 3 | 8 | 7 | 3 | <1 | _ | | 1 | <1 | 5 | <1 | Pro**oma Mollusca (molluscs) Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda<br>Hydrob <sup>11</sup> dae | | _ | | 13 | 5 | 1 | 1 | | | 4 | 4 | 1 | <1 | | | <i>Amnicola</i><br>Pleuroc?ridae | | _ | | 3 | 1 | 1 | 1 | _ | | 16 | 13 | 1 | <1 | | | <i>Goriobasis</i><br>Basommatophora<br>Ancylidae | | | | 12 | 4 | 8 | 7 | 1 | <1 | _ | | | | 1 | <1 | Ferrissia | | 3 | <1 | 2 | <1 | 1 | 1 | _ | | | | _ | | _ | | Lymnaeidae<br><i>Lymnaea</i> | | _ | | 53 | 19 | 40 | 33 | | | 26 | 22 | 1 | <1 | _ | | Physida -<br><i>Ph</i> ysa | | | | | | 2 | 2 | | | | | | | _ | | Planorb'dae | | | | 10 | 4 | _ | | _ | | | | | | _ | | Gyr vulus | | | | _ | | _ | | | | 2 | 2 | _ | | _ | | <i>Helisoma</i><br>Bivalvia<br>Veneroida | | _ | | | | | | | | | | 2 | <1 | _ | | Sphaeri dae | | _ | | 2 | <1 | _ | | | | | | _ | | _ | | <i>Pisi-lium</i><br>Annelida (segmented worms)<br>Polychaeta<br>Sabellida<br>Sabellida•e | | | | 1 | <1 | _ | | | | _ | | | | _ | | Manayunkia speciosa | | | | - | | _ | | - | | 2 | 2 | _ | | _ | | Oligochaeta<br>Lumbriculida | | 3 | <1 | 3 | 1 | 3 | 3 | 1 | <1 | | | | | | | Lumbriculidae<br>Tubificida | | 35 | 3 | 30 | 11 | 3 | 3 | 15 | 2 | | | | | 19 | 3 | Naididae | | _ | | _ | | 7 | 6 | | | | | 5 | <1 | _ | | Tubificidae<br>Arthropoda (arthropods)<br>Acariformes | | | | 42 | 15 | 8 | 7 | 19 | 3 | 1 | 1 | 21 | 2 | 8 | 1 | Hydrachnid'a<br>Crustacea | | _ | | 7 | 3 | 5 | 5 | _ | | _ | | _ | | _ | | Cladocera<br>Cyclopoida<br>Amphipoda | | 3 | <1 | | | | | | | _ | | _ | | _ | | Crangonyx Crangonyx | | _ | | | | _ | | 1 | <1 | 2 | 2 | 5 | <1 | 1 | <1 | Gammaridae<br><i>Gammarus</i> | Table 5. Benthic-macroinvertebrate data—Continued 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16)—Continued | Date | Oct. 23, 19 | 981 | Nov. 2 | 2, 1982 | Oct. 2 | 0, 1983 | Oct. 10 | ), 1984 | Oct. 9 | , 1985 | Oct. 3 | 1, 1986 | Oct. 1 | 3, 1987 | |--------------------------------|-------------|-------|---------|---------|--------|---------|---------|---------|--------|---------|-----------|---------|---------|---------| | Total count | 240 | | 6 | 19 | 3 | 43 | 2,2 | 247 | 7 | 72 | 6 | 05 | 4 | 89 | | Organism | Count Per | rcent | Count | Percent | Court | Percent | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Lirceus | _ | | - | | _ | | 5 | <1 | 4 | 5 | _ | | _ | | | Decapoda | | | | | | | | | | | | | | | | Astacidae | - | | - | | _ | | _ | | | | - | | _ | | | Podocopa | _ | | - | | _ | | _ | | _ | | _ | | - | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | _ | _ | | | | | _ | | Baetis | - | | _ | _ | _ | | 13 | <1 | 8 | 10 | - | | 6 | 1 | | Pseudocloeon | <del></del> | | 1 | <1 | _ | | | | _ | | - | | | | | Caenidae | | | | | | | | | _ | _ | | | | | | Caenis | | | _ | | _ | | | | 1 | 2 | | | _ | | | Ephemerellidae | | | | | | | | | • | | | | • | | | Ephemerella | <del></del> | | - | | _ | | _ | | 3 | 4 | 2 | <1 | 2 | <1 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | _ | | - | | | | _ | | | | _ | • | | Stenonema | _ | | _ | | _ | | | | 8 | 10 | 1 | <1 | 7 | 2 | | Isonychiidae | | | | _ | _ | _ | | | | _ | | | | | | Isonychia | <del></del> | | 1 | <1 | 2 | <1 | | | 2 | 3 | _ | | _ | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | • | | - | • | | | | | | | • | | | Argia | _ | | 3 | <1 | 7 | 2 | _ | | | | 3 | <1 | 2 | <1 | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | <del></del> | | _ | | _ | | _ | | _ | | | | 1 | <1 | | Perlidae | | | | | | | | | | • | | | | | | Acroneuria | | | _ | | _ | | | | 1 | 2 | _ | | _ | | | Taeniopterygidae | | | | | | | _ | | | | | | | • | | Taeniopteryx | | | _ | | 1 | <1 | 1 | <1 | | | 1 | <1 | 13 | 3 | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | _ | | _ | | _ | | | | 1 | 2 | | | | | | Veliidae<br><i>Rhagovelia</i> | | | 1 | <1 | | | | | | | | | | | | Megaloptera | | | 1 | <1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | Corydalidae | | | 1 | -1 | | | | | | | | | | | | <i>Corydalus</i><br>Sialidae | | | 1 | <1 | | | _ | | _ | | _ | | _ | | | Sialidae<br>Sialis | | | | | | | | | | | | | | | | Neuroptera | | | _ | | - | | _ | | | | _ | | _ | | | Sisyridae | | | | | | | | | | | | | | | | Sisyridae<br>Climacia | | | , | <1 | | | | | | | | | | | | Trichoptera | _ | | 1 | <1 | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | <del>-</del> | | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | Apatania<br>Brachycentridae | _ | | | | _ | | | | | | 1 | <1 | | | | Micrasema | | | | | | | | | | | 2 | <1 | | | | Glossosomatidae | _ | | _ | | _ | | | | _ | | 2 | <1 | | | | Giossosomandae<br>Culoptila | | | | | | | | | | | _ | | | | | | | | | | 1 | <1 | - | | _ | | _ | | - | | | Glossosoma | _ | | _ | | 1 | <1 | | | _ | | | | - | | | Protoptila Hudropovehidee | - | | _ | | _ | | | | _ | | _ | | _ | | | Hydropsychidae | , | <1 | 2 | <1 | e | 2 | | | 6 | o | 2 | <1 | 2 | <1 | | Ceratopshche<br>Cheumatopsyche | 1 < | -1 | 7 | <1<br>1 | 6<br>2 | 2<br><1 | | | 3 | 8<br>4 | 29 | <1<br>5 | 3<br>66 | 13 | | | _ | | 7<br>39 | 6 | 2 | <1 | 3 | _1 | 3<br>1 | 2 | 29<br>230 | 38 | 11 | 2 | | Hydropsyche | | | 29 | 0 | _ | | 3 | <1 | 1 | 2 | 230 | 36 | 11 | 2 | | Date | 94 | 28, 1994 | Oct. 2 | 3, 1993 | Oct. 18 | 3, 1992 | Oct. 1 | 1, 1991 | Oct. 2 | 5, 1990 | Nov. 1 | 4, 1989 | Oct. 2 | 9, 1988 | | |----------------------------|------|----------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|----------------| | Total count | | 656 | 6 | 35 | 9 | 15 | 1 | 27 | 7: | 13 | 1 | 70 | 2 | 340 | <sup>1</sup> 1 | | Orçanism | cent | Percent | Count | Isopoda | | | | | | | | | | | - | | | | | | Asellidae | | | | | | | | | | | | | | | | | Lirceus | | | _ | | _ | | _ | | _ | | | | | | _ | | Decapoda | | | | | | | | | | | | | | | | | Astacidae | | | _ | | _ | | _ | | _ | | - | <1 | 1 | | _ | | Podocopa | | | _ | | | | | | | 1 | 1 | | _ | | | | Insecta | | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | | | | | | | | | | | | | | | | Baetis | | | _ | <1 | 3 | | _ | <1 | 2 | | _ | | _ | <1 | 3 | | Pseudocloeon | | | | ~1 | _ | | | ~1 | | 1 | 1 | | | ~1 | _ | | Caenidae | | | | | | | | | | • | • | | | | | | Caenis | | <1 | 1 | | | | | | | | | | _ | | | | Ephemerellidae | | | - | | | | | | | | | | | | | | Ephemerella | | <1 | 5 | 3 | 32 | | | <1 | 2 | 1 | 1 | 3 | 8 | | | | Heptageniidae | | | • | - | | | | | _ | _ | - | - | - | | | | Epeorus | | <1 | 1 | | _ | | | | | | | <1 | 1 | | _ | | Stenonema | | <1 | 2 | <1 | 2 | 2 | 2 | <1 | 1 | 1 | 1 | <1 | 2 | <1 | 3 | | Isonychiidae | | | | | | | | | | | | | | | | | Isonychia | | | | <1 | 1 | | _ | | _ | | _ | <1 | 1 | | | | Odonata | | | | | | | | | | | | | | | | | Coeragrionidae | | | | | | | | | | | | | | | | | Argia | | | _ | <1 | 2 | 2 | 2 | <1 | 3 | 2 | 2 | <1 | 2 | <1 | 5 | | Plecoptera | | | | | | | | | | | | | | | | | Capriidae | | | | | | | | | | | | | | | | | Allocapnia | | | _ | | _ | | _ | | _ | | | <1 | 1 | | _ | | Perlidae | | | | | | | | | | | | | | | | | Acroneuria | | | _ | <1 | 1 | | | | _ | | _ | | | <1 | 3 | | Taen'opterygidae | | | | | | | | | | | | | | | | | Taeniopteryx | | | _ | <1 | 2 | | _ | <1 | 1 | | | 2 | 5 | <1 | 3 | | Hemiptera | | | | | | | | | | | | | | | | | Corbridae | | | | | _ | | _ | | _ | | _ | | _ | | _ | | Veliidae | | | | | | | | | | | | | | | | | Rhagovelia | | | | | | | | | | | | | | | | | Megaloptera<br>Corydalidae | | | | | | | | | | | | | | | | | Corydalus<br>Corydalus | | | | | | | | | | | | | | | | | Sialidae | | | _ | | _ | | _ | | _ | | | | _ | | _ | | Sialis | | | | | | | | | | | | <1 | 1 | | | | Neuroptera | | | | | | | | | _ | | | ~1 | • | | _ | | Sisyridae | | | | | | | | | | | | | | | | | Climacia | | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | | Apataniidae | | | | | _ | | _ | | | 1 | 1 | | _ | | | | Apatania | | | _ | <1 | 1 | | | | | - | _ | | _ | | _ | | Brachycentridae | | | | | | | | | | | | | | | | | Micrasema | | | | <1 | 5 | | _ | | _ | | | <1 | 1 | | _ | | Glos∾osomatidae | | | | | | | | | | | | | | | | | Culoptila | | | | <1 | 1 | | | | | | | | _ | | _ | | Glossosoma | | | | | _ | | _ | | | | _ | | _ | | | | Protoptila | 2 | 2 | 10 | | _ | | | | | | | | _ | | _ | | Hydropsychidae | | | | | | | | | | | | | | | | | Ceratopsyche | 6 | 6 | 38 | 13 | 130 | | _ | 3 | 21 | 2 | 2 | | _ | 7 | 85 | | Cheumatopsy | | 5 | 32 | 13 | 130 | | _ | 6 | 44 | | _ | 1 | 3 | 11 | 140 | | Hydropsyche | l | 14 | 94 | 10 | 100 | | | 9 | 67 | | | 3 | 9 | 54 | 700 | Table 5. Benthic-macroinvertebrate data—Continued 014721612 - French Creek at Railroad Bridge at Phoenixville, Pa. (Site 16)—Continued | Date | Oct. 2 | 3, 1981 | Nov. 2 | 2, 1982 | Oct. 2 | 0, 1983 | Oct. 1 | 0, 1984 | Oct. 9 | , 1985 | Oct. 3 | 1, 1986 | Oct. 1 | 3 1987 | |-------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2 | 40 | 6 | 19 | 3 | 43 | 2,2 | 247 | 7 | 72 | 6 | 05 | 4 | د8 | | Organism | Count | Percent | Trichoptera | · | | | | | | | _ | ** | | | | | | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | | | _ | | | | | | 1 | 2 | - | | _ | | | Leucotrichia | | | | | _ | | | | 2 | 3 | | | 1 | <1 | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | | | | | - | | | | _ | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | | | 1 | <1 | 2 | <1 | | | _ | | | | 1 | <1 | | Dolophilodes | | | | | | | | | _ | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | | | | | 1 | <1 | | | | | - | | | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyia | | | | | | | | | _ | | _ | | _ | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | | | | | | | _ | | _ | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | _ | | _ | | 1 | <1 | | | | | _ | | _ | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 1 | <1 | 3 | <1 | 1 | <1 | 17 | <1 | 1 | 2 | 89 | 15 | 21 | 4 | | Synclita | | | | | 1 | <1 | _ | | _ | | _ | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Curculionidae | | | | | | | | | 1 | 2 | _ | | | | | Dytiscidae | | | _ | | | | _ | | _ | | _ | | 1 | <1 | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | | | | | | | | | _ | | | | 5 | 1 | | Microcylloepus | | | | | | | | | _ | | _ | | | | | Optioservus | | | 1 | <1 | 2 | <1 | | | 3 | 4 | 15 | 2 | 49 | 10 | | Promoresia | | | | | | | | | | | _ | | | | | Stenelmis | | | | | | | | | | | _ | | 6 | 1 | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | | | | | | | | | | | | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | | | | | | _ | | _ | | _ | | | Hymenoptera | _ | | | | | | _ | | 1 | 2 | _ | | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 220 | 92 | 21 | 3 | 9 | 3 | 1,800 | 78 | 21 | 26 | 200 | 33 | 230 | 46 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | _ | | 17 | 3 | | | 16 | <1 | _ | | 7 | 1 | _ | | | Psychodidae | | | | | | | | | | | | | | | | Telmatoscopus | | | | | | | 2 | <1 | _ | | _ | | _ | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | _ | | | | _ | | | | | | 1 | <1 | 26 | 5 | | Tipulidae | | | | | | | | | | | | | - | | | Antocha | | | 1 | <1 | | | | | | | 1 | <1 | _ | | | Tipula | | | _ | - | 1 | <1 | 1 | <1 | | | _ | - | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 1 | 9, 1988 | Oct. 2 | 4, 1989 | Nov. 1 | 5, 1990 | Oct. 2 | 1, 1991 | Oct. 1 | 3, 1992 | Oct. 1 | 8, 1993 | Oct. 2 | 8, 1994 | Date | |----------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|----------------|------------------------| | <sup>1</sup> 1 | ,340 | 2 | 70 | 1 | 13 | 7 | 27 | 1 | 15 | 9 | 85 | 6 | 56 | Total count | | Count | Percent Ornanism | | | | | | | | | | | | *** | | | | Trichoptera | | | | | | | | | | | | | | | | Hyd optilidae | | _ | | | | | | | | _ | | _ | | | | Hydroptila | | 3 | <1 | _ | | | | 2 | <1 | _ | | 1 | <1 | _ | | Leucotrichia | | | | | | | | | | | | | | | | Lept~eridae | | _ | | 1 | <1 | _ | | _ | | | | _ | | _ | | Mystacides | | | | | | | | | | | | | | | | Philopotamidae | | _ | | _ | | _ | | _ | | | | _ | | _ | | Сһітата | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | | | Dolophilodes | | | | | | | | | | | | | | | | Polynentropodidae | | — | | _ | | _ | | | | _ | | | | _ | | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | _ | | | | _ | | _ | | _ | | 1 | <1 | 2 | <1 | Psychomyia | | | | | | | | | | | | | | | | Uenoldae | | _ | | 1 | <1 | | | | | | | _ | | _ | | Neophylax | | | | | | | | | | | | | | | | Lepidopt°ra | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | Noctudae | | | | | | | | | | | | | | | | Pyra <sup>11</sup> dae | | 8 | <1 | 8 | 3 | _ | | 130 | 18 | 6 | 5 | 130 | 13 | 29 | 4 | Petrophila | | _ | | _ | | _ | | | | _ | | _ | | _ | | Synclita | | | | | | | | | | | | | | | | Coleoptera | | _ | | _ | | _ | | _ | | | | _ | | _ | | Curculionidae | | | | _ | | | | | | _ | | _ | | _ | | Dyti∞idae | | | | | | | | | | | | | | | | Elmidae | | _ | | _ | | _ | | _ | | | | | | | | Dubiraphia | | _ | | | | | | _ | | | | 1 | <1 | | | Microcylloepus | | 11 | <1 | 7 | 3 | _ | | 5 | <1 | | | 21 | 2 | 10 | 2 | Optioservus | | _ | | _ | | | | 3 | <1 | _ | | 10 | 1 | _ | | Promoresia | | 3 | <1 | 1 | <1 | | | 3 | <1 | 2 | 2 | 2 | <1 | 2 | <1 | Stenelmis | | - | _ | _ | _ | | | _ | | _ | _ | _ | | _ | | Hydrophilidae | | 3 | <1 | | | _ | | | | _ | | | | _ | | Berosus | | - | | | | | | | | | | | | | | Psephenidae | | 3 | <1 | 1 | <1 | | | 1 | <1 | | | | | 3 | <1 | Psephenus | | _ | - | _ | | _ | | _ | | | | _ | | _ | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | 320 | 25 | 6 | 2 | 8 | 7 | 390 | 53 | 45 | 38 | 320 | 32 | 370 | 56 | Chironomidae | | | | - | - | - | • | | | | | | | | | Emp'didae | | _ | | 14 | 5 | _ | | 7 | 1 | | | 2 | <1 | 2 | <1 | Hemerodromia | | | | | • | | | - | - | | | - | | - | · <del>-</del> | Psychodidae | | _ | | 2 | <1 | _ | | | | | | _ | | _ | | Telmatoscopus | | | | - | | | | | | | | | | | | Simuliidae | | _ | | | | _ | | _ | | | | 2 | <1 | _ | | Simulium | | | | | | | | | | | | - | | | | Tipu <sup>1</sup> †dae | | _ | | _ | | 1 | 1 | 4 | <1 | | | 4 | <1 | 10 | 2 | Antocha | | | | | | _ | • | _ | ~* | | | | ~* | | _ | Tipula | Table 5. Benthic-macroinvertebrate data—Continued 01472170 - Pickering Creek near Eagle, Pa. (Site 1) | Date | Oct. 1 | 6, 1981 | Oct. 1 | 8, 1982 | Oct. 1 | 7, 1983 | Oct. 5 | 5, 1984 | Oct. 8 | 3, 1985 | Oct. | 7, 1986 | Oct. 9 | 9, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------------|----------|---------|---------| | Total count | 1 1 | ,301 | 1 2 | ,643 | 2, | 715 | 11 | ,537 | 7 | 65 | 1, | 102 | 1, | 4ዮ1 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | *** | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planarlidae | _ | | 5 | <1 | 6 | <1 | 5 | <1 | 15 | 2 | 19 | 2 | 15 | 1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | | | | | 2 | <1 | 3 | <1 | 12 | <1 | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | _ | | 1 | <1 | _ | | 3 | <1 | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | _ | | _ | | | | _ | | _ | | _ | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 3 | <1 | 80 | 3 | 14 | <1 | 3 | <1 | 4 | <1 | 8 | <1 | 1 | <1 | | Tublficidae | _ | | | | _ | | | | _ | | _ | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | _ | | 7 | <1 | _ | | 6 | <1 | 1 | <1 | 19 | 1 | | Crustacea | | | | | • | | | | • | | - | | | - | | Cyclopoida | | | | | | | | | | | | | | | | Cyclopidae | | | _ | | | | _ | | 1 | <1 | | | _ | | | Isopoda | | | | | | | | | • | ~- | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | _ | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | | Podocopa | | | | | | | _ | | 1 | <1 | | | | | | Insecta | _ | | | | | | _ | | • | ~1 | <del></del> | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 3 | <1 | 16 | <1 | 19 | <1 | 21 | | 21 | 3 | 16 | 1 | 36 | 2 | | | 3 | <1 | 10 | <1 | | | | 1 | 21 | 3 | | -1<br><1 | 30<br>2 | 3 | | Pseudocloeon | | | _ | | 6 | <1 | 19 | 1 | | | 1 | <1 | 2 | <1 | | Ephemerellidae | 04 | | 10 | | 40 | • | | • | - | | | | 20 | | | Ephemerella | 24 | 2 | 19 | <1 | 49 | 2 | 51 | 3 | 7 | <1 | 8 | <1 | 29 | 2 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | | | _ | | _ | | | | | | _ | | | Heptagenia | | _ | | _ | | _ | _ | _ | _ | _ | | | _ | | | Stenonema | 24 | 2 | 27 | 1 | 18 | <1 | 53 | 4 | 14 | 2 | 47 | 4 | 24 | 2 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | _ | | _ | | 1 | <1 | 13 | <1 | _ | | 3 | <1 | 5 | <1 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | _ | | | | _ | | _ | | 1 | <1 | - | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | - | | _ | | | | | | - | | _ | | _ | | | Ischnura | _ | | | | _ | | | | _ | | | | _ | | | Oct. 13 | 3, 1988 | Oct. 5 | 5, 1989 | Oct. 3 | 3, 1990 | Oct. 3 | , 1991 | Oct. 7 | ', 19 <del>9</del> 2 | | 5, 1993 | Oct. 2 | 25, 1994 | Cate | |---------|---------|--------|---------|--------|---------|--------|---------|--------|----------------------|-------|---------|-------------|----------|-----------------------------| | 2,7 | 728 | 1,0 | 088 | 1,0 | 000 | 7: | 25 | 3 | 28 | 8 | 72 | 5 | 560 | Tota' count | | Count | Percent Org~nism | | | | | | | | | | | | | • | | | Platyhelminthes (f atworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 52 | 2 | | | _ | | 1 | <1 | 5 | 2 | 26 | 3 | 12 | 2 | Plana⁺iidae | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | 1 | <1 | 2 | <1 | _ | | _ | | _ | | _ | | _ | | Frestoma | | | | | | | | | | | | | | | | Mollusca (mollusca) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basomma ophora | | | | | | | | | | | | | | | | Ancy <sup>1</sup> idae | | 1 | <1 | 1 | <1 | _ | | _ | | _ | | | | _ | | Ferrissia | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbricu <sup>11</sup> da | | _ | | 2 | <1 | | | | | | | | | | | Lumi riculidae | | | | | | | | | | | | | | | | Tubificida | | 2 | <1 | 16 | 1 | | | 2 | <1 | _ | | 26 | 3 | 53 | 9 | Naididae | | | | | | _ | | _ | | _ | | _ | | 22 | 4 | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | 9 | <1 | 66 | 6 | 2 | <1 | 3 | <1 | 3 | 1 | 51 | 6 | 23 | 4 | Hydrachridia | | | | | | | | | | | | | | | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | - | | _ | | - | | | | | | | | _ | | Cyclopidae | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | Caecidotea | | - | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemercotera | | | | | | | | | | | | | | | | Baetidae | | 0 | <1 | 11 | 1 | 25 | 3 | 4 | <1 | 2 | <1 | 2 | <1 | 3 | <1 | <i>E</i> ~etis | | 8 | <1 | 22 | 2 | 12 | 1 | 4 | <1 | 1 | <1 | 11 | 1 | 1 | <1 | F~aidocloeon | | | | | | | | | | | | | | | | Ephemerellidae | | 2 | 1 | 22 | 2 | 2 | <1 | 10 | 1 | 4 | 1 | 11 | 1 | 15 | 3 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | 2 | <1 | 14 | 1 | 2 | <1 | 2 | <1 | _ | | _ | | _ | | Epeorus | | 1 | <1 | _ | | _ | | - | | | | _ | | | | F <sup>r</sup> eptagenia | | 2 | 2 | 35 | 3 | 24 | 2 | 37 | 5 | 30 | 9 | 2 | <1 | 6 | 1 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | 25 | <1 | 6 | <1 | 7 | <1 | 1 | <1 | 1 | <1 | _ | | _ | | Ironychia | | | | | | | | | | | | | | | | Leptchyphidae | | _ | | _ | | _ | | _ | | | | _ | | <del></del> | | Ticorythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | 1 | <1 | _ | | | | _ | | | | _ | | | | Argia | | | - | | | 1 | <1 | | | | | | | | | I:∞hnura | Table 5. Benthic-macroinvertebrate data—Continued 01472170 - Pickering Creek near Eagle, Pa. (Site 1)—Continued | Date | Oct. 1 | 6, 1981 | Oct. 1 | 8, 1982 | Oct. 1 | 7, 1983 | Oct. 5 | 5, 1984 | Oct. 8 | 3, 1985 | Oct. 7 | ', 1986 | Oct. 9 | 1987 | |-------------------|--------|---------|--------|---------|------------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1 1 | ,301 | 1 2 | ,643 | 2, | 715 | 1 1 | ,537 | 7 | 65 | 1, | 102 | 1,4 | 431 | | Organism | Count | Percent | Odonata | | | | | | | | | | | | | | | | Aeshnidae | | | | | | | | | | | | | | | | Aeshna | _ | | | | | | | | | | _ | | _ | | | Boyeria | _ | | | | | | | | | | 1 | <1 | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 3 | <1 | 11 | <1 | 1 | <1 | | | _ | | | | _ | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 16 | 1 | 3 | <1 | 9 | <1 | | | 1 | <1 | 3 | <1 | 28 | 2 | | Hemiptera | | | | | | | | | | | | | | | | Gerridae | | | | | | | | | | | | | | | | Gerris | | | | | | | 3 | <1 | _ | | | | _ | | | Mesoveliidae | | | | | | | | | | | | | | | | Mesovelia | _ | | | | | | 3 | <1 | _ | | | | _ | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | | | | | _ | | | | | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | | | | | | | | | | | | _ | | | Nigronia | 3 | <1 | _ | | 1 | <1 | | | 1 | <1 | 4 | <1 | _ | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | | | | | | | | | | 2 | <1 | | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | _ | | | | 3 | <1 | | | | | | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 3 | <1 | _ | | | | 5 | <1 | 3 | <1 | 3 | <1 | _ | | | Goeridae | | | | | | | | | | | | | | | | Goera | | | | | | | | | _ | | _ | | _ | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 40 | 3 | 160 | 6 | 100 | 4 | 230 | 15 | 130 | 17 | 230 | 21 | 77 | 6 | | Cheumatopsyche | 88 | 7 | 110 | 4 | 70 | 3 | 27 | 2 | 60 | 8 | 84 | 8 | 5 | <1 | | Hydropsyche | 100 | 8 | 100 | 4 | 790 | 29 | 96 | 6 | 35 | 5 | 80 | 7 | 240 | 17 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 3 | <1 | 5 | <1 | 11 | <1 | 3 | <1 | | | 8 | <1 | 4 | <1 | | Leucotrichia | 110 | 8 | 160 | 6 | <b>590</b> | 22 | 660 | 44 | 180 | 23 | 230 | 21 | 550 | 39 | | Leptoceridae | | | | | | | | | | | | | | | | Oecetis | | | | | | | | | 1 | <1 | | | _ | | | Philopotamidae | | | | | | | | | _ | _ | | | | | | Chimarra | 100 | 8 | 8 | <1 | 31 | 1 | 3 | <1 | 5 | <1 | 36 | 3 | 29 | 2 | | Dolophilodes | | | | | | | | | | | | | _ | | | Wormaldia | | | | | | | | | | | _ | | _ | | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | 3 | <1 | 3 | <1 | 1 | <1 | | | | | 1 | <1 | 1 | <1 | | Psychomylidae | - | - | - | = | - | = | | | | | - | - | - | = | | Psychomyla | | | 3 | <1 | 1 | <1 | 5 | <1 | 2 | <1 | 4 | <1 | 1 | <1 | | Rhyacophilidae | | | • | | • | | • | | - | | • | | • | | | Rhyacophila | | | | | | | | | _ | | | | _ | | | Uenoidae | | | _ | | _ | | - | | | | | | | | | - CIICICAC | | | | | | | | | | | | | | | | Oct. 1 | 3, 1988 | Oct. 5 | 5, 1989 | Oct. 3 | 3, 1990 | Oct. 3 | 3, 1991 | Oct. 7 | 7, 1992 | Oct. 5 | 5, 1993 | Oct. 2 | 25, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|----------|--------------------------| | | 728 | 1,0 | 088 | 1,0 | 000 | 7 | 25 | 3 | 28 | 8 | 72 | | 560 | Total count | | Count | Percent Orpanism | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Aesh nidae | | _ | | | | _ | | 1 | <1 | | | _ | | _ | | Aeshna | | | | | | | | | | _ | | | | _ | | Boyeria | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capnlidae | | _ | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | Allocapnia | | | | | | | | | | | | | | | | Taen opterygidae | | 160 | 6 | 18 | 2 | 2 | <1 | 2 | <1 | _ | | 2 | <1 | 6 | 1 | Taenlopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Gerr'dae | | _ | | _ | | _ | | | | _ | | _ | | _ | | Gerris | | | | | | | | | | | | | | | | Mesoveliidae | | _ | | | | _ | | | | | | _ | | - | | Mesovelia | | | | | | | | | | | | | | | | <b>Velii</b> dae | | - | | | | _ | | 2 | <1 | _ | | _ | | _ | | Rhagovelia | | | | | | | | | | | | | | | | Megalop <sup>*</sup> era | | | | | | | | | | | | | | | | Corydalidae | | _ | | _ | | | | | | 2 | <1 | _ | | _ | | Corydalus | | 1 | <1 | 1 | <1 | | | 1 | <1 | | | | | _ | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apatantidae | | _ | | | | _ | | _ | | _ | | | | | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | _ | | _ | | | | _ | | | | | | _ | | Micrasema | | | | | | | | | | | | | | | | Glos⇒osomatidae | | 2 | <1 | 2 | <1 | 1 | <1 | 2 | <1 | _ | | | | _ | | Glossosoma | | | | | | | | | | | | | | | | Goeridae | | | | _ | | _ | | | | 2 | <1 | _ | | _ | | Goera | | | | | | | | | | | | | | | | Hydropsychidae | | 290 | 11 | 150 | 14 | 120 | 12 | 88 | 12 | 11 | 3 | 41 | 5 | 34 | 6 | Ceratopsyche | | 230 | 9 | 34 | 3 | 44 | 4 | 52 | 7 | 5 | 2 | 97 | 11 | 11 | 2 | Cheumatopsyche | | 690 | 26 | 63 | 6 | 82 | 8 | 80 | 11 | 130 | 39 | 110 | 13 | 9 | 2 | Hydropsyche | | | | | | | | | | | | | | | | Hydroptilidae | | 28 | 1 | 61 | 6 | 40 | 4 | 26 | 4 | 14 | 4 | 8 | <1 | 33 | 6 | Hydroptila | | 73 | 3 | 120 | 11 | 220 | 22 | 170 | 23 | 12 | 4 | 170 | 19 | 35 | 6 | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | _ | | | | _ | | | | | | _ | | _ | | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 32 | 1 | 3 | <1 | 14 | 1 | 35 | 5 | 41 | 12 | 4 | <1 | 12 | 2 | Chimarra | | _ | | | | _ | | _ | | | | 5 | <1 | | | Dolophilodes | | | | _ | | 2 | <1 | _ | | _ | | | | | | Wormaldia | | | | | | | | | | | | | | | | Polycentropodidae | | _ | | 1 | <1 | _ | | 1 | <1 | | | | | 1 | <1 | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 1 | <1 | 6 | <1 | 5 | <1 | 8 | 1 | | | | | 3 | <1 | Psychomyia | | | | | | | | | | | | | | | | Rhyscophilidae | | | | _ | | | | _ | | 2 | <1 | | | _ | | Rhyacophila | | | | | | | | | | | | | | | | Uenoidae | | | | 2 | <1 | | | _ | | _ | | _ | | 2 | <1 | Neophylax | | | | | · | | | | | | | | | _ | | <b>F</b> - <b>J</b> | Table 5. Benthic-macroinvertebrate data—Continued | 01472170 - Pickering | Creek near Eagle, | Pa. (Site | 1)—Continued | |----------------------|-------------------|-----------|--------------| |----------------------|-------------------|-----------|--------------| | Date | Oct. 1 | 6, 1981 | Oct. 1 | 8, 1982 | Oct. 1 | 7, 1983 | Oct. 5 | 5, 1984 | Oct. 8 | 3, 1985 | Oct. 7 | 7, 1986 | Oct. 9 | , 1987 | |---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 11 | ,301 | 12 | ,643 | 2, | 715 | 11 | ,537 | 7 | 65 | 1, | 102 | 1,4 | 4°1 | | Organism | Count | Percent | Lepidoptera | | | | • | | | | | | | | | | , | | Noctuidae | | | | | | | | | | | | | | | | Archanara | _ | | _ | | _ | | _ | | | | | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | 3 | <1 | _ | | 1 | <1 | _ | | 1 | <1 | 1 | <1 | _ | | | Optioservus | 37 | 3 | _ | | 120 | 4 | 29 | 2 | 58 | 8 | 56 | 5 | 38 | 3 | | Oulimnius | _ | | _ | | 2 | <1 | _ | | _ | | 1 | <1 | 1 | <1 | | Stenelmis | 10 | <1 | 11 | <1 | 21 | <1 | 3 | <1 | 14 | 2 | 7 | <1 | 10 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | _ | | _ | | _ | | _ | | | | | | _ | | | Psephenus | 8 | <1 | | | 1 | <1 | | | 1 | <1 | 6 | <1 | _ | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | _ | | _ | | 4 | <1 | | | | | | | _ | | | Chironomidae | 630 | 48 | 970 | 37 | 730 | 27 | 230 | 15 | 140 | 18 | 160 | 15 | 260 | 19 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 13 | 1 | 43 | 2 | 25 | <1 | 8 | <1 | 13 | 2 | 15 | 1 | 8 | <1 | | Ephydridae | _ | | | | | | _ | | | | | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 13 | 1 | 820 | 32 | 26 | <1 | 27 | 2 | 26 | 3 | 10 | <1 | 10 | <1 | | Stratiomyldae | | | | | | | | | | | | | | | | Stratiomys | | | 3 | <1 | _ | | | | | | | | _ | | | Tipulidae | | | - | | | | | | | | | | | | | Antocha | 64 | 5 | 83 | 3 | 56 | 2 | 40 | 3 | 16 | 2 | 53 | 5 | 26 | 2 | | Hexatoma | | - | | - | _ | - | | - | 2 | <1 | | - | _ | _ | | Tipula | | | 3 | <1 | | | | | _ | -= | | | _ | | <sup>&</sup>lt;sup>1</sup>Extrapolated from a 3/8 subsample. | Oct. 1 | 3, 1988 | Oct. 5 | 5, 1989 | Oct. 3 | 3, 1990 | Oct. 3 | 3, 1991 | Oct. 7 | 7, 1992 | Oct. 5 | 5, 1993 | Oct. 2 | 5, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------------| | 2, | 728 | 1,0 | 088 | 1,0 | 000 | 7 | 25 | 3 | 28 | 8 | 72 | 5 | 60 | Total count | | Count | Percent Ornanism | | | | | | | | | | | | | | | | Lepidoptara | | | | | | | | | | | | | | | | Noctuidae | | _ | | | | | | | | | | 1 | <1 | | | Archanara | | | | | | | | | | | | | | | | Coleopte a | | | | | | | | | | | | | | | | Elmidae | | _ | | _ | | _ | | _ | | | | | | _ | | Dubiraphia | | 80 | 3 | 29 | 3 | 15 | 2 | 6 | <1 | 15 | 5 | 35 | 4 | 20 | 4 | Optioservus | | _ | | 3 | <1 | | | | | _ | | 3 | <1 | _ | | Oulimnius | | 10 | <1 | 7 | <1 | | | 1 | <1 | | | 1 | <1 | 2 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | _ | | | | | | _ | | 1 | <1 | | | E. nervosa | | _ | | 1 | <1 | | | 5 | <1 | 5 | 2 | 12 | 1 | 16 | 3 | Psephenus | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | _ | | | | | | _ | | 1 | <1 | _ | | Atherix | | 760 | 28 | 210 | 19 | 220 | 22 | 110 | 15 | 12 | 4 | 210 | 24 | 110 | 19 | Chironomidae | | | | | | | | | | | | | | | | Emp <sup>4</sup> didae | | 6 | <1 | 23 | 2 | 2 | <1 | 5 | <1 | | | 10 | 1 | 3 | <1 | Hemerodromia | | _ | | | | _ | | _ | | | | _ | | 1 | <1 | Ephy-dridae | | | | | | | | | | | | | | | | Simuliidae | | 92 | 3 | 6 | <1 | 38 | 4 | 14 | 2 | 12 | 4 | 9 | 1 | 6 | 1 | Simulium | | | | | | | | | | | | | | | | Strat'omyldae | | | | _ | | _ | | | | _ | | | | _ | | Stratiomys | | | | | | | | | | | | | | | | Tipu¹¹dae | | 87 | 3 | 150 | 14 | 120 | 1 | 52 | 7 | 19 | 6 | 23 | 3 | 120 | 21 | Antocha | | | | | | | | _ | | _ | | | | _ | | Hexatoma | | | | | | | | | | | | | | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2) | Date | | 6, 1981 | | 8, 1982 | Oct. 1 | 8, 1983 | | 5, 1984 | Oct. 8 | , 1985<br>——— | Oct. | 7, 1986 | Oct. 9 | 9, 1987 | |-------------------------------|-------|---------|-------|---------|--------|---------|-------|---------|--------|---------------|-------|---------|--------|---------| | Total count | 1 | 747 | 11 | ,084 | 5 | 526 | 1 1 | ,350 | 5 | 95 | 4 | 88 | 1 | 77 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | _ | | | | | | | | | | | Planarlidae | 5 | <1 | _ | | 5 | 1 | _ | | 31 | 5 | 18 | 4 | 1 | <1 | | Nematoda (nematodes) | | | _ | | - | | _ | | | | _ | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | | | _ | | _ | | 1 | <1 | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda<br>Basommatophora | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ancylidae<br><i>Ferrissia</i> | | | | | | | | | | | | | | | | | _ | | _ | | | | _ | | _ | | | | | | | Physidae<br><i>Phy</i> sa | | | 3 | <1 | 3 | <1 | | | 1 | <1 | | | 1 | <1 | | Planorbidae | _ | | 3 | <1 | 3 | <1 | | | 1 | <1 | _ | | 1 | <1 | | Gyraulus | | | | | | | | | | | | | | | | Bivalvia | _ | | _ | | _ | | | | | | _ | | _ | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | | | | | | | | | | | | Annelida (segmented worms) | _ | | _ | | | | | | | | | | _ | | | Oligochaeta | | | | | _ | | _ | | _ | | _ | | | | | Lumbriculida | | | | | | | | | | | _ | | | | | Lumbriculidae | _ | | | | _ | | _ | | 1 | <1 | _ | | | | | Tubificida | | | | | | | | | • | ~* | | | | | | Naididae | 8 | 1 | 19 | 2 | | | 3 | <1 | _ | | 1 | <1 | _ | | | Arthropoda (arthropods) | ŭ | • | | - | | | · | ~~ | | | • | •• | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | | | | | | | 2 | <1 | 3 | <1 | | | | Crustacea | | | | | | | | | _ | •• | _ | | | | | Cyclopoida | | | _ | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 3 | <1 | 3 | <1 | 5 | 1 | 32 | 2 | 11 | 2 | 5 | 1 | _ | | | Pseudocloeon | | | | | | | 11 | <1 | | | 2 | <1 | _ | | | Caenidae | | | | | | | | | | | | | | | | Caenis | _ | | | | _ | | | | _ | | _ | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella . | 75 | 10 | 260 | 24 | 80 | 15 | 360 | 26 | 42 | 7 | 27 | 5 | 9 | 5 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | _ | | _ | | | | | | | | - | | | Stenonema | 13 | 2 | 99 | 9 | 48 | 9 | 61 | 4 | 17 | 3 | 27 | 5 | 11 | 6 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | | | _ | | _ | | 3 | <1 | _ | | 1 | <1 | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | 3 | <1 | _ | | _ | | - | | _ | | 1 | <1 | | Leptophlebiidae | _ | | _ | | _ | | | | | | | | _ | | | | 3, 1988 | | 5, 1989 | | 3, 1990 | | 1, 1991 | | 3, 1992 | | 7, 1993 | | 25, 1994 | Date | |---------|---------|--------|----------|-------------------|----------|-------|-----------|-------|---------|-------|---------|---------|-----------|-----------------------------| | | ,340 | | 076 | | 02 | | 66 | | 95 | | 19 | | 371 | Tota' count | | ount | Percent | Count | Percent | Organism | | | | | | | | | | | | | | | | Platyhelminthes (f atworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | _ | | 6 | <1 | 2 | <1 | 14 | 2 | 9 | 3 | 1 | <1 | | | Plana-tidae | | | | 1 | <1 | | | | | | | | | 1 | <1 | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | _ | | 18 | 2 | 2 | <1 | _ | | 4 | 1 | _ | | _ | | F:~stoma | | | | | | | | | | | | | | | | Mollusca (mollusca) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basomma ophora | | | | | | | | | | | | | | | | Ancy!idae | | 11 | <1 | 11 | 1 | 8 | 2 | 5 | <1 | 5 | 2 | 1 | <1 | 7 | <1 | Farrissia | | | | | | | | | | | | | | | | Physi dae | | 3 | <1 | _ | | _ | | 1 | <1 | | | _ | | 1 | <1 | Fhysa | | | | | | | | | | | | | | | | Plano-bidae | | _ | | | | | | | | | | _ | | 1 | <1 | G·raulus | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Venerolda | | _ | | | | | | 3 | <1 | 1 | <1 | | | _ | | Sphacriidae | | | | | | | | - | | | | | | | | Annelida (segmented worms) | | | | | | _ | | | | 2 | <1 | | | 1 | <1 | Oligochaeta | | | | | | | | | | - | | | | _ | - | Lumbricu <sup>1</sup> 1da | | 3 | <1 | 1 | <1 | 1 | <1 | | | | | | | | | Lumtriculidae | | • | ~* | • | ~* | • | ~* | | | | | | | | | Tubificida | | | | 3 | <1 | | | 11 | 1 | | | | | 15 | 2 | Naididae | | | | · | ** | | | | • | | | | | 10 | - | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | 88 | 8 | 1 | <1 | 31 | 4 | 26 | 8 | 2 | 1 | 86 | 10 | Hydrachnidia | | | | 00 | J | • | ~1 | 01 | - | 20 | Ū | - | • | 00 | 10 | Crustacea | | | | | | | | | | 2 | <1 | | | _ | | Cyclopoic'a | | | | _ | | | | | | - | ~1 | | | | | Insecta | | | | | | | | | | | | | | | | Ephemerc ptera | | | | | | | | | | | | | | | | Baetidae | | | | 1 | <1 | 3 | <1 | 2 | <1 | 2 | <1 | | | 3 | <b>-1</b> | Baeutae<br>Boetis | | | | 1<br>3 | <1<br><1 | ა<br>4 | <1<br><1 | 1 | <1<br><1 | 4 | 1 | | | 3<br>4 | <1<br><1 | n∾eus<br>P∴eudocloeon | | | | ა | <1 | 4 | <1 | 1 | <b>~1</b> | 4 | 1 | | | 4 | <1 | | | | | | | | | 2 | <1 | | | | | | | Caenidae<br><i>Caenis</i> | | | | | | | | ۵ | <1 | | | | | | | Ephemerellidae | | 43 | 9 | 74 | 7 | 7 | 1 | 31 | 4 | 13 | 4 | 2 | 1 | 35 | 4 | Ephernerella | | *3 | 3 | 14 | 1 | 7 | 1 | 31 | 4 | 13 | 4 | 2 | 1 | აშ | 4 | Epnemerena<br>Heptageniidae | | _ | .1 | 2 | | | | • | .1 | | | | | • | -1 | | | 5<br>40 | <1 | 2 | <1<br>• | <del></del><br>27 | - | 2 | <1<br>e | _ | • | 11 | F | 2<br>20 | <1 | Epeorus | | 48 | 4 | 83 | 8 | 41 | 5 | 46 | 6 | 6 | 2 | 11 | 5 | 20 | 2 | Stenonema | | 40 | • | 00 | | 00 | •• | 50 | _ | _ | _ | | • | _ | | Isonychiidae | | 43 | 3 | 66 | 6 | 60 | 12 | 53 | 7 | 3 | 1 | 4 | 2 | 6 | <1 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | | | | | | | | | | | | | T-icorythodes | | _ | | | | _ | | 1 | <1 | | | | | | | Leptonhlebiidae | Table 5. Benthic-macroinvertebrate data—Continued 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2)—Continued | Date | | 6, 1981 | Oct. 1 | 8, 1982 | Oct. 1 | 8, 1983 | | 5, 1984 | Oct. 8 | 3, 1985 | Oct. | 7, 1986 | Oct. 9 | 1987 | |------------------|-------|---------|--------|---------|--------|---------|-------|---------|--------|---------|-------|---------|--------|---------| | Total count | 1 - | 747 | 1 1 | ,084 | 5 | 26 | 1 1 | ,350 | 5 | 95 | 4 | 88 | 1 | 70 | | Organism | Count | Percent | Odonata | | | | | | | | | | | | | | | | Calopterygidae | | | | | | | | | | | | | | | | Calopteryx | | | | | | | _ | | _ | | | | _ | | | Hetaerina | | | _ | | _ | | - | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | _ | | | | _ | | _ | | | | | Aeshnidae | | | | | | | | | | | | | | | | Boyeria | _ | | _ | | _ | | _ | | 2 | <1 | _ | | - | | | Gomphidae | | | - | | _ | | _ | | | | _ | | - | | | Gomphus | | | | | _ | | | | | | _ | | - | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 8 | 1 | 3 | <1 | 40 | 8 | 5 | <1 | 6 | 1 | 5 | 1 | | | | Chloroperlidae | | | | | | | | | 1 | <1 | | | | | | Haploperla | | | _ | | 5 | 1 | _ | | | | | | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | | | _ | | | | _ | | | | 4 | <1 | _ | | | Agnetina | | | | | | | 3 | <1 | | | _ | | | | | Paragnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Strophopteryx | | | | | | | | | | | _ | | | | | Taeniopteryx | 40 | 5 | 5 | <1 | 24 | 5 | 37 | 3 | 36 | 6 | 97 | 19 | 83 | 46 | | Hemiptera | | • | • | | | • | | • | | • | •• | | | | | Corixidae | | | 3 | <1 | _ | | | | _ | | | | | | | Veliidae | | | · | ~- | | | | | | | | | | | | Rhagovelia | | | _ | | | | | | | | _ | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Nigronia | | | | | | | | | 1 | <1 | _ | | | | | Sialidae | _ | | | | | | | | 1 | ~1 | _ | | | | | Sialis | | | | | | | | | | | | | | | | Trichoptera | _ | | | | | | _ | | | | _ | | | | | | | | | | | | | | | | | | 1 | <1 | | Apataniidae | | | | | | | _ | | _ | | _ | | 1 | <1 | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | | | | - | | • | .4 | | | | | | | | Micrasema | | | | | 5 | 1 | 3 | <1 | _ | | | | _ | | | Glossosomatidae | _ | | - | | _ | | 0.7 | • | 10 | • | | • | _ | | | Glossosoma | 3 | <1 | 5 | <1 | 3 | <1 | 27 | 2 | 12 | 2 | 11 | 2 | 2 | 1 | | Protoptila | | | | | 3 | <1 | _ | | _ | | _ | | _ | | | Goeridae | _ | | | | | | | | | | | | | | | Goera | 3 | <1 | | | _ | | _ | | _ | | _ | | - | | | Hydropsychidae | _ | | | | _ | | | | | | | _ | | | | Ceratopsyche | 5 | <1 | 11 | 1 | 51 | 10 | 210 | 15 | 88 | 15 | 45 | 9 | 25 | 14 | | Cheumatopsyche | 29 | 4 | 48 | 4 | 48 | 9 | 200 | 14 | 230 | 38 | 30 | 6 | 13 | 7 | | Diplectrona | _ | | | | | | _ | | _ | | 1 | <1 | | | | Hydropsyche | | | 5 | <1 | 16 | 3 | 99 | 7 | 20 | 3 | 4 | <1 | 3 | 2 | | Potamyia | | | | | | | _ | | _ | | | | 2 | 1 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 8 | 1 | 11 | 1 | _ | | | | _ | | 1 | <1 | _ | | | Leucotrichia | | | _ | | 35 | 7 | | | _ | | 1 | <1 | 2 | 1 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | | | _ | | | | _ | | | | | | | | | | , 1988 | | 5, 1989 | | 3, 1990 | | 3, 1991 | | 8, 1992 | | , 1993 | | 25, 1994 | Da* <del>9</del> | |-------|---------|-------|---------|-------|---------|----------|---------------|----------|---------|----------|---------|----------|----------|--------------------------------| | 1 1,3 | | | D76 | | 02 | | 66<br>Bassant | | 295 | | 19 | | 371 | Total count | | unt | Percent | Count | Percent | Organism | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Calopterygidae | | - | | | | 1 | <1 | | | | | | | | | Ca <sup>1</sup> opteryx | | - | | _ | | | | | | 1 | <1 | _ | | | | He+aerina | | | | | | | | | | | | | | | | Coenagrionidae | | - | | 1 | <1 | | | 1 | <1 | _ | | | | _ | | Arzia | | | | | | | | | | | | | | | | Aeshnidae | | - | | | | _ | | | | | | | | _ | | Boreria | | - | | | | _ | | _ | | | | | | 1 | <1 | Gompl *dae | | - | | 1 | <1 | _ | | | | | | | | | | Gomphus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 3 | <1 | _ | | _ | | 1 | <1 | 2 | <1 | 1 | <1 | 11 | 1 | Aliocapnia | | - | | | | | | 2 | <1 | _ | | _ | | 1 | <1 | Chloro~erlidae | | - | | | | | | | | | | _ | | | | Hanloperla | | | | | | | | | | | | | | | | Perlida ~ | | | | | | 1 | <1 | | | 2 | <1 | | | | | Acroneuria | | | | 2 | <1 | 1 | <1 | _ | | | | | | | | Agretina | | | | _ | _ | | _ | 1 | <1 | _ | | | | | | Paragnetina | | | | | | | | - | | | | | | | | Taeniopterygidae | | | | | | _ | | | | _ | | _ | | 17 | 2 | Strohopteryx | | ) | 18 | 55 | 5 | 11 | 2 | 49 | 6 | 26 | 8 | 18 | 8 | 33 | 4 | Taeniopteryx | | , | 10 | 33 | J | 11 | L | 43 | U | 20 | 0 | 10 | 0 | 33 | 7 | | | | | | | | | | | | | | | | | Hemiptera<br>Corixidae | | - | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | Veliida: | | - | | | | 1 | <1 | _ | | 1 | <1 | _ | | | | Rhaeovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | 5 | <1 | 2 | <1 | _ | | - | | 2 | <1 | _ | | | | Nipronia | | | | | | | | | | | | | | | | Sialidae | | - | | _ | | _ | | _ | | | | 1 | <1 | 1 | <1 | Sialis | | | | | | | | | | | | | | | | Trichoptera | | - | | | | | | _ | | _ | | _ | | _ | | Apataniidae | | - | | 2 | <1 | - | | | | _ | | 1 | <1 | 2 | <1 | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | 3 | <1 | 1 | <1 | | | _ | | _ | | _ | | 1 | <1 | Micrasema | | | | | | | | | | | | | | | | Glossoromatidae | | ı | 4 | 3 | <1 | 10 | 2 | 1 | <1 | | | _ | | 8 | <1 | Glossosoma | | | | • | | | _ | | | | | | | | | Pretoptila | | | | | | | | | | | | | | | | Goeridae | | _ | | _ | | | | | | | | _ | | | | Gorra | | | | | | | | | | - | | | | | | Hydropsychidae | | ) | 19 | 190 | 17 | 120 | 24 | 90 | 12 | 52 | 17 | 14 | 6 | 94 | 11 | Ceratopsyche | | ) | 23 | 210 | 19 | 43 | 24<br>8 | 90<br>63 | 8 | 32<br>29 | 9 | 14<br>49 | 21 | 94<br>88 | 10 | Ceratopsyche<br>Ch~imatopsyche | | | 23 | | 19 | | ð | | ð | | 9 | | 21 | | 10 | | | | 10 | | • | | , | 100 | 24 | 16 | _ | | 20 | | • | Diplectrona | | ) | 10 | 21 | 2 | 22 | 4 | 190 | 24 | 16 | 5 | 47 | 20 | 25 | 3 | Hydropsyche | | - | | - | | _ | | | | | | _ | | _ | | Potamyia | | | | | | | | | | | | | | | | Hydroptilidae | | - | | _ | | 1 | <1 | 2 | <1 | 2 | <1 | | | 6 | <1 | Hydroptila | | 3 | 1 | 12 | 1 | 5 | 1 | 5 | <1 | 1 | <1 | 5 | 2 | 8 | <1 | Levcotrichia | | | | | | | | | | | | | | | | Lepido v tomatidae | | - | | | | | | | | | | | | 1 | <1 | Leridostoma | **Table 5.** Benthic-macroinvertebrate data—Continued 01472174 - Pickering Creek near Chester Springs, Pa. (Site 2)—Continued | Date | Oct. 1 | 6, 1981 | Oct. 1 | 8, 1982 | Oct. 1 | 8, 1983 | | 5, 1984 | Oct. 8 | 1985 | Oct. 7 | ', 1986 | Oct. 9 | 9, 1987 | |-------------------|--------|---------|--------|---------|--------|---------|-------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1 7 | 747 | 11 | ,084 | 5 | 26 | 11, | ,350 | 5 | 95 | 4 | 88 | 1 | 70 | | Organism | Count | Percent | Coun' | Percent | | Trichoptera | | | | | | | | | | | | | | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | 3 | <1 | | | | | | | _ | | 1 | <1 | _ | | | Oecetis | | | 3 | <1 | | | 3 | <1 | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | | | | | 27 | 5 | 80 | 6 | 25 | 4 | 18 | 4 | | | | Dolophilodes | _ | | | | _ | | | | _ | | | | | | | Wormaldia | _ | | _ | | | | | | | | _ | | _ | | | Polycentropodidae | | | | | | | | | | | | | | | | Nyctiophylax | | | | | _ | | _ | | | | _ | | 1 | <1 | | Polycentropus | | | 8 | <1 | 5 | 1 | 5 | <1 | | | 1 | <1 | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyla | 53 | 7 | 180 | 16 | 8 | 2 | _ | | _ | | 1 | <1 | 1 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Curculionidae | | | | | _ | | | | _ | | | | _ | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | _ | | | | _ | | | | 2 | <1 | 1 | <1 | _ | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | 3 | <1 | 5 | <1 | | | | | | | | | | | | Optioservus | 19 | 3 | 32 | 3 | 40 | 8 | 35 | 3 | 19 | 3 | 6 | 1 | 1 | <1 | | Oulimnius | | | 3 | <1 | 5 | 1 | | | 1 | <1 | 1 | <1 | | | | Promoresia | | | _ | | | | _ | | 1 | <1 | | | | | | Stenelmis | | | 8 | <1 | | | 8 | <1 | 6 | 1 | 5 | 1 | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | 3 | <1 | 3 | <1 | _ | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | | | | | | 1 | <1 | | | _ | | | Blephariceridae | | | | | | | | | | | _ | | | | | Chironomidae | 420 | 56 | 260 | 24 | 48 | 9 | 160 | 11 | 13 | 2 | 120 | 24 | 12 | 7 | | Dixidae | | | | | | | | | | | | | | | | Dixa | | | | | _ | | | | | | | | | | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | | | 8 | <1 | 3 | <1 | 5 | <1 | 4 | <1 | 1 | <1 | | | | Simuliidae | | | - | | • | | • | | | | | | | | | Simulium | | | 3 | <1 | _ | | | | 17 | 3 | 30 | 6 | | | | Tipulidae | | | • | | | | | | | • | | - | | | | Antocha | 43 | 6 | 93 | 8 | 16 | 3 | _ | | 4 | <1 | 20 | 4 | 1 | <1 | | Hexatoma | 3 | <1 | _ | • | 3 | <1 | _ | | _ | | | - | _ | | | Tipula | _ | ~* | | | _ | ~* | | | | | _ | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 1 | 3, 1988 | Oct. 5 | , 1989 | Oct. 3 | , 1990 | Oct. 3 | , 1991 | Oct. 8 | 3, 1992 | Oct. 7 | ', 1 <b>99</b> 3 | Oct. 2 | 5, 1994 | Dhte | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|------------------|--------|---------|------------------------| | 1 1 | ,340 | 1,0 | 076 | 5 | 02 | 7 | 66 | 2 | 95 | 2 | 19 | 8 | 71 | Total count | | Count | Percent Organism | | | | | | | | | | | - | | | | | Trichoptera | | | | | | | | | | | | | | | | Lepto~eridae | | | | | | | | | | | | | | | | Mystacides | | | | 1 | <1 | | | 4 | <1 | | | | | 1 | <1 | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 27 | 2 | 17 | 2 | 14 | 3 | 31 | 4 | 31 | 10 | 2 | 1 | 5 | <1 | C' marra | | | | | | 2 | <1 | 2 | <1 | 2 | <1 | | | | | $\Gamma$ olophilodes | | 3 | <1 | _ | | | | _ | | | | | | | | Wormaldia | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | 1 | <1 | | | | | _ | | 1 | <1 | N-ctiophylax | | 3 | <1 | | | | | 1 | <1 | | | | | | | F^lycentropus | | | | | | | | | | | | | | | | Psychomylidae | | | | 6 | <1 | 12 | 2 | 12 | 2 | 1 | <1 | 4 | 2 | 54 | 6 | F. ychomyia | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | 1 | <1 | | | Curculionidae | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | F <sup>r</sup> elichus | | | | | | | | | | | | | | | | Elmidae | | | | | | | | 10 | 1 | | | | | 2 | <1 | <i>L</i> \ibiraphia | | 13 | 1 | 20 | 2 | 1 | <1 | 10 | 1 | 14 | 5 | | | 40 | 5 | Optioservus | | 3 | <1 | 3 | <1 | | | 5 | <1 | 3 | 1 | | | | | Oulimnius | | • | | • | | | | | | 1 | <1 | | | | | Fr~moresia | | 3 | <1 | 2 | <1 | 4 | <1 | 1 | <1 | 3 | 1 | 1 | <1 | | | S+enelmis | | • | ~* | | | - | | - | | • | - | - | | | | Psephenidae | | | | | | | | | | | | | | | | Frenhenus | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | _ | | _ | | 2 | <1 | | | | | | | Blephariceridae | | 72 | 6 | 85 | 8 | 100 | 20 | 44 | 6 | 15 | 5 | 44 | 19 | 180 | 20 | Chironomidae | | 12 | U | 03 | 0 | 100 | 20 | 77 | U | 13 | J | 77 | 13 | 100 | 20 | Dixid ** | | | | | | 1 | <1 | | | | | | | | | Dixid ** L'ixa | | | | _ | | 1 | <1 | | | _ | | | | | | Empididae | | | | 28 | , | 2 | <1 | e | 1 | | 1 | | | 11 | 1 | • | | | | 40 | 3 | ۷ | <1 | 5 | <1 | 1 | <1 | | | 11 | 1 | Flemerodromia | | | | • | . 1 | | .1 | , | . 9 | _ | • | • | | 10 | | Simuliidae | | _ | | 3 | <1 | 1 | <1 | 4 | <1 | 5 | 2 | 2 | 1 | 10 | 1 | S <sup>‡</sup> mulium | | 70 | • | - 4 | _ | | • | | _ | _ | • | _ | | | | Tipulidae | | 72 | 6 | 54 | 5 | 33 | 6 | 27 | 3 | 6 | 2 | 8 | 4 | 87 | 10 | A ntocha | | | | _ | | | | | | | _ | | | | _ | F <sup>t</sup> exatoma | | | | | | | | | | 2 | <1 | | | 1 | <1 | Tipula | Table 5. Benthic-macroinvertebrate data—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3) | Date | Oct. 1 | 5, 1981 | Oct. 1 | 8, 1982 | Oct. 1 | 7, 1983 | Oct. 5 | 5, 1984 | Oct. 7 | 7, 1985 | Oct. 8 | B, 1986 | Oct. | 1987 | |-------------------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|-------------| | Total count | 1 1 | ,757 | 2, | 123 | 1, | 935 | 1 2 | ,005 | 9 | 12 | 1, | 049 | 1, | <b>E</b> 96 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | _ | | _ | | 8 | <1 | | | 5 | <1 | 4 | <1 | | | | Nematoda (nematodes) | _ | | | | _ | | | | _ | | 3 | <1 | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | | | _ | | | | 1 | <1 | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | _ | | | | _ | | 16 | 1 | 10 | 1 | 2 | <1 | 79 | 6 | | Lymnaeldae | | | | | | | 10 | • | 10 | • | - | ~- | | • | | Lymnaea | | | | | _ | | | | 1 | <1 | | | | | | Annelida (segmented worms) | | | _ | | | | | | 1 | ~1 | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | | • | <1 | | | | | | | | .1 | | | | | | Lumbriculidae | 3 | <1 | | | _ | | | | 1 | <1 | | | | | | Tubificida | | | _ | _ | | | | _ | _ | _ | | _ | | | | Naididae | | | 3 | <1 | _ | | 29 | 2 | 8 | <1 | 11 | 1 | 250 | 18 | | Arthropoda (arthropods) Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | | | _ | | _ | | 4 | <1 | 10 | <1 | | | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | _ | | | | | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 8 | <1 | 8 | <1 | | | 21 | 2 | 3 | <1 | 4 | <1 | 4 | <1 | | Pseudocloeon | _ | | | | _ | | 8 | <1 | | | | | | | | Caenidae | | | | | | | _ | _ | | | | | | | | Caenis | | | | | _ | | _ | | | | _ | | | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 72 | 4 | 110 | 5 | 80 | 9 | 64 | 5 | 34 | 4 | 81 | 7 | 23 | 2 | | Heptageniidae | " | • | 110 | J | 50 | | 01 | J | 34 | • | 01 | • | 20 | - | | Stenacron | | | | | | | | | 1 | <1 | | | | | | | 88 | 5 | 99 | _ | 32 | • | 59 | 4 | 82 | 9 | 31 | • | 41 | 2 | | <i>Stenonema</i><br>Isonychiidae | 00 | 3 | 99 | 5 | 32 | 3 | 39 | 4 | 02 | 9 | 31 | 3 | 41 | 3 | | | | | 0.5 | • | | | 10 | | 00 | • | • | | 10 | | | Isonychia | 11 | <1 | 35 | 2 | | | 13 | <1 | 22 | 2 | 8 | <1 | 19 | 1 | | Leptohyphidae | | | _ | | | | _ | | | | | | _ | | | Tricorythodes | _ | | 5 | <1 | 3 | <1 | 5 | <1 | | | 3 | <1 | 2 | <1 | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | _ | | _ | | _ | | _ | | _ | | _ | | 2 | <1 | | Gomphidae | | | _ | | | | _ | | 1 | <1 | 1 | <1 | 1 | <1 | | Gomphus | _ | | | | | | | | _ | | | | | | | | 4, 1988 | | 1, 1989 | | 3, 1990 | | 2, 1991 | | 7, 1992 | | , 1993 | | 5, 1994 | Date: | |--------|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-------|---------------|-------|---------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|-------|---------|------------------------------| | | ,047 | | 015 | | 30 | | 56<br>Danasat | | 522 | | 39<br>Danier | | B0 | Total count | | ount | Percent | Count | Percent | Organ'sm | | | | | | | | | | | | | | | | Platyhelminthes (flat vorms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | - | | 5 | <1 | _ | | _ | | 24 | 2 | 1 | <l< td=""><td>1</td><td>&lt;1</td><td>Planarii lae</td></l<> | 1 | <1 | Planarii lae | | - | | 2 | <1 | 1 | <1 | _ | | _ | | | | 1 | <1 | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetraste mmatidae | | - | | 3 | <1 | 1 | <1 | _ | | 2 | <1 | 2 | <l< td=""><td></td><td></td><td>Proctoma</td></l<> | | | Proctoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylid 10 | | 8 | 4 | 18 | 2 | 7 | 2 | 20 | 2 | 29 | 2 | 10 | 1 | 13 | 2 | Ferrissia | | | - | | _ | • | - | | _ | | _ | | - | | _ | Lymnae'dae | | _ | | | | | | _ | | 3 | <1 | | | | | Lymnaea | | | | | | | | | | Ū | ~1 | | | | | Annelida (segmentec' worms) | | | | | | | | | | | | | | 2 | <1 | Oligochaeta | | - | | _ | | | | _ | | | | _ | | 2 | <1 | Lumbriculida | | | | | .1 | | | 2 | . 1 | | | | | | | | | - | | 4 | <1 | | | 2 | <1 | | | _ | | | | Lumbriculidae | | | | | | | | | | | • | | • | | | Tubificida | | - | | 9 | <1 | 3 | <1 | 30 | 3 | 23 | 2 | 88 | 9 | | | Naidida ? | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | - | | 100 | 10 | 4 | 1 | 24 | 3 | 210 | 14 | 82 | 9 | 31 | 4 | Hydrachnid a | | | | | | | | | | | | | | | | Crustacea | | - | | 1 | <1 | | | _ | | 1 | <1 | _ | | _ | | Cyclopoida | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 3 | <1 | 2 | <1 | | | 13 | 1 | | | _ | | | | Baetis | | _ | | 2 | <1 | 5 | 1 | 4 | <1 | _ | | | | _ | | Pseudocloeon | | | | | | | | | | | | | | | | Caenida ∘ | | _ | | 3 | <1 | | | _ | | | | 1 | <1 | 2 | <1 | Caenis | | | | | | | | | | | | | | | | Ephemerellidae | | • | 5 | 130 | 13 | 11 | 3 | 15 | 2 | 200 | 13 | 32 | 3 | 5 | <1 | Eph~nerella | | - | • | 100 | | | • | 10 | - | 200 | | V. | • | , | ~* | Heptageniidae | | _ | | | | 1 | <b>~1</b> | - | | | | _ | | _ | | | | -<br>1 | 6 | 25 | 3 | 27 | <1<br>6 | 24 | 3 | 63 | 4 | 27 | 3 | 16 | 2 | Steracron<br>Steronema | | 1 | υ | 40 | 3 | 41 | o | 44 | 3 | us | 4 | 61 | 3 | 10 | 4 | | | | • | 24 | • | 20 | c | 24 | • | 10 | , | | -1 | | -1 | Isonych'idae | | 9 | 2 | 24 | 2 | 26 | 6 | 24 | 3 | 16 | 1 | 4 | <1 | 4 | <1 | Isonychia | | _ | | | | | | | | • | _ | | | | | Leptohyphidae | | 5 | <1 | 1 | <l< td=""><td></td><td></td><td>3</td><td>&lt;1</td><td>2</td><td><l< td=""><td>3</td><td>&lt;1</td><td>2</td><td>&lt;1</td><td>Tricarythodes</td></l<></td></l<> | | | 3 | <1 | 2 | <l< td=""><td>3</td><td>&lt;1</td><td>2</td><td>&lt;1</td><td>Tricarythodes</td></l<> | 3 | <1 | 2 | <1 | Tricarythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | - | | 2 | <1 | | | _ | | _ | | | | _ | | Arg'a | | - | | | | _ | | _ | | | | | | _ | | Gomphidae | | _ | | _ | | | | _ | | 1 | <1 | | | | | Gomphus | Table 5. Benthic-macroinvertebrate data—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3)—Continued | Date | | 5, 1981 | Oct. 1 | 8, 1982 | | 7, 1983 | | 5, 1984 | Oct. | 7, 1985 | Oct. 8 | 3, 1986 | Oct 8 | 3, 1987 | |--------------------|-------|---------|--------|------------|-------|---------|-------|---------|-------|----------|--------|----------|-------|----------| | Total count | 1 1 | ,757 | 2, | 123 | 1, | 935 | 1 2 | ,005 | 9 | 112 | 1, | 049 | 1, | 396 | | Organism | Count | Percent | Count | Percen | | Plecoptera | | | | | | | | | | ··· | | | ì | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 3 | <1 | | | 3 | <1 | | | | | _ | | _ | | | Chloroperlidae | - | | | | _ | | | | | | | | _ | | | Perlidae . | | | | | | | | | | | | | | | | Acroneuria | | | 5 | <1 | _ | | _ | | 1 | <1 | 2 | <1 | 1 | <1 | | Agnetina | _ | | | | _ | | | | _ | | | | | | | Paragnetina | | | | | | | _ | | _ | | | | 1 | <1 | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 69 | 4 | 43 | 2 | 29 | 3 | 13 | <1 | 14 | 2 | 38 | 3 | 38 | 3 | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | | | | | | | | | | | | Sigara | | | | | _ | | | | _ | | 1 | <1 | _ | | | Gerridae | | | | | | | | | | | - | ~2 | | | | Metrobates | | | | | | | | | | | | | | | | Veliidae | _ | | | | _ | | _ | | _ | | _ | | _ | | | | | | | | | | | | | | 1 | <1 | | | | Rhagovelia | _ | | _ | | _ | | | | _ | | 1 | <1 | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | _ | _ | - | | _ | | | | | | _ | | _ | | | Nigronia | 3 | <1 | _ | | 5 | <1 | - | | _ | | 1 | <1 | 3 | <1 | | Sialidae | | | | | | | | | | | | | | | | Sialis | 5 | <1 | - | | _ | | | | _ | | | | _ | | | <b>Irichoptera</b> | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | _ | | _ | | _ | | _ | | _ | | 17 | 2 | 5 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Brachycentrus | | | | | | | | | | | | | | | | Micrasema | 27 | 2 | 8 | <1 | 69 | 7 | 16 | 1 | 13 | 1 | 2 | <1 | 7 | <1 | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 3 | <1 | 59 | 3 | 3 | <1 | 16 | 1 | 2 | <1 | _ | | 3 | <1 | | Protoptila | | | | | | | 11 | <1 | _ | | _ | | - | | | Goeridae | | | | | | | | | | | | | | | | Goera | | | _ | | | | 3 | <1 | 69 | 8 | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 350 | 19 | 300 | 14 | 130 | 14 | 120 | 9 | 79 | 9 | 24 | 2 | 210 | 15 | | Cheumatopsyche | 110 | 6 | 93 | 4 | 77 | 8 | 120 | 9 | 300 | 33 | 18 | 2 | 43 | 3 | | Hydropsyche | 43 | 2 | 43 | 2 | 27 | 3 | 13 | <1 | 6 | <1 | 2 | <1 | 27 | 2 | | Macrostemum | _ | - | | _ | 3 | <1 | _ | | _ | | _ | | 2 | <1 | | Hydroptilidae | | | | | • | | | | | | | | - | ~- | | Hydroptila | 21 | 1 | 56 | 3 | 29 | 3 | | | 17 | 2 | 10 | <1 | 22 | 2 | | Leucotrichia | 13 | <1 | 480 | 23 | 140 | 15 | 370 | 26 | 36 | 4 | 85 | 8 | 46 | 3 | | Leptoceridae | 13 | ~1 | 100 | LJ | 1.40 | 13 | 310 | 20 | 30 | 4 | OJ | o | 70 | J | | Mystacides | 11 | <1 | 11 | <1 | | | | | 7 | <1 | 4 | <1 | 4 | <1 | | Oecetis | 11 | <1 | | <b>~</b> 1 | <br>8 | <1 | 3 | <1 | 2 | <1<br><1 | 2 | <1<br><1 | 2 | <1<br><1 | | Philopotamidae | _ | | | | 0 | <1 | J | <1 | 2 | <1 | 2 | <1 | ۷ | <1 | | - | | | E | .1 | | | | | 1 | .1 | • | .1 | | | | Chimarra | | | 5 | <1 | _ | | _ | | 1 | <1 | 2 | <1 | _ | | | Dolophilodes | | | _ | | _ | | | | _ | | _ | | _ | | | Polycentropodidae | | _ | | | _ | | | | _ | _ | | | _ | | | Neureclipsis | 13 | <1 | _ | _ | 8 | <1 | _ | _ | 9 | 1 | _ | _ | 6 | <1 | | Nyctiophylax | 5 | <1 | 8 | <1 | 16 | 2 | 13 | <1 | 16 | 2 | 1 | <1 | 2 | <1 | | Polycentropus | _ | | 5 | <1 | 61 | 6 | _ | | _ | | 1 | <1 | 1 | <1 | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | 5 | <1 | 3 | <1 | | | 8 | <1 | 7 | <1 | _ | | 15 | 1 | | | | | | | | | | | | | | | | | | Oct. 1 | 4, 1988 | Oct. 4 | l, 1989 | Oct. | 3, 1990 | Oct. 2 | 2, 1991 | Oct. | 7, 1992 | Oct. | 6, 1993 | Oct. 2 | 25, 1994 | Date | |--------|---------|--------|---------|-------|---------|--------|---------|-------|---------|-------|---------|--------|----------|--------------------------------| | 1 1, | ,047 | 1,0 | 015 | 4 | 130 | 9 | 56 | 1, | 522 | 9 | 39 | 7 | 780 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | Allocapnia | | _ | | | | _ | | 1 | <1 | _ | | _ | | _ | | Chlorcperlidae | | | | | | | | | | | | | | | | Perlidee | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | 1 | <1 | Acroneuria | | | | | | | | | | 1 | <1 | | | _ | | Agnetina | | _ | | | | | | _ | | _ | | | | _ | | Paragnetina | | | | | | | | | | | | | | | | Taenionterygidae | | 83 | 8 | 38 | 4 | 4 | 1 | 12 | 1 | 44 | 3 | 20 | 2 | 3 | <1 | Tamiopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | Sipara | | | | | | | | | | | | | | | | Gerrid 10 | | | | | | | | | | | | 1 | <1 | _ | | M*robates | | | | | | | | | | | | | | | | Veliida • | | | | _ | | 2 | <1 | | | 7 | <1 | _ | | 1 | <1 | Rl. «govelia | | | | | | | | | | • | - | | | | - | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | _ | | | | | | 1 | <1 | _ | | _ | | Corydalus | | 3 | <1 | 2 | <1 | _ | | _ | | _ | | _ | | _ | | Ni ronia | | J | ~- | - | ~- | | | | | | | | | | | Sialida | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | _ | | Sialis | | | | | | | | • | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apatariidae | | | | 6 | <1 | 3 | <1 | 13 | 1 | 40 | 3 | 30 | 3 | 13 | 2 | Apatai Mae<br>Apatania | | _ | | U | ~1 | 3 | _1 | 13 | | 40 | 3 | 30 | 3 | 13 | L | Brachycentridae | | | | | | | | | | | | | | | | Brachycentrus | | | | 27 | 3 | 12 | 3 | 10 | 1 | 45 | 3 | 140 | 15 | 26 | 3 | M rasema | | _ | | 21 | 3 | 12 | 3 | 10 | 1 | 40 | 3 | 140 | 13 | 20 | 3 | Glosso somatidae | | | | 2 | <1 | | | | | 1 | <1 | | | | | Glosso vintaddae<br>Gl vsosoma | | _ | | 2 | <1 | | | _ | | 1 | <1 | _ | | _ | | | | _ | | | | _ | | _ | | _ | | | | _ | | <i>Pr∩toptila</i><br>Goerid⊐e | | | | 9 | -1 | | | | | 2 | -1 | | | | | Goerid≃e<br>Go•ra | | _ | | 3 | <1 | _ | | _ | | 2 | <1 | | | _ | | | | 140 | 10 | 45 | - | 20 | • | 50 | • | 50 | | 01 | 10 | 01 | 10 | Hydropsychidae | | 140 | 13 | 45 | 5 | 28 | 6 | 58 | 6 | 56 | 4 | 91 | 10 | 81 | 10 | Ce-atopsyche | | 27 | 2 | 72 | 7 | 6 | 1 | 45 | 5 | 62 | 4 | 63 | 7 | 44 | 6 | Ch ~matopsyche | | 3 | <1 | 5 | <1 | | | 8 | <1 | 7 | <1 | 2 | <1 | 34 | 4 | Hydropsyche | | 3 | <1 | | | | | _ | | | | | | _ | | Macrostemum | | | • | | | | _ | | _ | 70 | _ | -00 | | | _ | Hydroptilidae | | 37 | 3 | 14 | 1 | 24 | 5 | 22 | 2 | 72 | 5 | 39 | 4 | 40 | 5 | Hydroptila | | 35 | 3 | 25 | 3 | 10 | 2 | _ | | 63 | 4 | _ | | 1 | <1 | Leucotrichia | | | | _ | | | | | | | _ | | | | | Leptoc ridae | | _ | | 3 | <1 | _ | | 3 | <1 | 6 | <1 | _ | | _ | | Mystacides | | _ | | 4 | <1 | 1 | <1 | 3 | <1 | 4 | <1 | 2 | <1 | _ | | O∈retis | | | | _ | _ | | | | _ | | _ | | | | | Philopotamidae | | _ | | 4 | <1 | _ | _ | 1 | <1 | 4 | <1 | _ | | | | Chimarra | | _ | | _ | | 1 | <1 | | | | | | | _ | | Delophilodes | | | | | | | | | | | | | | | _ | Polycentropodidae | | 3 | <1 | | | | _ | | | | | | | 1 | <1 | Neureclipsis | | 11 | 1 | 1 | <1 | 8 | 2 | 1 | <1 | 4 | <1 | _ | | _ | | Nyctiophylax | | 21 | 2 | 2 | <1 | 6 | 1 | 3 | <1 | 13 | <1 | 6 | <1 | 4 | <1 | Po'vcentropus | | | | _ | | | | | | | | | | | | Psychomylidae | | _ | | 8 | <1 | 21 | 5 | 5 | <1 | 11 | <1 | 14 | 1 | 10 | 1 | Ps <sub>i</sub> chomyia | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 014721854 - Pickering Creek at Merlin, Pa. (Site 3)—Continued | Date | Oct. 1 | 5, 1981 | Oct. 1 | 8, 1982 | Oct. 1 | 7, 1983 | Oct. 5 | 5, 1984 | Oct. 7 | 7, 1 <b>98</b> 5 | Oct. 8 | 3, 1986 | Oct. 8 | 3, 1987 | |---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|------------------|--------|---------|--------|---------| | Total count | 11 | ,757 | 2, | 123 | 1 , | 935 | 1 2 | ,005 | 9 | 12 | 1,0 | 049 | 1, | 396 | | Organism | Count | Percent | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | | | | | _ | | _ | | 2 | <1 | | | 3 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Curculionidae | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | _ | | | | | | _ | | | | | | | A.varlegata | | | | | | | _ | | | | | | | | | Dubiraphia | 18 | 1 | 3 | <1 | 24 | 3 | | | 23 | 3 | 9 | <1 | 3 | <1 | | Macronychus | | | | | | | | | | | | | | | | M. glabratus | | | | | | | _ | | | | | | 1 | <1 | | Optioservus | 8 | <1 | 16 | <1 | 3 | <1 | 3 | <1 | 17 | 2 | 19 | 2 | 9 | <1 | | Oulimnius | 3 | <1 | 5 | <1 | | | | | 1 | <1 | 1 | <1 | | | | Promoresia | _ | | | | 3 | <1 | 3 | <1 | 10 | 1 | | | | | | Stenelmis | | | 5 | <1 | 8 | <1 | | | 6 | <1 | | | 14 | 1 | | Psephenidae | | | • | | | | | | • | | | | | | | Psephenus | | | 3 | <1 | _ | | _ | | | | | | 1 | <1 | | Hymenoptera | | | _ | | | | | | 1 | <1 | _ | | _ | | | Diptera | | | | | | | | | _ | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | 3 | <1 | | | | | _ | | | | | | | Chironomidae | 820 | 46 | 640 | 30 | 150 | 16 | 430 | 31 | 48 | 5 | 560 | 51 | 410 | 29 | | Empididae | | | | | | | | | | - | | | | | | Hemerodromia | 5 | <1 | 3 | <1 | | | _ | | | | 1 | <1 | 2 | <1 | | Simuliidae | • | | • | | | | | | | | - | | _ | - | | Simulium | 24 | 1 | 21 | 1 | | | | | _ | | 1 | <1 | 1 | <1 | | Syrphidae | | • | | • | | | _ | | | | 1 | <1 | _ | ~* | | Tipulidae | | | | | | | | | | | • | ~* | | | | Antocha | 16 | <1 | 45 | 2 | 16 | 2 | 48 | 3 | 51 | 6 | 88 | 8 | 93 | 7 | | Tipula | 10 | ~1 | 73 | Ĺ | 10 | Ĺ | 70 | 3 | 1 | <1 | 00 | U | | • | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 1 | 4, 1988 | Oct. 4 | , 19 <del>8</del> 9 | Oct. 3 | , 1990 | Oct. 2 | 2, 1991 | Oct. 7 | 7, 1992 | Oct. 6 | 5, 1993 | Oct. 2 | 5, 1994 | Date | |--------|---------|----------|---------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------------| | 11, | ,047 | 1,0 | 015 | 4 | 30 | 9 | 56 | 1, | 522 | 9 | 39 | 7 | 80 | Total count | | Count | Percent mainernO | | | • | | | | | | | | | | | | | Lepidopt ra | | | | | | | | | | | | | | | | Pyra <sup>14</sup> dae | | 11 | 1 | 12 | 1 | 9 | 2 | 2 | <1 | 10 | <1 | 15 | 2 | 7 | <1 | Petrophila | | | | | | | | | | | | | | | | Coleopte ~a | | | | | | _ | | | | | | 1 | <1 | _ | | Curculionidae | | | | | | | | | | | | | | | | Elmidae | | 3 | <1 | _ | | _ | | _ | | _ | | | | _ | | Ancyronyx | | _ | | _ | | _ | | _ | | _ | | _ | | 3 | <1 | A.variegata | | _ | | 3 | <1 | _ | | 18 | 2 | 25 | 2 | 16 | 2 | _ | | Dubiraphia | | | | | | | | | | | | | | | | Macronychus | | _ | | | | _ | | | | | | _ | | _ | | M. glabratus | | 6 | <1 | 26 | 3 | 9 | 2 | 9 | <1 | 32 | 2 | 7 | <1 | 3 | <1 | Optioservus | | _ | | 2 | <1 | _ | | | | 2 | <1 | | | _ | | Oulimnius | | _ | | _ | | _ | | 8 | <1 | 3 | <1 | 9 | 1 | 2 | <1 | Promoresia | | 8 | <1 | 6 | <1 | 3 | <1 | 5 | <1 | 13 | <1 | 6 | <1 | 4 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | _ | | 1 | <1 | _ | | | | 1 | <1 | _ | | | | Psephenus | | _ | | _ | | | | _ | | | | | | _ | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | _ | | 1 | <1 | _ | | _ | | | | | | Atherix | | 310 | 28 | 280 | 28 | 96 | 22 | 500 | 52 | 290 | 19 | 190 | 20 | 340 | 43 | Chimonomidae | | | | | | | | | | | | | | | | Emp'didae | | 3 | <1 | 47 | 5 | | | | | 6 | <1 | 5 | <1 | 3 | <1 | Hemerodromia | | • | | | Ū | | | | | • | | • | ~~ | • | ** | Simuliidae | | _ | | 7 | <1 | _ | | 42 | 4 | 1 | <1 | | | | | Simulium | | _ | | <u>.</u> | ~* | | | | • | _ | ~- | | | | | Syrp <sup>h</sup> idae | | | | | | | | _ | | | | | | | | Tipu'idae | | 140 | 13 | 37 | 4 | 100 | 23 | 27 | 3 | 120 | 8 | 32 | 3 | 82 | 10 | Antocha | | | 10 | 1 | <1 | _ | 20 | | Ü | 1 | <1 | | • | | 20 | Tipula | [<, less than; —, not found] 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4) Table 5. Benthic-macroinvertebrate data—Continued | Date | Oct. 1 | 5, 1981 | Oct. 1 | 9, 1982 | | 7, 1983 | Oct. 9 | 9, 1984 | Oct. 7 | ', 1985<br> | Oct. ( | 5, 1986 | Oct. | 3, 1987 | |--------------------------------|--------|---------|--------|---------|-----------------|---------|---------|---------|--------|-------------|---------|---------|-------|---------| | Total count | 3,0 | 611 | 1, | 887 | <sup>1</sup> 1, | ,316 | 1, | 943 | 5 | 57 | 2, | 593 | 2, | 312 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planarlidae | 16 | <1 | 3 | <1 | 16 | 1 | 3 | <1 | 15 | 3 | 13 | <1 | 86 | 4 | | Nematoda (nematodes) | | | | | _ | | _ | | _ | | - | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | _ | | _ | | _ | | 3 | <1 | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | | | | | | | | | | | | | | | Amnicola | | | _ | | | | _ | | | | 1 | <1 | 4 | <1 | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 8 | <1 | | | | | | | _ | | 10 | <1 | 17 | <1 | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | _ | | | | _ | | | | | | _ | | _ | | | Helisoma | | | | | | | | | 2 | <1 | 1 | <1 | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | _ | | | | | | | | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | _ | | | | _ | | _ | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 2 | <1 | | | | | 3 | <1 | | | _ | | _ | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | | | 3 | <1 | 3 | <1 | 2 | <1 | 9 | <1 | | | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | _ | | | | | | _ | | _ | | | Amphipoda | | | | | | | | | | | | | | | | Crangonyctidae | | | | | | | | | | | | | | | | Crangonyx | | | | | | | | | | | _ | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 130 | 4 | 13 | <1 | 13 | 1 | 53 | 3 | 4 | <1 | 43 | 2 | 76 | 3 | | Pseudocloeon | 6 | <1 | _ | ~. | | • | 21 | 1 | 2 | <1 | 14 | <1 | 84 | 4 | | Caenidae | U | ~1 | | | | | 21 | • | | ~1 | | ~. | 01 | • | | Caenis | | | | | | | | | | | _ | | 10 | <1 | | Ephemerellidae | _ | | | | | | | | | | | | 10 | ~. | | Ephemerella | 83 | 2 | 24 | 1 | 59 | 5 | 110 | 6 | 29 | 5 | 180 | 7 | 390 | 17 | | Heptageniidae | 0.0 | L | -4 | 1 | JJ | 3 | 110 | U | 23 | J | 100 | , | 550 | 11 | | Epeorus | _ | | | | | | 3 | <1 | | | _ | | | | | Epeorus<br>Stenonema | 32 | _1 | 64 | 3 | 100 | 8 | 5<br>51 | 3 | 27 | 5 | —<br>45 | 2 | 20 | 1 | | | 32 | <1 | 04 | J | 100 | 0 | 31 | 3 | 41 | J | 43 | 2 | 20 | <1 | | Isonychiidae | 64 | 2 | 21 | 1 | 16 | 1 | | | 22 | c | 25 | _1 | 42 | 2 | | Isonychia | 64 | 2 | 21 | 1 | 16 | 1 | | | 32 | 6 | 25 | <1 | 43 | 2 | | Leptohyphidae<br>Tricorythodes | | | 3 | <1 | | | | | | | | | 2 | <1 | | | | | | | | | | | | | | | | | | | 2, 1988 | Oct. 4 | , 1989 | Oct. 2 | 2, 1990 | Oct. 2 | ., 1991 | Oct. ( | 6, 1992 | Oct. c | i, 19 <b>9</b> 3 | OGI. 2 | 26, 1994 | Date | |-------|---------|---------------------------------------|---------|--------|---------|--------|---------|--------|---------|--------|------------------|--------|----------|-----------------------------------------| | 14 | ,090 | 1, | 147 | 1,0 | 684 | 1,5 | 514 | 2, | 247 | 2, | 535 | 1, | ,325 | Total count | | Count | Percent Organism | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | Platyhelminthes (flatworms) Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 59 | 1 | 87 | 7 | 50 | 3 | 11 | <1 | 45 | 2 | 32 | 1 | 2 | <1 | Planariidae | | _ | • | _ | • | _ | 3 | | ~1 | | | 2 | <1<br><1 | | ~1 | Nematoda (nematodes) | | | | _ | | | | _ | | _ | | - | ~1 | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonem rtea | | | | | | | | | | | | | | | | Tetrastemmatidae | | 3 | <1 | 10 | <1 | _ | | | | 1 | <1 | 6 | <1 | _ | | Prostoma | | _ | - | | | | | | | _ | | • | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrohiidae | | 19 | <1 | 5 | <1 | 11 | <1 | 7 | <1 | 69 | 3 | 19 | <1 | | | Armicola | | - | - | - | - | | - | - | - | | - | | - | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | 5 | <1 | 4 | <1 | 1 | <1 | 37 | 2 | 71 | 3 | 65 | 3 | 4 | <1 | Ferrissia | | - | | _ | | _ | | | _ | | _ | | - | | _ | Planorbidae | | 3 | <1 | | | | | _ | | 43 | 2 | 4 | <1 | 8 | <1 | Gyraulus | | _ | _ | | | _ | | | | | _ | | - | | _ | Helisoma | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | 2 | <1 | 2 | <1 | | | Sphaeriidae | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | 1 | <1 | | | 1 | <1 | Oligochaeta | | | | | | | | | | | | | | | | Lumbricul da | | | | | | 1 | <1 | | | _ | | | | | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | 3 | <1 | 2 | <1 | 2 | <1 | _ | | 11 | <1 | 39 | 2 | _ | | Naididae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | 38 | 3 | 3 | <1 | 3 | <1 | 72 | 3 | 120 | 5 | 18 | 1 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | _ | | 1 | <1 | _ | | _ | | | | | | _ | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Crangonyctidae | | 3 | <1 | | | _ | | | | | | _ | | _ | | Crangonyx - | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetid ae | | 80 | 4 | 18 | 2 | 59 | 3 | 25 | 2 | 11 | <1 | 12 | <1 | 3 | <1 | Baetis | | _ | | 35 | 3 | 51 | 3 | 5 | <1 | 58 | 3 | 13 | <1 | 1 | <1 | Ps •udocloeon | | | | | | | | | | | | | | | | Caenidae | | | | | | _ | | 1 | <1 | 8 | <1 | 15 | <1 | _ | | Ccenis | | | | | | | | | | | | | | | | Ephemerellidae | | 60 | 6 | 73 | 6 | 20 | 1 | 28 | 2 | 170 | 7 | 120 | 5 | 31 | 2 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | | | 2 | <1 | | | | | | | _ | | | | E <sub>F</sub> -orus | | 29 | <1 | 5 | <1 | 6 | <1 | 26 | 2 | 61 | 3 | 49 | 2 | 4 | <1 | Stenonema | | | | | | | | | | | | | | | | Isonychildae | | 20 | 3 | 11 | <1 | 14 | <1 | 33 | 2 | 43 | 2 | 26 | 1 | 7 | <1 | Isonychia | | | | | | | | | | | | | | | | Leptol~phidae | | | | | | | | | | 3 | <1 | 2 | <1 | _ | | Tricorythodes | Table 5. Benthic-macroinvertebrate data—Continued 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4)—Continued | Date Total count Organism | Oct. 1 | 5, 1981 | Oct. 1 | 9, 1982 | Oct. 17, 1983 | | Oct. 9, 1984 | | Oct. 7, 1985 | | Oct. 6, 1986 | | Oct. 8, 1987 | | |---------------------------|--------|---------|--------|---------|--------------------|---------|--------------|---------|--------------|-----------|--------------|-----------|--------------|-----------| | | 3,611 | | 1,887 | | <sup>1</sup> 1,316 | | 1,943 | | 557 | | 2,593 | | 2.312 | | | | Count | Percent | Count | Percen | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 2 | <1 | | | | | | | | | 2 | <1 | 9 | <1 | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 1 | <1 | 5 | <1 | _ | | | | 1 | <1 | | | 3 | <1 | | Chloroperlidae | _ | | 3 | <1 | _ | | _ | | _ | | | | _ | | | Perlidae | | | _ | | | | _ | | _ | | | | | | | Acroneuria | _ | | 3 | <1 | - | | _ | | | | 1 | <1 | | | | Agnetina | 4 | <1 | _ | | | | _ | | _ | | _ | | | | | Paragnetina | | | 3 | <1 | 3 | <1 | _ | | _ | | 11 | <1 | 7 | <1 | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 59 | 2 | 16 | <1 | 3 | <1 | 16 | <1 | 9 | 2 | 7 | <1 | 32 | 1 | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 1 | <1 | _ | | _ | | 3 | <1 | | | 2 | <1 | | | | Sialidae | _ | - | | | | | _ | - | | | _ | _ | | | | Sialis | _ | | | | | | _ | | _ | | _ | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | 1 | <1 | _ | | | | _ | | _ | | 30 | 1 | 8 | <1 | | Brachycentridae | • | | | | | | | | | | 00 | • | Ū | •• | | Brachycentrus | | | | | | | _ | | | | | | | | | Micrasema | 2 | <1 | | | 5 | <1 | _ | | 2 | <1 | 3 | <1 | 4 | <1 | | Glossosomatidae | L | ~1 | | | 3 | ~1 | _ | | L | ~1 | J | ~1 | 4 | ~, | | Glossosoma | 8 | <1 | 37 | 2 | 3 | <1 | 53 | 3 | 3 | <1 | 14 | <1 | 2 | <1 | | Protoptila | 0 | <1 | 31 | Z | 3 | <1 | 19 | 1 | 3 | <b>~1</b> | 14 | <b>~1</b> | 2 | <b>\1</b> | | - | _ | | _ | | _ | _ | 19 | 1 | _ | | _ | | | | | Goeridae | | | • | -4 | | | | | 2 | <1 | | | | | | Goera | _ | | 3 | <1 | | | _ | | 3 | <1 | | | _ | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | _ | | _ | | _ | | _ | | | | | | _ | | | Hydropsychidae | 750 | | 400 | | 100 | | -00 | | 100 | 40 | -10 | | | 00 | | Ceratopsyche | 750 | 21 | 480 | 25 | 130 | 10 | 580 | 31 | 100 | 18 | 510 | 20 | 520 | 23 | | Cheumatopsyche | 230 | 6 | 170 | 9 | 160 | 12 | 300 | 16 | 190 | 34 | 110 | 4 | 71 | 3 | | Hydropsyche | 490 | 14 | 80 | 4 | 27 | 2 | 67 | 4 | 6 | 1 | 130 | 5 | 520 | 23 | | Macrostemum | | | 5 | <1 | 3 | <1 | _ | | _ | | 2 | <1 | 1 | <1 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 7 | <1 | 11 | <1 | 24 | 2 | 3 | <1 | | | 1 | <1 | 21 | <1 | | Leucotrichia | 83 | 2 | 430 | 23 | 290 | 22 | 280 | 15 | 29 | 5 | 310 | 12 | 220 | 10 | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | 1 | <1 | 5 | <1 | 13 | 1 | _ | | | | | | _ | | | Oecetis | _ | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 3 | <1 | 45 | 2 | 5 | <1 | 11 | <1 | 13 | 2 | 14 | <1 | 35 | 2 | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | _ | | 5 | <1 | _ | | _ | | 1 | <1 | 2 | <1 | 3 | <1 | | Nyctiophylax | 7 | <1 | 5 | <1 | 24 | 2 | 3 | <1 | 3 | <1 | 3 | <1 | 2 | <1 | | Polycentropus | 2 | <1 | _ | | 13 | 1 | _ | | _ | | 1 | <1 | | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyia | 6 | <1 | 40 | 2 | 19 | 1 | 8 | <1 | 12 | 2 | 13 | <1 | 26 | 1 | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | _ | | | | _ | | _ | | _ | | _ | | | | | Uenoidae | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Oct. 12 | 2, 1 <b>98</b> 8 | Oct. 4 | l, 1989 | Oct. 2 | 2, 1990 | Oct. 2 | 2, 1991 | Oct. 6 | 5, 1992 | Oct. 6 | , 1993 | Oct. 2 | 6, 1994 | Date | |-----------------|------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-------------|----------------------------| | <sup>1</sup> 4, | 090 | 1, | 147 | 1,0 | 684 | 1, | 514 | 2, | 247 | 2,5 | 535 | 1, | 325 | Tot <sup>⊲</sup> count | | Count | Percent Orpanism | | , | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | 8 | <1 | | | _ | | 1 | <1 | | | 1 | <1 | 1 | <1 | Argia | | | | | | | | | | | | | | | | Plecopte-a | | | | | | | | | | | | | | | | Capniidae | | _ | | _ | | | | | | | | 2 | <1 | 1 | <1 | Allocapnia | | _ | | | | | | | | | | 2 | <1 | 4 | <1 | Chlcroperlidae | | _ | | _ | | _ | | _ | | 2 | <1 | | | | | Perlidae | | _ | | _ | | | | _ | | | | | | | | Acroneuria | | _ | | 3 | <1 | 4 | <1 | _ | | | | | | | | Agnetina | | 5 | <1 | | | | | | | | | 3 | <1 | | | Paragnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | 59 | 1 | 4 | <1 | 2 | <1 | 3 | <1 | | | 2 | <1 | 3 | <1 | Taeniopteryx | | | | • | | | | | | | | | - | | ·- <u>-</u> | Megaloptera | | | | | | | | | | | | | | | | Cory dalidae | | | | 2 | <1 | | | _ | | | | | | 1 | <1 | Corydalus | | | | - | ~* | | | | | | | | | • | ~1 | Siali dae | | | | | | | | | | | | | | 1 | <1 | Siali sae<br>Sialis | | | | _ | | | | | | | | | | 1 | ~1 | | | | | | | | | | | | | | | | | Trichoptera<br>Apataniidae | | | | 2 | .1 | | .1 | 5 | .1 | 27 | , | 40 | 2 | 10 | , | | | | | 2 | <1 | 1 | <1 | э | <1 | 27 | 1 | 49 | 2 | 13 | 1 | Apatania | | | | | | | | | | | | | | • | | Brac'ycentridae | | _ | | _ | | | | | | | | | | 8 | <1 | Brachycentrus | | 8 | <1 | 6 | <1 | 4 | <1 | 3 | <1 | 21 | <1 | 26 | 1 | 20 | 2 | Micrasema | | | | | _ | | _ | | | | | | | | | Glossomatidae | | 11 | <1 | 18 | 2 | 10 | <1 | | | | | _ | | _ | | Glossosoma | | 5 | <1 | _ | | 12 | <1 | 4 | <1 | 5 | <1 | 19 | <1 | _ | | Protoptila | | | | | | | | | | | | | | | | Goeridae | | _ | | _ | | | | _ | | _ | | 2 | <1 | 10 | <1 | Goera | | | | | | | | | | | | | | | | Helicopsychidae | | _ | | _ | | | | _ | | 53 | 2 | 93 | 4 | 110 | 8 | Helicopsyche | | | | | | | | | | | | | | | | Hyd psychidae | | 1,000 | 24 | 250 | 21 | 420 | 25 | 390 | 26 | 150 | 7 | 410 | 16 | 280 | 22 | Ceratopsyche | | 120 | 3 | 16 | 1 | 87 | 5 | 130 | 9 | 91 | 4 | 420 | 17 | 190 | 15 | Cheumatopsyche | | 570 | 14 | 54 | 5 | 52 | 3 | 42 | 3 | 280 | 12 | 23 | <1 | 96 | 7 | Hydropsyche | | 3 | <1 | 2 | <1 | _ | | | | _ | | | | 2 | <1 | Macrostemum | | | | | | | | | | | | | | | | Hyd ptilidae | | 3 | <1 | 2 | <1 | - | | 2 | <1 | 19 | <1 | 14 | <1 | 3 | <1 | Hydroptila | | 110 | 3 | 94 | 8 | 350 | 21 | 270 | 18 | 260 | 11 | 170 | 7 | 180 | 14 | Leucotrichia | | | | | | | | | | | | | | | | Lept~eridae | | 3 | <1 | 1 | <1 | | | _ | | 4 | <1 | 3 | <1 | | | Mystacides | | _ | | _ | | | | | | | | 2 | <1 | | | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 3 | <1 | 17 | 1 | 5 | <1 | 1 | <1 | 25 | 1 | 16 | <1 | 1 | <1 | Chimarra | | | | | | | | | | | | | | | | Polycentropodidae | | _ | | _ | | | | _ | | _ | | 2 | <1 | 2 | <1 | Neureclipsis | | 3 | <1 | 9 | <1 | 4 | <1 | 11 | <1 | 4 | <1 | 8 | <1 | | | Nyctiophylax | | 8 | <1 | 2 | <1 | 1 | <1 | 2 | <1 | 7 | <1 | 12 | <1 | 3 | <1 | Polycentropus | | - | - | - | - | - | - | - | - | | - | • | - | - | _ | Psychomyiidae | | 3 | <1 | 15 | 1 | 29 | 2 | 110 | 7 | 9 | <1 | 160 | 6 | 65 | 5 | Psychomyia | | 5 | | | - | | - | | • | - | | - 3- | • | | - | Rhyrcophilidae | | 3 | <1 | | | | | | | | | | | | | Rhyacophila | | , | ~* | _ | | | | - | | | | | | | | Uenotdae | | | | | | 1 | <1 | _ | | 1 | <1 | _ | | | | Neophylax | | _ | | | | • | ~1 | - | | • | ~1 | - | | | | меоризыл | Table 5. Benthic-macroinvertebrate data—Continued 014721884 - Pickering Creek at Charlestown Road Bridge at Charlestown, Pa. (Site 4)—Continued | Date | Oct. 1 | 5, 1981 | Oct. 1 | 9, 1982 | Oct. 1 | 7, 1983 | Oct. 9 | 9, 1984 | Oct. 7 | , 1985 | Oct. 6 | 5, 1986 | Oct. 8 | 3, 1987 | |--------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 3, | 611 | 1, | 887 | 1 1 | ,316 | 1, | 943 | 5 | 57 | 2, | 593 | 2, | 312 | | Organism | Count | Percent | Lepidoptera | | | | | | | | | | | | | • | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | _ | | | | | | _ | | | | _ | | 1 | <1 | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | | | | A.variegata | _ | | | | _ | | _ | | _ | | _ | | _ | | | Dubiraphia | _ | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | <b>Optioservus</b> | _ | | 3 | <1 | 16 | 1 | 11 | <1 | 5 | <1 | 12 | <1 | 8 | <1 | | Oulimnius | 2 | <1 | 3 | <1 | _ | | _ | | _ | | | | _ | | | Promoresia | _ | | | | _ | | _ | | _ | | 1 | <1 | 1 | <1 | | Stenelmis | 2 | <1 | 3 | <1 | _ | | _ | | _ | | 3 | <1 | 10 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | _ | | | | _ | | _ | | _ | | _ | | _ | | | Psephenus | - | | _ | | 5 | <1 | 3 | <1 | _ | | _ | | 1 | <1 | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 1,500 | 42 | 300 | 16 | 280 | 22 | 280 | 15 | 31 | 6 | 1,000 | 38 | _ | | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 5 | <1 | 5 | <1 | 3 | <1 | 3 | <1 | 2 | <1 | 7 | <1 | 2 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 63 | 2 | 27 | 1 | 8 | <1 | 24 | 1 | 15 | 3 | 4 | <1 | 13 | <1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 41 | 1 | 72 | 4 | 75 | 6 | 32 | 2 | 18 | 3 | 55 | 2 | 59 | 3 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 12 | 2, 1988 | Oct. 4 | i, 1989 | Oct. 2 | 2, 1990 | Oct. 2 | 2, 1991 | Oct. 6 | 5, 1992 | Oct. 6 | 6, 1993 | Oct. 2 | 26, 1994 | Date | |---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|----------|-------------------------| | 1 4, | 090 | 1, | 147 | 1,0 | 684 | 1, | 514 | 2, | 247 | 2, | 535 | 1, | 325 | Total count | | Count | Percent Orçanism | | | | | | | | | | | | | | | | Lepidoptra | | | | | | | | | | | | | | | | Pyralidae | | | | 1 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 8 | <1 | 7 | <1 | Petrophila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryonidae | | _ | | | | | | _ | | 1 | <1 | _ | | | | Helichus | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | _ | | | | _ | | _ | | 1 | <1 | _ | | _ | | A.variegata | | _ | | _ | | 1 | <1 | 1 | <1 | 2 | <1 | 3 | <1 | _ | | Dubiraphia | | 11 | <1 | 26 | 2 | 10 | <1 | 3 | <1 | 3 | <1 | 21 | <1 | 4 | <1 | Optioservus | | | | 3 | <1 | 2 | <1 | | | 1 | <1 | | | _ | | Oulimnius | | 3 | <1 | _ | | 1 | <1 | 4 | <1 | 8 | <1 | 2 | <1 | 1 | <1 | Promoresia | | 5 | <1 | 10 | <1 | 13 | <1 | 8 | <1 | 16 | <1 | 13 | <1 | 8 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | _ | | | | | | _ | | 3 | <1 | _ | | | | E. nervosa | | _ | | 2 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | 5 | <1 | Psephenus | | | | | | | | | | | | | | | | Diptera | | 1,300 | 32 | 180 | 15 | 400 | 24 | 300 | 20 | 510 | 22 | 400 | 16 | 190 | 15 | Chircnomidae | | | | | | | | | | | | | | | | Empididae | | 8 | <1 | 20 | 2 | 3 | <1 | 4 | <1 | 17 | <1 | 31 | 1 | 3 | <1 | I'=merodromia | | | | | | | | | | | | | | | | Simu <sup>11</sup> idae | | 130 | 3 | 88 | 7 | 43 | 3 | 1 | <1 | 31 | 1 | 5 | <1 | 2 | <1 | Simulium | | | | | | | | | | | | | | | | Tipulidae | | 24 | <1 | 29 | 2 | 9 | <1 | 41 | 3 | 25 | 1 | 85 | 3 | 32 | 2 | Antocha | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5) | Date | Oct. 1 | 5, 1981 | Nov. 2 | 2, 1982 | Oct. 1 | 8, 1983 | Oct. 22 | 2, 1984 | Oct. 8 | 1, 1985 | Oct. 6 | , 1986 | Oct. 1 | 3, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|-----------------------------------------|---------|--------|---------| | Total count | 2, | 081 | 3, | 232 | 2, | 183 | 1,5 | 513 | 4 | 38 | 1,1 | 150 | 2, | 029 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | - | | | | | *************************************** | | ` | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | | | _ | | | | _ | | 1 | <1 | 11 | <1 | - | | | Nematoda (nematodes) | _ | | 2 | <1 | 1 | <1 | _ | | _ | | 1 | <1 | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | _ | | 3 | <1 | _ | | | | | | 1 | <1 | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobildae | | | | | | | | | | | | | | | | Amnicola | | | _ | | | | _ | | _ | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 20 | <1 | 7 | <1 | 6 | <1 | | | 9 | 2 | 17 | 1 | 150 | 8 | | Lymnaeidae | 20 | ~1 | • | _1 | U | ~1 | _ | | 3 | L | 11 | • | 150 | Ū | | • | | | 1 | <1 | | | | | | | | | | | | Lymnaea | | | 1 | <1 | _ | | | | _ | | _ | | | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | - | | _ | | | | | | _ | | | | | | | Helisoma | | | _ | | | | | | _ | | 1 | <1 | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | _ | | | | | | _ | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | _ | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | 1 | <1 | 1 | <1 | 3 | <1 | _ | | | | 1 | <1 | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | _ | | 17 | <1 | 25 | 1 | | | _ | | 2 | <1 | | | | Tubificidae | | | _ | | | | | | | | 1 | <1 | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | _ | | | | | | 1 | <1 | 12 | 1 | 3 | <1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | _ | | _ | | | | | | _ | | | | 1 | <1 | | Amphipoda | 1 | <1 | | | | | | | _ | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | | | 1 | <1 | | | _ | | _ | | | | | | | Decapoda | | | - | | | | | | | | | | | | | Cambaridae | | | | | | | | | | | | | | | | Cambarus | _ | | | | _ | | _ | | | | 1 | <1 | | | | Insecta | | | | | | | | | | | • | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | | | | | | | | | | | | | | | | - | -1 | | .1 | | | 7 | _ 1 | | | 10 | | 10 | _1 | | Baetis | 5 | <1 | 1 | <1 | | | 7 | <1 | _ | | 13 | 1 | 19 | <1 | | Pseudocloeon | 7 | <1 | 6 | <1 | 8 | <1 | 2 | <1 | 1 | <1 | 10 | <1 | 18 | <1 | | Caenidae | _ | | | | | | _ | _ | | | _ | _ | _ | | | Caenis | 3 | <1 | _ | | | | 1 | <1 | _ | | 2 | <1 | 5 | <1 | | | 2, 1988<br> | _ | 6, 1989 | | 2, 1990 | | ', 1991<br>— | | , 1992 | | , 1993 | | 6, 1994 | Date | |------|-------------|-------|---------|-------|---------|-------|--------------|-------|---------|-------|---------|-------|---------|----------------------------| | | ,651 | | 173 | | 48 | | 066 | | 775 | | 259 | | 177 | Total count | | ount | Percent | Count | Percent | mainegnO | | | | | | | | | | | | | | | | Platyhelminthes (Tatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 3 | <1 | 3 | <1 | 2 | <1 | 58 | 2 | 89 | 5 | 3 | <1 | 16 | 1 | Planariidae | | _ | | | | | | | | 3 | <1 | | | | | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatida | | | | 1 | <1 | _ | | | | | | | | | | Prostoma | | | | • | ~. | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Mesogastropoda | | | | _ | | | | | | | | | | | | Hydrobiidae | | | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | Amnicola | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | 1 | 6 | 2 | 2 | <1 | 31 | 1 | 12 | <1 | 1 | <1 | | | Ferrissia | | | | | | | | | | | | | | | | Lymnaeidae | | | | | | | | | | 1 | <1 | | | | | Lymnaea | | | | | | | | | | | | | | | | Planorbidae | | | | _ | | - | | 1 | <1 | 2 | <1 | | | | | Gyraulus | | | | | | | | | | | | | | | | Helisoma | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | 1 | <1 | _ | | | | Spha∘riidae | | | | | | | | | | | _ | | | | | Annelida (segmented worms) | | | | | | | | | | 5 | <1 | | | 1 | <1 | Oligochaeta | | | | | | | | | | • | | | | • | ٠. | Lumbricu <sup>1</sup> ida | | 3 | <1 | 1 | <1 | _ | | 1 | <1 | | | | | | | Lumbriculidae | | • | ~1 | • | ~. | | | • | ~1 | | | | | | | Tubificida | | | | 4 | 1 | | | 3 | <1 | 42 | 2 | | | 1 | <1 | Naid <sup>1</sup> dae | | • | | 7 | 1 | | | 3 | <1 | 42 | Z | | | 1 | <1 | Tubificidae | | - | | | | | | _ | | | | | | _ | | | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | 00 | _ | | _ | _ | | | | Acariformes | | - | | 15 | 4 | _ | | 36 | 1 | 56 | 3 | 4 | <1 | 11 | <1 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | - | | | | | | | | | | | | | | Cyclopoida | | - | | | | | | | | | | | | | | Amphipeda | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asell'dae | | - | | | | | | _ | | 2 | <1 | _ | | _ | | Caecidotea | | | | | | | | | | | | | | | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | | - | | _ | | | | _ | | | | _ | | _ | | Cambarus | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baeti dae | | 3 | 2 | 2 | <1 | 4 | <1 | 31 | 1 | 2 | <1 | 6 | <1 | 2 | <1 | Baetis | | , | <1 | 7 | 2 | 3 | <1 | 23 | <1 | 26 | 1 | 17 | 1 | 2 | <1 | Pseudocloeon | | • | ~1 | ' | L | 3 | ~1 | 23 | ~1 | 20 | 1 | 11 | 1 | ے | ~, | Caen dae | | | | 1 | 1 | | | | | | | | | | | | | - | | 1 | <1 | | | | | | | | | | | Caenis | ı Table 5. Benthic-macroinvertebrate data—Continued 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5)—Continued | Date | Oct. 1 | 5, 1981 | Nov. 2 | 2, 1982 | Oct. 1 | 8, 1983 | Oct. 22 | 2, 1984 | Oct. 8 | , 1985 | Oct. 6 | , 1986 | Oct. 1 | 3, 1987 | |-------------------------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2,0 | 081 | 3,2 | 232 | 2, | 183 | 1,5 | 513 | 4 | 38 | 1,1 | 50 | 2,0 | 029 | | Organism | Count | Percent | Ephemeroptera | · | | | | | | | | | | | | | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 120 | 6 | 220 | 7 | 200 | 9 | 200 | 13 | 45 | 10 | 64 | 5 | 63 | 3 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | 3 | <1 | | | 6 | <1 | _ | | _ | | _ | | | Stenonema | 69 | 3 | 58 | 2 | 60 | 3 | 76 | 5 | 19 | 4 | 17 | 1 | 59 | 3 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 14 | <1 | 3 | <1 | 11 | <1 | 5 | <1 | 4 | 1 | 14 | 1 | 58 | 3 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | _ | | _ | | _ | | | | _ | | _ | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 4 | <1 | _ | | 1 | <1 | 1 | <1 | _ | | _ | | 1 | <1 | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 3 | <1 | 10 | <1 | 11 | <1 | 25 | 2 | 1 | <1 | _ | | 4 | <1 | | Chloroperlidae | _ | | _ | | 2 | <1 | 6 | <1 | 1 | <1 | _ | | | | | Nemouridae | | | | | _ | | _ | | | | _ | | _ | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | 1 | <1 | | | | | | | 2 | <1 | 4 | <1 | 2 | <1 | | Agnetina | _ | ~- | _ | | _ | | _ | | _ | ~. | | ~- | _ | ~* | | Paragnetina Paragnetina | | | 1 | <1 | | | _ | | | | 1 | <1 | 4 | <1 | | Taeniopterygidae | _ | | • | ~1 | | | | | _ | | • | ~1 | 7 | ~1 | | Taeniopteryx | 29 | 1 | 32 | 1 | 7 | <1 | 1 | <1 | 9 | 2 | 14 | 1 | 48 | 2 | | | 29 | 1 | 32 | 1 | • | <1 | 1 | <1 | 9 | 2 | 14 | 1 | 40 | Z | | Hemiptera<br>Veliidae | | | | | | | | | | | | | | | | | | | | | • | <1 | | | | | | | | -1 | | Rhagovelia | _ | | | | 3 | <1 | _ | | _ | | _ | | 1 | <1 | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | • | | • | | | | | | | | | | | Corydalus | _ | | 2 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | _ | | 1 | <1 | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | _ | | | | | | | | | | _ | _ | | | | Apatania | 1 | <1 | | | | | | | _ | | 5 | <1 | _ | | | Brachycentridae | | | | | _ | | | | | | _ | | | | | Micrasema | 8 | <1 | 29 | <1 | 190 | 9 | 4 | <1 | 3 | <1 | 42 | 3 | 12 | <1 | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 3 | <1 | 52 | 2 | 8 | <1 | 100 | 7 | 1 | <1 | 8 | <1 | 12 | <1 | | Protoptila | 4 | <1 | 6 | <1 | 48 | 2 | 37 | 2 | _ | | _ | | _ | | | Goeridae | | | | | | | | | | | | | | | | Goera | _ | | 2 | <1 | 3 | <1 | | | _ | | _ | | _ | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | _ | | | | _ | | | | 1 | <1 | 1 | <1 | _ | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 140 | 7 | 460 | 14 | 380 | 17 | 290 | 19 | 120 | 27 | 160 | 13 | 310 | 16 | | Cheumatopsyche | 130 | 6 | 87 | 3 | 160 | 7 | 93 | 6 | 53 | 12 | 14 | 1 | 40 | 2 | | Hydropsyche | 200 | 10 | 74 | 2 | 46 | 2 | 47 | 3 | _ | | 11 | <1 | 31 | 2 | | Macrostemum | 5 | <1 | 1 | <1 | 4 | <1 | 3 | <1 | | | _ | | 5 | <1 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 8 | <1 | 13 | <1 | 6 | <1 | 1 | <1 | 1 | <1 | _ | | 21 | 1 | | Leucotrichia | 210 | 10 | 950 | 30 | 520 | 24 | 260 | 17 | 72 | 16 | 84 | 7 | 430 | 22 | | Lepidostomatidae | | | | | | | | | | | | • | | | | Lepidostoma | _ | | | | _ | | | | _ | | _ | | _ | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | | | _ | | 6 | <1 | | | _ | | _ | | 1 | <1 | | Oecetis | | | | | _ | ~1 | | | | | 1 | <1 | 1 | <1 | | Occess | _ | | | | _ | | | | _ | | 1 | ~1 | 1 | ~1 | | Oct. 1 | 2, 1988 | Oct. 6 | , 1989 | Oct. 1 | 2, 1990 | Oct. 7 | , 1 <b>9</b> 91 | Oct. 6 | 5, 1992 | Oct. 7 | , 1993 | Oct. 20 | 6, 1994 | E`≈te | |----------|---------|---------|---------|-----------|---------|------------|-----------------|-----------|---------|----------|---------|----------|-----------|--------------------------------| | 1 2 | ,651 | 3 | 73 | 9 | 48 | 3,0 | 066 | 1, | 775 | 1,2 | 259 | 1,1 | 177 | Tota¹ count | | Count | Percent Org anism | | | | | | | | | | | | | | | | Ephemerootera | | | | | | | | | | | | | | | | Ephemerellidae | | 59 | 2 | 30 | 8 | 26 | 3 | 150 | 5 | 160 | 9 | 11 | <1 | 27 | 2 | F.phemerella | | | | | | | | | | | | | | | | Heptageniidae | | - | | 2 | <1 | | | 1 | <1 | _ | | | | | | Epeorus | | 43 | 2 | 4 | 1 | 11 | 1 | 13 | <1 | 34 | 2 | 24 | 2 | 4 | <1 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | 19 | <1 | 1 | <1 | 9 | <1 | 94 | 3 | 32 | 2 | 35 | 3 | 6 | <1 | Iranychia | | | | | | | | | | | | | | | | Leptchyphidae | | _ | | | | | | _ | | 1 | <1 | | | | | Tricorythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | _ | | | | _ | | _ | | | | 1 | <1 | _ | | Argia | | | | | | | | | | | | - | | | | Plecoptera | | | | | | | | | | | | | | | | Capn <sup>4</sup> dae | | | | | | | | 5 | <1 | | | | | _ | | Allocapnia | | _ | | _ | | | | 12 | <1 | 10 | <1 | _ | | _ | | Chloroperlidae | | _ | | _ | | 1 | <1 | 12 | <b>~1</b> | 10 | ~1 | _ | | _ | | Nemouridae | | _ | | _ | | 1 | <1 | | | _ | | | | | | Perlidae | | | | | | 2 | .1 | • | .1 | • | .1 | 7 | | 2 | .1 | | | _ | | _ | | 3 | <1 | 2 | <1 | 2 | <1 | 7 | <1 | 2 | <1 | Acroneuria | | _ | | | | 1 | <1 | 14 | <1 | 6 | <1 | 1 | <1 | _ | | Agnetina | | | | | | _ | | 3 | <1 | _ | | | | 2 | <1 | Paragnetina | | | | _ | _ | _ | | | | _ | | _ | _ | | | Taeninpterygidae | | 40 | 1 | 6 | 2 | 3 | <1 | 23 | <1 | 9 | <1 | 3 | <1 | | | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliic'ae | | 5 | <1 | | | _ | | _ | | _ | | _ | | _ | | Phagovelia | | | | | | | | | | | | | | | | Megaloptara | | | | | | | | | | | | | | | | Corydalidae | | _ | | | | 1 | <1 | 2 | <1 | | | 4 | <1 | _ | | Corydalus | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | _ | | | | _ | | 3 | <1 | 7 | <1 | _ | | 8 | <1 | A natania | | | | | | | | | | | | | | | | Brach ycentridae | | 32 | 1 | 12 | 3 | 6 | <1 | 32 | 1 | 78 | 4 | 16 | 1 | 1 | <1 | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | 8 | <1 | 1 | <1 | 7 | <1 | 1 | <1 | 2 | <1 | 6 | <1 | _ | | Glossosoma | | | | | | | | | | | | | | | | Protoptila | | | | | | | | | | | | | | | | Goeridae | | | | | | | | _ | | | | | | | | Goera | | | | | | | | | | | | | | | | Helicapsychidae | | _ | | 2 | <1 | | | | | 3 | <1 | | | 2 | <1 | Fielicopsyche | | _ | | L | ~1 | _ | | _ | | J | ~1 | | | L | <b>\1</b> | Hydropsychidae | | 40 | 20 | E 1 | 12 | 170 | 10 | 500 | 10 | 120 | 7 | 50 | | 70 | c | Ceratopsyche | | 40<br>69 | 20<br>3 | 51<br>5 | 13 | 170<br>12 | 18 | 590<br>160 | 19<br>5 | 120<br>25 | 7 | 50<br>41 | 4 | 70<br>35 | 6 | Ceratopsyche<br>Cheumatopsyche | | | | | 1 | | 1 | | | | 1 | | 3 | | 3<br>25 | | | 13 | <1 | 1 | <1 | 6 | <1 | 97 | 3 | 12 | <1 | 190 | 15 | 300 | 25 | I tydropsyche | | 11 | <1 | _ | | 2 | <1 | _ | | 2 | <1 | 6 | <1 | 4 | <1 | Macrostemum | | _ | | | | | | _ | _ | | | | | | | Hydroptilidae | | 5 | <1 | 2 | <1 | | | 5 | <1 | 22 | 1 | 1 | <1 | | | I <sup>1</sup> ydroptila | | 30 | 34 | 86 | 22 | 480 | 50 | 97 | 3 | 390 | 22 | 560 | 43 | 400 | 33 | Leucotrichia | | | | | | | | | | | | | | | | Lepicostomatidae | | | | _ | | _ | | _ | | 1 | <1 | - | | _ | | Lepidostoma | | | | | | | | | | | | | | | | Leptceridae | | | | _ | | | | | | - | | | | | | Mystacides | | | | | | | | _ | | | | _ | | | | Oecetis | Table 5. Benthic-macroinvertebrate data—Continued 01472190 - Pickering Creek near Phoenixville, Pa. (Site 5)—Continued | Date | Oct. 1 | 5, 1981 | Nov. 2 | 2, 1982 | Oct. 1 | 8, 1983 | Oct. 2 | 2, 1984 | Oct. 8 | 3, 1985 | Oct. 6 | , 1986 | Oct. 1: | 3, 1987 | |-----------------------|---------|---------|----------|---------|--------|---------|--------|----------------|--------|---------|--------|----------|---------|---------| | Total count | 2, | 081 | 3, | 232 | 2, | 183 | 1, | 513 | 4 | 38 | 1, | 150 | 2,0 | 029 | | Organism | Count | Percent | Trichoptera | | | | | | | | | | | - | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 4 | <1 | 22 | <1 | 9 | <1 | 27 | 2 | 1 | <1 | 1 | <1 | 7 | <1 | | Wormaldia | | | | | _ | | | | | | _ | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | | | _ | | _ | | 1 | <1 | | | | | 10 | <1 | | Nyctiophylax | 19 | <1 | 24 | <1 | 29 | 1 | 7 | <1 | 3 | <1 | 1 | <1 | 4 | <1 | | Polycentropus | | | 2 | <1 | 5 | <1 | | | | | | | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyla | 29 | 1 | 30 | <1 | 8 | <1 | 3 | <1 | 29 | 6 | 64 | 5 | 160 | 8 | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | 17 | <1 | | | | | | | _ | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila Petrophila | 2 | <1 | 3 | <1 | 1 | <1 | | | 3 | <1 | _ | | 31 | 2 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | | | | A.variegata | | | _ | | _ | | | | | | | | _ | | | Dubiraphia | | | _ | | | | | | _ | | | | | | | Macronychus | | | _ | | | | | | | | _ | | _ | | | M. glabratus | _ | | _ | | | | | | | | _ | | | | | Optioservus | 2 | <1 | 5 | <1 | 14 | <1 | 3 | <1 | 11 | 2 | 29 | 2 | 3 | <1 | | Oulimnius | | | 5 | <1 | 6 | <1 | | | | | 3 | <1 | 3 | <1 | | Promoresia | | | _ | | | | | | | | 1 | <1 | | | | Stenelmis | | | _ | | 15 | <1 | 1 | <1 | 2 | <1 | 5 | <1 | 1 | <1 | | Psephenidae | | | | | | - | - | · <del>-</del> | _ | | _ | - | _ | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | | | _ | | _ | | | | | | _ | | _ | | | Psephenus | 5 | <1 | 9 | <1 | 9 | <1 | 2 | <1 | 6 | 1 | 21 | 2 | 7 | <1 | | Diptera | Ū | ٠. | • | | • | | _ | •• | · | • | | - | • | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | _ | | | | | | _ | | _ | | | | | Chironomidae | 1,000 | 48 | 870 | 27 | 230 | 10 | 240 | 16 | 11 | 2 | 370 | 31 | 380 | 19 | | Empididae | 1,000 | 10 | 0.0 | 21 | 200 | 10 | 240 | 10 | ** | - | 0,0 | 01 | 000 | 10 | | Hemerodromia | 2 | <1 | 4 | <1 | 3 | <1 | 2 | <1 | 3 | <1 | 11 | <1 | 2 | <1 | | Simuliidae | L | ~1 | 7 | ~1 | J | ~1 | ۵ | ~1 | J | ~1 | ** | ~1 | | ~1 | | Simulium | | | 2 | <1 | | | 3 | <1 | 1 | <1 | 1 | <1 | _ | | | Tipulidae | | | 4 | ~1 | | | J | ~1 | 1 | ~1 | 1 | ~1 | | | | Antocha | 32 | 2 | 200 | 6 | 140 | 6 | 58 | 4 | 23 | 5 | 130 | 11 | 120 | 6 | | Antocia<br>Tipula | 3Z<br>— | L | 200<br>— | U | 140 | Ü | - Jo | 4 | 23<br> | J | 130 | <1<br><1 | | U | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Date | 6, 1994 | Oct. 26 | ', 1993 | Oct. 7 | , 1992 | Oct. 6 | ', 1991 | Oct. 7 | 2, 1990 | Oct. 12 | , 1989 | Oct. 6 | 2, 1988 | | |------------------------|---------|---------|----------|------------------|---------|--------|----------|--------|---------|---------|---------|--------|---------|-------| | Total count | 77 | 1,1 | 259 | 1,2 | 775 | 1,7 | 066 | 3,0 | 48 | 9 | 73 | 3 | 651 | 1 2 | | MainegnO | Percent | Count | Trichoptera | | | | | | | | | | | | | | | | Philopotamida | | | | | | | | | | | | | | | | Chimarra | <1 | 10 | <1 | 11 | 1 | 20 | 1 | 34 | 2 | 16 | | | | - | | Wormaldia | | | | | <1 | 2 | | | | | | _ | | _ | | Polycentropodi | | | | | | | | | | | | | | | | Neureclipsi | | _ | | | <1 | 2 | <1 | 1 | | - | | | | | | Nyctiophyla | | _ | <1 | 2 | | | <1 | 1 | | _ | 2 | 6 | <1 | 16 | | Polycentrop | | | <1 | 3 | <1 | 1 | | | | | | _ | <1 | 3 | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | <1 | 5 | 1 | 13 | <1 | 5 | 3 | 79 | 3 | 27 | 2 | 6 | <1 | 16 | | Uencidae | | | | | | | | | | | | | | | | Neophylax | | | | _ | <1 | 1 | | | <1 | 3 | 6 | 25 | | _ | | Lepidoptara | | | | | | | | | | | | | | | | Pyra'idae | | | | | | | | | | | | | | | | Petrophila | | _ | <1 | 4 | <1 | 2 | | _ | <1 | 1 | | | <1 | 8 | | Coleoptera | | | | | _ | | | | | | | | | | | Elmi-lae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | | | | A.varie | | _ | <1 | 8 | | | | | | | | _ | | | | Dubiraphia | | _ | ·- | _ | <1 | 2 | <1 | 5 | | | | | | _ | | Macronych | | | | | | _ | | • | | | | _ | | _ | | M. glai | | _ | | | | | <1 | 4 | | | | _ | | | | Optioservus | <1 | 6 | <1 | 8 | 1 | 22 | 1 | 37 | <1 | 2 | 2 | 8 | <1 | 16 | | Oulimnius | <1 | 2 | <1 | 1 | - | | • | _ | | _ | <1 | 1 | ٠. | _ | | Promoresia | ~, | _ | | _ | 3 | 62 | 3 | 96 | <1 | 1 | ~- | | | | | Stenelmis | <1 | 7 | 1 | 17 | <1 | 4 | <1 | 5 | ~1 | | <1 | 1 | <1 | 6 | | Psephenidae | ~1 | • | • | 11 | ~1 | - | ~1 | • | | _ | ~, | • | ~, | U | | Ectopria | | | | | | | | | | | | | | | | Ectopia<br>E. nerv | | | | | | | <1 | 1 | | | | | | | | | <1 | 2 | <1 | 4 | <1 | 2 | <1<br><1 | 4 | <1 | 3 | 1 | 4 | 1 | 27 | | Psephenus | <1 | L | <1 | 4 | <1 | 2 | <1 | 4 | <1 | 3 | 1 | 4 | 1 | 21 | | Diptera<br>Athe~icidae | | | | | | | | | | | | | | | | Atherix | | | -1 | 1 | | | | | | | | | | | | | 10 | 210 | <1<br>12 | 1<br>1 <b>60</b> | 21 | 200 | 20 | 1 200 | | 10 | 12 | 52 | 22 | | | Chironomidae | 18 | 210 | 12 | 100 | 21 | 380 | 39 | 1,200 | 1 | 10 | 13 | 52 | 22 | 600 | | Emp'didae | | | | _ | | | | 1. | • | 00 | • | _ | | 11 | | Hemerodron | <1 | 3 | <1 | 7 | <1 | 9 | <1 | 14 | 9 | 90 | 2 | 6 | <1 | 11 | | Simuliidae | | _ | | | _ | | _ | | | _ | _ | _ | | | | Simulium | <1 | 3 | 1 | 13 | 3 | 62 | 1 | 42 | <1 | 2 | <1 | 2 | | _ | | Tipu'idae | | | _ | | | | _ | | | | _ | | - | | | Antocha | 3 | 35 | 2 | 20 | 2 | 42 | 2 | 55 | 5 | 44 | 5 | 18 | 3 | 72 | | Tipula | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01473167 - Little Valley Creek at Howellville, Pa. (Site 49) | Date | Oct. 1 | 6, 1981 | Oct. 1 | 5, 1982 | Oct. 2 | 1, 1983 | Oct. 9 | , 1984 | Oct. 9 | , 1985 | Nov. | 6, 1986 | Nov. 1 | 6, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|----------|--------|---------|--------|---------| | Total count | 2,8 | 871 | 2, | 454 | 1, | 231 | 1, | 218 | 5 | 51 | 1, | 102 | 1, | 3.57 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 9 | <1 | 7 | <1 | 24 | 2 | 31 | 3 | 5 | <1 | 14 | 1 | 19 | 1 | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | | | 1 | <1 | | | 1 | <1 | | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | 29 | 1 | 3 | <1 | 3 | <1 | | | _ | | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | _ | | | | | | _ | | _ | | 5 | <1 | | Tubificida | | | | | | | | | | | | | | | | Naididae | | | | | | | _ | | _ | | | | _ | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | 3 | <1 | 3 | <1 | 6 | <1 | 2 | <1 | 1 | <1 | | | | Crustacea | | | • | | • | | • | ~1 | - | ~- | • | ~1 | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | 43 | 1 | 160 | 7 | 99 | 8 | 8 | <1 | 24 | 4 | 130 | 12 | 190 | 14 | | Isopoda | 70 | 1 | 100 | , | 33 | 0 | 0 | ~1 | 24 | 7 | 130 | 12 | 150 | 1.3 | | Asellidae | | | | | | | | | 1 | <1 | | | | | | Lirceus | 2 | <1 | 9 | <1 | 2 | <1 | | <1 | 5 | <1<br><1 | <br>70 | 6 | 12 | <1 | | | 2 | <1 | 9 | <1 | 2 | <1 | 0 | <1 | 3 | <1 | 70 | O | 12 | <1 | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | | | | | | | | | | | | | | | | Cambarus | | | 1 | <1 | _ | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | 050 | | | | | _ | | | | •• | | • | | Baetis | 310 | 11 | 350 | 14 | 140 | 11 | 83 | 7 | 31 | 6 | 220 | 20 | 30 | 2 | | Pseudocloeon | | | | | | | | | 64 | 11 | _ | | 73 | 5 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 300 | 10 | 190 | 8 | 490 | 40 | 480 | 40 | 150 | 27 | 230 | 21 | 430 | 31 | | Heptageniidae | | | | | | | | | | | | | | | | Stenonema | | | _ | | | | | | _ | | 1 | <1 | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | | | _ | | | | _ | | | | _ | | | Taenlopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | _ | | 1 | <1 | _ | | | | _ | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | | | | | | | | | | | | Trichocorixa | 2 | <1 | _ | | | | | | _ | | | | _ | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | 1 | <1 | _ | | | | 1 | <1 | _ | | | | _ | | | Trichoptera | | | | | | | | | | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | _ | | _ | | | | _ | | | | _ | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | 0.000000 | | | | | | | | | | | | | | | | O+ 2 | 5, 1988 | Nov | 6, 1989 | No: 1 | 4, 1990 | 0~ 0 | 8, 1991 | O~4 ! | 5, 1992 | No. 1 | 8, 1993 | No. 3 | 7, 1994 | Date | |-------|----------|-------|--------------------|-------|---------|-------|---------|-----------|---------|-------|-----------|-------|----------------|----------------------------------------| | | 375 | | 6, 1969<br><br>346 | | 18 | | 81 | | 13 | | 04 | | 7, 1994<br>D68 | - Total count | | | | | | | Percent | | | | | | | | | | | Journ | reiceill | Count | | Count | reicent | Count | reicent | COURT | reiteil | Count | reicent | Count | reicein | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 8 | <1 | 13 | 4 | 7 | 1 | | | 18 | 2 | 9 | 1 | 13 | 1 | Planar'idae | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatoohora | | | | | | | | | | | | | | | | Ancyli⁻ae | | 3 | <1 | | | _ | | | | 1 | <1 | _ | | | | Ferissia | | | | | | | | | | | | | | | | Annelida (segmented worms) | | _ | | _ | | | | | | _ | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | 1 | <1 | _ | | | | | | _ | | | | Lumbriculidae | | | | 8 | 2 | | | | | | | | | 1 | _1 | Tubificida | | _ | | 5 | 2 | _ | | _ | | _ | | _ | | 1 | <1 | Naididae<br>Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | 5 | <1 | 2 | <1 | | | Hydrachnidia | | | | _ | | | | | | J | ~1 | L | <b>\1</b> | | | Crustacea | | | | | | | | | | | | | | | | Amphipod | | | | | | | | | | | | | | | | Gamm <sup>3</sup> ridae | | 10 | 8 | 7 | 2 | 42 | 8 | 14 | 3 | 42 | 5 | 43 | 5 | 11 | 1 | Gammarus | | - | _ | - | _ | | _ | | - | | - | | _ | | _ | Isopoda | | _ | | _ | | _ | | | | | | _ | | | | Asellidae | | 11 | <1 | 1 | <1 | _ | | | | 1 | <1 | | | | | Lirceus | | | | | | | | | | | | | | | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | | | | | | - | | | | _ | | | | | | Cambarus | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 77 | 6 | 20 | 6 | 11 | 2 | 17 | 4 | <b>46</b> | 5 | 9 | 1 | 47 | 4 | Bartis | | 16 | 1 | 2 | <1 | 30 | 6 | 2 | <1 | 6 | <1 | 28 | 3 | 120 | 11 | Psydocloeon | | | | | | | | | _ | | | | | | | Ephemerellidae | | 30 | 24 | 57 | 16 | 100 | 19 | 40 | 8 | 180 | 20 | 110 | 14 | 140 | 13 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | _ | | _ | | _ | | | | _ | | _ | | _ | | Strnonema | | | | | | | | | | | | | | | | Plecoptera | | | | | | 3 | <1 | 2 | -1 | | | | | | | Capnii†ae<br><i>Al</i> '~a <i>pnia</i> | | | | | | J | <1 | L | <1 | | | _ | | _ | | Taeniopterygidae | | 3 | <1 | | | | | _ | | | | _ | | | | Taeniojnerygidae<br>Taeniopteryx | | • | 7. | _ | | - | | | | | | _ | | - | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | _ | | | | | | | | | | | | | | Tri~hocorixa | | | | | | | | | | | | | | | | Veliida <sup>9</sup> | | | | | | | | _ | | | | _ | | | | Rhapovelia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Brachycentridae | | 3 | <1 | _ | | _ | | _ | | | | _ | | _ | | M:rrasema | | | | | | | | | | | | | | | | Glossonmatidae | | 120 | 9 | 53 | 15 | 51 | 10 | 6 | 1 | 9 | 1 | 4 | <1 | 71 | 6 | Glossosoma | Table 5. Benthic-macroinvertebrate data—Continued 01473167 - Little Valley Creek at Howellville, Pa. (Site 49)—Continued | Date | Oct. 1 | 6, 1981 | Oct. 1 | 5, 1982 | Oct. 2 | 1, 1983 | Oct. 9 | , 1984 | Oct. 9 | , 1985 | Nov. ( | 5, 1986 | Nov. 1 | 6, 1987 | |----------------|--------|--------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2, | 871 | 2, | 454 | 1,2 | 231 | 1,2 | 218 | 5 | 51 | 1, | 102 | 1,5 | 357 | | Organism | Count | Percent | Trichoptera | | <del>.</del> | | | | | | | | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 390 | 13 | 690 | 28 | 190 | 15 | 200 | 17 | 170 | 30 | 200 | 18 | 160 | 11 | | Cheumatopsyche | 88 | 3 | 16 | <1 | | | 4 | <1 | 14 | 3 | 2 | <1 | 11 | <1 | | Hydropsyche | 530 | 18 | 120 | 5 | 140 | 11 | 48 | 4 | 11 | 2 | 47 | 4 | 120 | 9 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | _ | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | | Leucotrichia | 1 | <1 | _ | | _ | | _ | | _ | | _ | | | | | Leptoceridae | | | | | | | | | | | | | | | | Oecetis | _ | | | | | | | | | | _ | | _ | | | Philopotamidae | | | | | | | | | | | | | | | | Dolophilodes | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyia | 1 | <1 | 1 | <1 | 4 | <1 | _ | | | | _ | | _ | | | Lepidoptera | _ | | _ | | _ | | 1 | <1 | _ | | _ | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Chrysomelidae | _ | | 1 | <1 | | | | | | | | | | | | Donacia | | | | | 1 | <1 | | | _ | | | | | | | Curculionidae | | | | | _ | | _ | | _ | | _ | | _ | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | | | _ | | | | _ | | 1 | <1 | _ | | _ | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | | | | | | | | | | | | | | | | Optioservus | 14 | <1 | 7 | <1 | 8 | <1 | 27 | 2 | 7 | 1 | 58 | 5 | 84 | 6 | | Oulimnius | | - | _ | | | - | _ | | 2 | <1 | 1 | <1 | _ | | | Stenelmis | 2 | <1 | _ | | | | 4 | <1 | _ | | | | 8 | <1 | | Hymenoptera | | - | | | | | - | - | | | | | | | | Ichneumonidae | | | 1 | <1 | | | _ | | _ | | | | _ | | | Diptera | | | • | | | | | | | | | | | | | Chironomidae | 1,000 | 34 | 660 | 27 | 73 | 6 | 200 | 17 | 41 | 7 | 33 | 3 | 53 | 4 | | Empididae | 1,000 | 01 | 000 | | | • | 200 | | | • | - | Ū | • | • | | Chelifera | _ | | | | | | | | | | _ | | | | | Hemerodromia | 8 | <1 | 8 | <1 | _ | | _ | | _ | | _ | | | | | Simuliidae | | -4 | • | | | | | | | | | | | | | Simulium | 3 | <1 | | | 3 | <1 | 3 | <1 | 15 | 3 | 36 | 3 | _ | | | Tipulidae | 3 | ~. | | | · | ~* | ٠ | ~* | 10 | Ū | - | Ū | | | | Antocha | 110 | 4 | 85 | 3 | 30 | 3 | 16 | 1 | 4 | <1 | 26 | 2 | 32 | 2 | | Tipula | | | _ | • | _ | • | _ | • | 1 | <1 | _ | - | _ | - | $<sup>^{1}</sup>$ Extrapolated from a 3/8 subsample. | Oct. 2 | 6, 1988 | Nov. 6 | 3, 1989 | Nov. 1 | 4, 1990 | Oct. 2 | 8, 1991 | Oct, 5 | , 1992 | Nov. 1 | 8, 1993 | Nov. 7 | 7, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|----------------| | 1 1 | 375 | 3 | 46 | 5 | 18 | 4 | B1 | 9 | 13 | 8 | 04 | 1,0 | 068 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Hydropsychidae | | 310 | 22 | 84 | 24 | 21 | 4 | 78 | 16 | 180 | 20 | 46 | 6 | 140 | 13 | Ceratopsyche | | 16 | 1 | | | 3 | <1 | 9 | 2 | 17 | 2 | 2 | <1 | 15 | 1 | Cheumatopsyche | | 91 | 7 | 20 | 6 | 39 | 8 | 35 | 7 | 140 | 15 | 130 | 16 | 150 | 14 | Hydrosyche | | | | | | | | | | | | | | | | Hydroptilidae | | | | | | 1 | <1 | _ | | | | | | _ | | Hydrotila | | _ | | | | _ | | | | _ | | | | _ | | Leuc vrichia | | | | | | | | | | | | | | | | Leptoceri dae | | 5 | <1 | _ | | _ | | _ | | _ | | | | | | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | _ | | | | _ | | _ | | _ | | _ | | | | Dolophilodes | | | | | | | | | | | | | | | | Psychomyiidae | | | | 1 | <1 | 5 | 1 | | | | | | | | | Psychomyla | | _ | | | | | | | | | | _ | | _ | | Lepidoptera | | | | | | | | | | | | | | | | Coleoptera | | | | | | _ | | | | _ | | _ | | _ | | Chrysom lidae | | | | | | _ | | _ | | _ | | | | _ | | Donaria | | — | | | | _ | | _ | | 1 | <1 | _ | | | | Curculionidae | | | | | | | | | | | | | | | | Dryopidae | | | | | | _ | | | | _ | | _ | | _ | | Helichus | | | | | | | | | | | | | | | | Elmidae | | 3 | <1 | | | _ | | _ | | _ | | | | | | Dubi~aphia | | 86 | 6 | 14 | 4 | 24 | 5 | 41 | 9 | 90 | 10 | 70 | 9 | 33 | 3 | Opticservus | | | | 5 | 2 | | | | | 2 | <1 | _ | | | | Oulimnius | | 8 | <1 | | | _ | | _ | | 1 | <1 | 2 | <1 | | | Stenelmis | | _ | _ | | | | | | | _ | _ | _ | _ | | | Hymenoptera | | _ | | | | | | _ | | | | | | | | Ichneumonidae | | | | | | | | | | | | | | | | Diptera | | 130 | 9 | 46 | 13 | 61 | 12 | 140 | 29 | 61 | 7 | 290 | 36 | 150 | 14 | Chironomidae | | | • | •• | | | | - •• | | •- | • | _00 | | -00 | | Empididae | | | | | | | | _ | | _ | | 1 | <1 | _ | | Chelifera | | _ | | _ | | | | | | | | | ~2 | 1 | <1 | Hemerodromia | | | | | | | | | | | | | | • | ~~ | Simuliida | | 8 | <1 | 3 | 1 | | | 73 | 15 | 98 | 11 | 20 | 2 | 130 | 12 | Simulium | | • | ~1 | J | • | _ | | 10 | 13 | 30 | 11 | 20 | L | 100 | 16 | Tipulidae | | 37 | 3 | 11 | 3 | 120 | 23 | 22 | 5 | 15 | 2 | 38 | 5 | 46 | 4 | Antocha | | 31 | 3 | | 3 | 120 | 20 | 2 | -1 | 13 | L | JO | J | 70 | 7 | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found]</td> 01473168 - Valley Creek near Valley Forge, Pa. (Site 50) | Date | Oct. 1 | 6, 1981 | Oct. 1 | 5, 1982 | Oct. 2 | 1, 1983 | Oct. 9 | 9, 1984 | Oct. 9 | , 1985 | Nov. 7 | 7, 1986 | Nov. 1 | 6, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2, | 183 | 3, | 144 | 1, | 745 | 2, | 073 | 1, | 354 | 1, | B20 | 1, | 625 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | ***.* | | ···· | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 24 | 1 | 80 | 3 | 31 | 2 | 120 | 6 | 47 | 3 | 75 | 4 | 87 | 5 | | Nematoda (nematodes) | _ | | _ | | _ | | _ | | | | _ | | 3 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | | | _ | | _ | | - | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | <i>Ferrissia</i> | 17 | <1 | 3 | <1 | 7 | <1 | 5 | <1 | 10 | <1 | 1 | <1 | 1 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | _ | | | | _ | | | | | | | | 1 | <1 | | Planorbidae | | | | | 1 | <1 | | | | | _ | | | | | Gyraulus | | | | | | | _ | | _ | | | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | 38 | 1 | | | 1 | <1 | | | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | _ | | | | _ | | | | _ | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 34 | 2 | _ | | _ | | _ | | 3 | <1 | 1 | <1 | 19 | 1 | | Tubificidae | _ | | _ | | _ | | _ | | 1 | <1 | _ | | 5 | <1 | | Hirudinea | | | | | | | | | | | | | | | | Pharyngobdellida | | | | | | | | | | | | | | | | Erpobdellidae | | | 1 | <1 | _ | | _ | | | | _ | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | 8 | <1 | _ | | _ | | _ | | | | 1 | <1 | | Crustacea | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | 42 | 2 | 7 | <1 | 17 | 1 | 2 | <1 | 34 | 2 | 16 | <1 | 15 | <1 | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Lirceus | 110 | 5 | 740 | 24 | 410 | 24 | 480 | 123 | 320 | 23 | 470 | 26 | 220 | 14 | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | _ | | | | _ | | | | _ | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 110 | 5 | 69 | 2 | 41 | 2 | 150 | 7 | 62 | 4 | 16 | <1 | 42 | 3 | | Pseudocloeon | _ | | | | _ | | _ | | _ | | | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | _ | | 1 | <1 | 2 | <1 | 4 | <1 | 1 | <1 | 2 | <1 | 7 | <1 | | Heptageniidae | | | | | | | | | | | | | | | | Stenonema | | | | | _ | | _ | | _ | | _ | | _ | | | Leptophlebiidae | | | | | | | | | | | | | | | | Oct. 2 | 6, 1988 | Nov. | 6, 1989 | Nov. 1 | 4, 1990 | Oct. 2 | 8, 1991 | Oct. | 5, 1992 | Nov. 1 | 8, 1993 | Nov. 7 | 7, 1994 | Date | |--------|---------|-------|---------|--------|---------|--------|---------|-------|---------|--------|---------|--------|---------|--------------------------------------------------------------| | 1 2 | ,278 | 1, | 046 | 1, | 557 | 1, | 020 | 1, | 848 | 1, | 307 | 1, | 561 | Total count | | Count | Percent | Count | Percen | t Orga≏ism | | | | | | | | | | - | | | | | · | Platyhelminthes (flatworms) Turbellaria Tricladida | | 140 | 6 | 58 | 6 | 75 | 5 | 58 | 6 | 130 | 7 | 63 | 5 | 130 | 8 | Planar <sup>11</sup> dae | | | | 6 | <1 | - | | 1 | <1 | _ | | _ | | 1 | <1 | Nematoda (nematodes)<br>Nemertea (proboscis worms)<br>Enopla | | | | 1 | <1 | | | 1 | <1 | 3 | <1 | | | | | Hoplonem⇒rtea<br>Tetrast∘mmatidae<br><i>Prostoma</i> | | | | | | | | | | | | | | | | Mollusca (molluscs) Gastropoda Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | 1 | <1 | - | | Ferrissia | | | | | | | | | | | | | | | | Lymnaeidae | | - | | | | | | | | | | | | | | Lymnaea | | _ | | _ | | | | | | | | | | _ | | Planorbidae | | 3 | <1 | _ | | - | | | | | | - | | | | Gyraulus | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | _ | | _ | | | | | | Oligochaeta | | | | _ | | | | | | | | | | | | Lumbricul`da | | | | 7 | <1 | _ | | | | _ | | - | | | | Lumbriculidae | | | | | _ | _ | _ | _ | _ | _ | _ | | | | | Tubificida | | | | 73 | 7 | 2 | <1 | 6 | <1 | 9 | <1 | 11 | <1 | 70 | 4 | Naididae | | | | _ | | | | | | _ | | | | | | Tubificidae | | | | | | | | | | | | | | | | Hirudinea | | | | | | | | | | | | | | | | Pharyngot dellida | | | | _ | | | | | | | | | | | | Erpob dellidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | _ | | | | _ | | | | | | | | Acariformes | | _ | | 4 | <1 | 1 | <1 | 4 | <1 | 39 | 2 | 18 | 1 | 21 | 1 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | | | | | | | | | | | | | | | Amphipoc'a | | 05 | | | • | | • | | | | | 0.5 | • | - | | Gammaridae | | 35 | 2 | 28 | 3 | 28 | 2 | 38 | 4 | 34 | 2 | 35 | 3 | 5 | <1 | Gammarus | | | | | | | | | | | | | | | | Isopoda | | E10 | 22 | 50 | _ | 170 | 11 | 44 | | 110 | 6 | 3 | .1 | 2 | | Asellidae | | 510 | 22 | 53 | 3 | 170 | 11 | 44 | 4 | 110 | O | 3 | <1 | 2 | <1 | Lirceus | | | | | | | <1 | | | | | | | | | Decapoda<br>Cambaridae | | | | | | 1 | <1 | - | | | | _ | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 19 | <1 | 37 | 4 | 17 | 1 | 4 | <1 | 12 | <1 | 2 | <1 | 30 | 2 | Baetis | | | ~1 | | 7 | | 1 | 1 | <1 | | ~1 | 2 | <1 | 4 | <1 | Pseudocloeon | | _ | | | | | | 1 | ~1 | | | 4 | ~1 | 7 | ~1 | Ephemerellidae | | 3 | <1 | 22 | 2 | 24 | 2 | 9 | <1 | 16 | <1 | 17 | 1 | 17 | 1 | Ephemerella | | , | ~1 | | _ | #4 | - | 3 | ~1 | 40 | ~1 | 41 | • | 41 | | Hepta zeniidae | | | | | | 1 | <1 | | | | | | | | | Stenonema | | | | | | | 74 | _ | | 1 | <1 | | | | | Leptophlebiidae | | | | | | _ | | | | • | ~* | | | | | 20ptoj montano | Table 5. Benthic-macroinvertebrate data—Continued 01473168 - Valley Creek near Valley Forge, Pa. (Site 50)—Continued | Date<br>Total count | Oct. 1 | 6, 1981 | Oct. 1 | 5, 1982 | Oct. 2 | 1, 1983 | Oct. 9 | 9, 1984 | Oct. 9 | 9, 1985 | Nov. | 7, 1986 | Nov. 1 | 6, 1987 | |---------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|--------|---------| | Total count | 2, | 183 | 3, | 144 | 1, | 745 | 2, | 073 | 1, | 354 | 1, | 820 | 1, | 625 | | Organism | Count | Percent | Count | Percen | | Hemiptera | | | | | • • | | | | | | | | | | | Corixidae | _ | | | | _ | | _ | | | | _ | | _ | | | Sigara | 1 | <1 | | | | | | | _ | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 1 | <1 | 4 | <1 | _ | | 9 | <1 | _ | | 3 | <1 | 2 | <1 | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 340 | 15 | 860 | 28 | 370 | 22 | 200 | 10 | 160 | 11 | 590 | 33 | 210 | 13 | | Cheumatopsyche | 120 | 5 | 44 | 1 | 48 | 3 | 6 | <1 | 20 | 1 | 8 | <1 | 13 | <1 | | Hydropsyc <b>he</b> | 120 | 5 | 410 | 13 | 500 | 29 | 220 | 10 | 62 | 4 | 150 | 8 | 270 | 17 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 4 | <1 | | | | | | | _ | | _ | | _ | | | Leucotrichia | | | 1 | <1 | | | 1 | <1 | | | 1 | <1 | _ | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | _ | | | | 4 | <1 | 1 | <1 | 7 | <1 | 27 | 2 | 2 | <1 | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | _ | | | | | | | | _ | | _ | | 1 | <1 | | Coleoptera | 1 | <1 | | | _ | | 1 | <1 | 3 | <1 | _ | | _ | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | _ | | _ | | _ | | _ | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | | | _ | | | | | | | | _ | | | Optioservus | 17 | <1 | 20 | <1 | 15 | <1 | 22 | 1 | 44 | 3 | 47 | 3 | 67 | 4 | | Oulimnius | | | | | _ | | | | | | | | _ | | | Promoresia | _ | | | | | | _ | | _ | | | | _ | | | Stenelmis | 9 | <1 | 13 | <1 | 8 | <1 | 7 | <1 | 10 | <1 | 1 | <1 | 38 | 2 | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | _ | | | | | | | | _ | | | | | | | Psephenus . | | | | | | | | | | | | | | | | Hymenoptera | 1 | <1 | | | | | 1 | <1 | | | | | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 1,100 | 50 | 640 | 21 | 160 | 9 | 720 | 34 | 490 | 35 | 120 | 7 | 350 | 22 | | Empididae | -, | | | | | - | | - | | - | | - | | | | Hemerodromia | 6 | <1 | 3 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | 2 | <1 | _ | | | Simuliidae | · | - | - | - | - | - | - | - | - | - | - | - | | | | Simulium | 6 | <1 | 2 | <1 | | | 22 | 1 | 5 | <1 | 110 | 6 | 21 | 1 | | Tipulidae | Ū | | - | | | | | • | • | | | • | | - | | Antocha | 120 | 5 | 200 | 6 | 130 | 8 | 100 | 5 | 73 | 5 | 180 | 10 | 250 | 16 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 2 | 6, 1988 | Nov. 6 | 5, 1989 | Nov. 1 | 4, 1990 | Oct. 2 | 8, 1991 | Oct. 5 | , 1992 | Nov. 1 | 8, 1993 | Nov. 7 | <sup>7</sup> , 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|-----------|---------|--------|---------|--------|---------------------|------------------------| | 1 2 | ,278 | 1,0 | 046 | 1, | 557 | 1,0 | 020 | 1,8 | 348 | 1, | 307 | 1, | 561 | Total ocunt | | Count | Percent Organism | | | | | | | | | | | | | | | | Hemiptera | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | Corixidae | | | | _ | | | | | | | | | | | | Sigara | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | 10 | 1 | 2 | <1 | | | 1 | <1 | | | 9 | <1 | Glossosoma | | | | | | | | | | | | | | | | Hydropsychidae | | 290 | 13 | 110 | 11 | 300 | 19 | 92 | 9 | 140 | 7 | 120 | 9 | 170 | 11 | Ceratopsyche | | 27 | 1 | 2 | <1 | 8 | <1 | 17 | 2 | 20 | 1 | 10 | <1 | 17 | 1 | Chermatopsyche | | 510 | 22 | 82 | 8 | 260 | 16 | 120 | 12 | 280 | 15 | 120 | 9 | 110 | 7 | Hyd~psyche | | | | | | | | | | | | | | | | Hydrop⁺ilidae | | _ | | | | _ | | 1 | <1 | | | | | | | Hydroptila | | | | _ | | | | _ | | 2 | <1 | 1 | <1 | 1 | <1 | Leucotrichia | | | | | | | | | | | | | | | | Philopotamidae | | 3 | <1 | 2 | <1 | | | 11 | 1 | 19 | 1 | 52 | 4 | 37 | 2 | Chimarra | | | | | | | | | | | | | | | | Psychomyiidae | | _ | | | | | | | | | | _ | | | | Psychomyia | | | | | | | | _ | | | | _ | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | _ | | | | | | | | 1 | <1 | | | | | Heli::hus | | | | | | | | | | | | | | | | Elmidae | | | | _ | | | | 2 | <1 | | | | | | | Ancyronyx | | 67 | 3 | 54 | 5 | 51 | 3 | 100 | 10 | 370 | 19 | 81 | 6 | 160 | 10 | Optioservus - | | _ | | | | | | | | _ | | 5 | <1 | 1 | <1 | Oulimnius | | | | | | | | | | | | 1 | <1 | | | Promoresia | | 35 | 2 | 21 | 2 | 10 | <1 | | | 57 | 3 | 5 | <1 | 9 | <1 | Sten : lmis | | | | | | | | | | | | | | | | Psephenidae | | _ | | | | 1 | <1 | | | | | | | | | Ectopria | | | | | | | | | | 1 | <1 | | | 1 | <1 | Pse <sub>l</sub> henus | | | | | | | | | | _ | | | | _ | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | 550 | 24 | 300 | 30 | 440 | 27 | 340 | 34 | 470 | 25 | 620 | 48 | 530 | 33 | Chironomidae | | | | | | | | | •• | | | | | | | Empididae | | _ | | 2 | <1 | _ | | 1 | <1 | 6 | <1 | 6 | <1 | 6 | <1 | Hen rodromia | | | | | ~1 | | | | ~1 | U | -1 | J | ~. | Ū | *1 | Simuliidae | | 27 | 1 | 33 | 3 | 26 | 2 | 30 | 3 | 91 | 5 | 14 | 1 | 120 | 8 | Simulium | | ۵, | • | 00 | 3 | 20 | - | 55 | J | <b>J1</b> | 3 | 1.1 | • | 140 | U | Tipulidae | | 59 | 3 | 140 | 14 | 140 | 9 | 140 | 14 | 36 | 2 | 120 | 9 | 110 | 7 | Antecha | Table 5. Benthic-macroinvertebrate data—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17) | Date | Oct. 19 | 9, 1981 | Oct. 1 | 3, 1982 | Oct. 2 | 7, 1983 | Oct. 1 | 5, 1984 | Oct. 3 | 1, 1985 | Nov. 1 | 4, 1986 | Oct. 1 | 5, 1987 | |--------------------------------------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------------------------------------|--------|---------|--------|---------| | Total count | 5 | 24 | 2 | 15 | 4 | -03 | 1,2 | 208 | 9 | 68 | 7 | 06 | 1, | 115 | | Organism | Count | Percent | Court | Percent | | Platyhelminthes (flatworms) | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 3 | <1 | 3 | 2 | 4 | 1 | 6 | <1 | 3 | <1 | 28 | 4 | 5 | <1 | | Nematoda (nematodes) | _ | | _ | | _ | | _ | | | | _ | | _ | | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | 1 | <1 | _ | | _ | | 2 | <1 | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | _ | | | | | | | | | | _ | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | | | | | | | | | 1 | <1 | _ | | | Lymnaeidae | | | | | | | | | | | | - | | | | Lymnaea | _ | | | | _ | | | | | | | | | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | _ | | _ | | | | _ | | _ | | _ | | _ | | | Helisoma | _ | | | | | | | | _ | | 1 | <1 | _ | | | Bivalvia | | | | | | | | | | | • | ~1 | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | _ | | | | _ | | _ | | | | | | | | | | | | | | 1 | <1 | | | | | | | | Oligochaeta | _ | | | | _ | | 1 | <1 | | | | | | | | Lumbriculida | | | | | | | | | | .1 | | | | .1 | | Lumbriculidae | | | | | | | _ | | 1 | <1 | | | 4 | <1 | | Tubificida | | | | | • | | | | | | | | 20 | • | | Naididae | 1 | <1 | _ | | 2 | <1 | | | _ | | _ | | 29 | 3 | | Tubificidae | _ | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | | Arthropoda (arthropods) Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | 1 | <1 | 1 | <1 | 3 | <1 | 1 | <1 | _ | | 17 | 2 | | Crustacea | | | | | | | | | | | | | | | | Cladocera | _ | | _ | | _ | | _ | | _ | | _ | | | | | Cyclopoida | _ | | _ | | _ | | _ | | _ | | | | _ | | | Cyclopidae | _ | | _ | | | | _ | | _ | | | | 1 | <1 | | Amphipoda | | • | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | 3 | <1 | 1 | <1 | _ | | 2 | <1 | 1 | <1 | 5 | <1 | _ | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | _ | | _ | | | | | | | | _ | | _ | | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Podocopa | _ | | | | | | _ | | _ | | _ | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 5 | 1 | _ | | 1 | <1 | 19 | 2 | 4 | <1 | 1 | <1 | | | | Pseudocloeon | _ | = | _ | | _ | - | _ | _ | _ | - | _ | - | 8 | <1 | | Ephemerellidae | | | | | | | | | | | | | - | _ | | Ephemerella | 6 | 1 | 3 | 2 | 8 | 2 | 24 | 2 | 12 | 1 | 12 | 2 | 27 | 2 | | Oct. 1 | 18, 1988 | Oct. 2 | 5, 1989 | Nov. 2 | 2, 1990 | Oct. 2 | 9, 1991 | Oct. 2 | 1, 1992 | Oct. 1 | 8, 1993 | Oct. 4 | , 1994 | Date | |--------|----------|--------|---------|--------|---------|--------|---------|----------|---------|--------|---------|---------|--------|----------------------------------------------------------------------------------------| | 1 2 | 2,008 | 1, | 165 | 4 | 50 | 1, | 352 | 9 | 18 | 3 | 69 | 8 | 83 | Total count | | Count | Percent | Count | Percen | t Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms)<br>Turbellaria<br>Tricladida | | 5 | <1 | 8 | <1 | 2 | <1 | 6 | <1 | 22 | 2 | 19 | 5 | 2 | <1 | Planariidae | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | 1 | <1 | Nematoda (nematories) Nemertea (proboscis worms) Enopla Hoplonemartea Tetrastemmatidae | | _ | | 2 | <1 | _ | | 2 | <1 | 4 | <1 | _ | | _ | | Prostoma Mollusca (molluscs) | | _ | | _ | | | | | | _ | | _ | | 1 | <1 | Gastropoda | | | | | | | | | | | | | | • | • | Basommatophora<br>Ancylidae | | _ | | _ | | _ | | 1 | <1 | 10 | 1 | 6 | 2 | 3 | <1 | <i>Ferrissia</i><br>Lymneddae | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | | | Lymnaea | | | | | | | | | | | | | | | | Planorbidae | | _ | | _ | | _ | | _ | | 2 | <1 | | | _ | | Gyraulus | | _ | | _ | | _ | | _ | | _ | | | | _ | | Helisoma | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | _ | | _ | | _ | | 2 | <1 | | | _ | | Sphaeriidae | | _ | | | | | | _ | | | | _ | | | | Annelida (segmented worms) Oligochaeta | | | | | | | | | | | | | | | | Lumbricul da | | _ | | | | _ | | | | | | _ | | _ | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | 8 | <1 | 15 | 1 | | | 6 | <1 | 15 | 2 | | | 6 | <1 | Naididae | | _ | | | | _ | | | | _ | | _ | | _ | | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) Acariformes | | _ | | 58 | 5 | _ | | 8 | <1 | 27 | 3 | 3 | <1 | 9 | 1 | Hydrachni dia | | | | | | | | | | | | | | | | Crustacea | | _ | | _ | | _ | | _ | | _ | | _ | | 2 | <1 | Cladocera | | _ | | 3 | <1 | 1 | <1 | | | 14 | 2 | _ | | 150 | 17 | Cyclopoida | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | Cyclor dae<br>Amphipoda<br>Gammaridae | | 3 | <1 | _ | | _ | | _ | | _ | | | | _ | | Gammarus | | _ | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | _ | | 1 | <1 | _ | | | | _ | | _ | | _ | | Caecidotea | | | | | | | | | | | | | | | | Decapoda | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | Camberidae | | _ | | 2 | <1 | _ | | _ | | _ | | | | _ | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 56 | 3 | 3 | <1 | _ | | _ | | | | _ | | 20 | 2 | Ba•tis | | _ | | _ | | 2 | <1 | _ | | | | _ | | 1 | <1 | Pseudocloeon | | | | | _ | - | | | _ | <b>-</b> | - | _ | | <u></u> | _ | Ephemerellidae | | 11 | <1 | 110 | 9 | 6 | 1 | 49 | 3 | 83 | 9 | 1 | <1 | 11 | 1 | Ephemerella | Table 5. Benthic-macroinvertebrate data—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17)—Continued | Date | Oct. 19 | , 1981 | Oct. 13 | 3, 1982 | Oct. 27 | 7, 1983 | Oct. 1 | 5, 1984 | Oct. 3 | 1, 1985 | Nov. 1 | 4, 1986 | Oct. 1 | 5, 1987 | |------------------|---------|---------|---------|---------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 52 | 4 | 2 | 15 | 40 | 03 | 1,2 | 208 | 9 | 68 | 7 | 06 | 1, | 115 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | | | | | | | | | | | | | | | Stenacron | | | _ | | _ | | _ | | _ | | _ | | _ | | | Stenonema | 30 | 6 | 15 | 7 | 55 | 13 | 46 | 4 | 32 | 3 | 51 | 7 | 70 | 6 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | _ | | _ | | 2 | <1 | 21 | 2 | 6 | <1 | 12 | 2 | 39 | 4 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | | | | | | | | | | | _ | | | Leptophlebiidae | | | | | | | | | | | | | | | | Paraleptophlebia | _ | | | | | | | | | | | | _ | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | 1 | <1 | | | | | | | | | | Aeshnidae | | | | | | | | | | | | | | | | Boyeria | 1 | <1 | | | _ | | | | | | _ | | | | | Gomphidae | _ | | | | | | | | | | | | | | | Gomphus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 9 | 2 | | | | | 15 | 1 | 2 | <1 | | | | | | Chloroperlidae | 9 | 2 | _ | | _ | | 15 | 1 | 2 | <1 | _ | | | | | Taeniopterygidae | | | | | _ | | | | _ | | | | | | | | | | | | | | | | | | | | | | | Taeniopteryx | | | _ | | | | | | | | _ | | | | | Hemiptera | | | | | | | | | | | | | | | | Gerridae | | | | | | | | | | | | | | | | Gerris | | | | | | | | | | | | | | | | Veliidae | | | | | _ | _ | | | | | | | | | | Rhagovelia | | | _ | | 6 | 2 | _ | | _ | | _ | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | _ | | | | | | _ | | | Corydalus | | | _ | | _ | | 2 | <1 | | | 1 | <1 | 2 | <1 | | Nigronia | 1 | <1 | | | 1 | <1 | 1 | <1 | | | 2 | <1 | _ | | | Sialidae | | | | | | | | | | | | | | | | Sialis | | | | | _ | | | | _ | | _ | | 1 | <1 | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 9 | 2 | 4 | 2 | 13 | 3 | 49 | 4 | 23 | 2 | 31 | 4 | 30 | 3 | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 24 | 5 | 17 | 8 | 77 | 19 | 140 | 12 | 69 | 7 | 87 | 12 | 240 | 22 | | Cheumatopsyche | 41 | 8 | 19 | 9 | 100 | 24 | 140 | 12 | 92 | 9 | 59 | 8 | 70 | 6 | | Diplectrona | | | | | | | | | | | | | | | | Hydropsyche | 39 | 7 | 10 | 5 | 4 | 1 | 52 | 4 | 19 | 2 | 59 | 8 | 130 | 12 | | Hydroptilidae | | | | | | | | | | | | | | | | Agraylea | | | | | | | 1 | <1 | | | | | | | | Hydroptila | 38 | 7 | 5 | 3 | 15 | 4 | 20 | 2 | 2 | <1 | 14 | 2 | 5 | <1 | | Leucotrichia | | | 3 | 2 | 1 | <1 | 200 | 17 | 260 | 27 | 14 | 2 | 17 | 2 | | Leptoceridae | | | _ | _ | _ | - | | | | | | _ | | | | Oecetis | | | _ | | _ | | | | | | | | | | | Triaenodes | | | | | _ | | _ | | _ | | _ | | _ | | | Philopotamidae | | | | | _ | | | | | | _ | | _ | | | | 27 | 7 | 10 | 0 | 20 | 7 | 70 | | ço | 7 | 160 | 22 | n | _1 | | Chimarra | 37 | 7 | 18 | 8 | 30 | 7 | 70 | 6 | 68 | , | 160 | 23 | 9 | <1 | | Dolophilodes | | | _ | | _ | | | | _ | | | | | | | Wormaldia | | | _ | | _ | | _ | | | | _ | | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyla | | | _ | | | | | | | | | | | | | Oct. 1 | 8, 1988 | Oct. 2 | 5, 1989 | Nov. 2 | 2, 1990 | Oct. 2 | 9, 1991 | Oct. 2 | 1, 1992 | Oct. 1 | 8, 1993 | Oct. 4 | , 1994 | Date | |--------|---------|-----------------|---------|--------|---------|-------------|---------|--------|-----------|--------|---------|-----------|---------|-------------------------------| | 12 | ,008 | 1, | 165 | 4 | 50 | 1, | 352 | 9 | 18 | 3 | 69 | 8 | 83 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | | | | | 1 | <1 | - | | | | | | _ | | Stracron | | 53 | 3 | 91 | 8 | 29 | 6 | 26 | 2 | 40 | 4 | 5 | 1 | 34 | 4 | Stronema | | | | | | | | | | | | | | | | Isonychiidae | | 43 | 2 | 10 | <1 | 1 | <1 | 5 | <1 | 21 | 2 | 1 | <1 | 1 | <1 | Iscnychia | | | | | | | | | | | | | | | | Leptol ~phidae | | _ | | 2 | <1 | | | | | _ | | | | _ | | Tr'corythodes | | | | | | | | | | | | | | | | Leptophlebiidae | | _ | | _ | | | | 2 | <1 | _ | | _ | | _ | | Paraleptophlebia | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coena prionidae | | | | _ | | | | | | _ | | | | | | Argia | | | | | | | | | | | | | | | | Aeshn'dae | | _ | | _ | | | | | | 1 | <1 | | | | | Boveria | | | | | | | | | | | | | | | | Gomphidae | | | | _ | | _ | | | | 2 | <1 | | | _ | | Gomphus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 3 | <1 | 3 | <1 | | | | | | | | | | | Allocapnia | | _ | | _ | | | | | | 1 | <1 | | | 1 | <1 | Chloreperlidae | | | | | | | | | | - | ~2 | | | - | ~1 | Taenionterygldae | | 3 | <1 | 10 | <1 | 1 | <1 | | | 1 | <1 | | | | | Ta:niopteryx | | 3 | `` | 10 | ~, | • | ~1 | _ | | • | ~, | | | | | Hemiptera | | | | | | | | | | | | | | | | Gerrid ** | | | | | | | | | | | | 1 | <1 | | | Gerris | | _ | | _ | | | | _ | | | | 1 | _1 | | | Veliidae | | 3 | <1 | | | | | | | | | | | | | Rhagovelia | | 3 | ~1 | | | _ | | | | _ | | | | _ | | | | | | | | | | | | | | | | | | Megaloptera<br>Corydalidae | | | | | | | | | | | | | | | | Corydalus | | _ | | 1 | <1 | _ | | _ | | 1 | <1 | | | _ | | Ni gronia | | _ | | 1 | ~1 | | | _ | | 1 | <b>\1</b> | _ | | | | Sialida• | | | | | | | | | | | -1 | | | | | Sianda <sup>u</sup><br>Sialis | | | | _ | | | | | | 1 | <1 | | | _ | | | | | | | | | | | | | | | | | | Trichopter | | 11 | -1 | 10 | | 15 | | | | | .1 | | | • | | Glossosomatidae | | 11 | <1 | 13 | 1 | 13 | 3 | | | 4 | <1 | | | 6 | <1 | Glossosoma | | 200 | 15 | 220 | 10 | 110 | 24 | 96 | • | ca | - | | | 02 | 10 | Hydronsychidae | | 300 | 15<br>5 | 230<br>24 | 19 | 110 | 24 | 86 | 6 | 62 | 7 | 1 | <1 | 93<br>170 | 10 | Ceratopsyche | | 99 | b | | 2 | 6 | 1 | 55<br>2 | 4<br><1 | 14 | 2 | 11 | 3 | | 19 | Cheumatopsyche<br>Diolectrona | | 220 | 11 | <br>1 <b>00</b> | 8 | 27 | c | 1 <b>80</b> | 13 | 130 | 14 | 280 | 74 | 130 | 15 | | | 220 | 11 | 100 | 0 | 21 | 6 | 100 | 13 | 130 | 14 | 280 | 74 | 130 | 19 | Hydropsyche | | | | | | | | | | | | | | | | Hydrontilidae | | _ | | | | _ | | | | | | | | | | Agraylea | | 11 | <1 | 5 | <1 | _ | | 1 | <1 | 6 | <1 | 1 | <1 | 4 | <1 | Hydroptila | | 5 | <1 | 2 | <1 | _ | | _ | | _ | | | | _ | | Lencotrichia | | | | | | | | | | | | | | | | Leptoceridae | | _ | | 1 | <1 | _ | | | | | | | | 1 | <1 | Orretis | | _ | | _ | | _ | | _ | | _ | | | | 1 | <1 | Tr'aenodes | | | | | | | | | | | | | | | | Philopotamidae | | 37 | 2 | 52 | 4 | 48 | 10 | 87 | 6 | 2 | <1 | 1 | <1 | 9 | 1 | Chimarra | | _ | | 1 | <1 | _ | | _ | | | | _ | | _ | | Dolophilodes | | | | _ | | _ | | _ | | 1 | <1 | | | _ | | Wormaldia | | | | | | | | | | | | | | | | Psychomyiidae | | _ | | 1 | <1 | - | | _ | | _ | | | | - | | Psychomyia | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01475300 - Darby Creek at Waterloo Mills near Devon, Pa. (Site 17)—Continued | Date | Oct. 1 | 9, 1981 | Oct. 1 | 3, 1982 | Oct. 2 | 7, 1983 | Oct. 1 | 5, 1984 | Oct. 3 | 1, 1985 | Nov. 1 | 4, 1986 | Oct. 1 | 5, 1987 | |----------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 5 | 24 | 2 | 15 | 4 | 03 | 1,2 | 208 | 9 | 68 | 7 | 06 | 1, | 115 | | Organism | Count | Percent | Count | Percen | | Trichoptera | | | | | | | | | | | | | | | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | _ | | _ | | _ | | | | 1 | <1 | 1 | <1 | _ | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | _ | | | | _ | | | | _ | | _ | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | _ | | 1 | <1 | 3 | <1 | _ | | _ | | _ | | | Macronychus | | | | | | | | | | | | | | | | M. glabratus | | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | | Microcylloepus | _ | | _ | | _ | | _ | | _ | | _ | | | | | Optioservus | 27 | 5 | 19 | 9 | 6 | 2 | 25 | 2 | 38 | 4 | 14 | 2 | 36 | 3 | | Oulimnius | 2 | <1 | 9 | 4 | 4 | 1 | 17 | 1 | 16 | 2 | 1 | <1 | 22 | 2 | | Stenelmis | 36 | 7 | 18 | 8 | 17 | 4 | 39 | 3 | 35 | 4 | 1 | <1 | 23 | 2 | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | _ | | _ | | 2 | <1 | | | 1 | <1 | _ | | _ | | | Psephenus | 17 | 3 | 12 | 5 | 4 | 1 | 19 | 2 | 53 | 5 | 15 | 2 | 110 | 10 | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 170 | 32 | 51 | 23 | 41 | 10 | 240 | 20 | 170 | 18 | 77 | 11 | 150 | 14 | | Empididae | | | | | | | | | | | | | | | | Chelifera | _ | | _ | | _ | | | | | | _ | | _ | | | Hemerodromia | 5 | 1 | 1 | <1 | _ | | 6 | <1 | 6 | <1 | | | 7 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 19 | 4 | 3 | 2 | 1 | <1 | 22 | 2 | 20 | 2 | 25 | 4 | 13 | 1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 1 | <1 | 3 | 2 | 4 | 1 | 25 | 2 | 33 | 3 | 32 | 5 | 49 | 4 | | Tipula | _ | | | | _ | | | | | | _ | | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 1 | 8, 1988 | Oct. 2 | 5, 1989 | Nov. 2 | 2, 1990 | Oct. 2 | 9, 1991 | Oct. 2 | 1, 1992 | Oct. 1 | 8, 1993 | Oct. 4 | l, 1994 | Da* <del>9</del> | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------| | 1 2 | ,008 | 1, | 165 | 4 | 50 | 1,3 | 352 | 9 | 18 | 3 | 69 | 8 | 83 | Total count | | Count | Percent Organism | | | | | * | | | | *** | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Rhyacophilidae | | _ | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | Rhyacophila | | | | | | | | | | | | | | | | Uenoidae | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | Ne∩phylax | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | 5 | <1 | | | _ | | 4 | <1 | | | | | Arcyronyx | | | | | | | | | | | | | | | | Macronychus | | | | _ | | | | _ | | _ | | | | _ | | M. glabratus | | | | _ | | _ | | | | _ | | 1 | <1 | | | Mirrocylloepus | | 21 | 1 | 22 | 2 | 7 | 2 | 19 | 1 | 43 | 5 | 4 | 1 | 3 | <1 | Ortioservus | | _ | | 7 | <1 | _ | | 1 | <1 | 3 | <1 | _ | | | | Ov!imnius | | 22 | 1 | 85 | 7 | 10 | 2 | 21 | 2 | 15 | 2 | 4 | 1 | 4 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | _ | | 2 | <1 | | | 3 | <1 | | | | | | | E. nervosa | | 11 | <1 | 32 | 3 | 15 | 3 | 10 | <1 | 17 | 2 | 3 | <1 | 3 | <1 | Psenhenus | | | | | | | | | | | | | | | | Diptera | | 1.000 | 50 | 170 | 14 | 140 | 30 | 730 | 52 | 320 | 34 | 21 | 6 | 170 | 19 | Chironamidae | | | | | | | | | | | | | | | | Empid dae | | _ | | 1 | <1 | | | _ | | | | _ | | | | Ch:lifera | | 8 | <1 | 15 | 1 | _ | | 7 | <1 | 7 | <1 | 3 | <1 | 11 | 1 | Hemerodromia | | , | - | | - | | | • | -= | • | = | | • | | = | Simuliidae | | 27 | 1 | 3 | <1 | _ | | 3 | <1 | 21 | 2 | _ | | 4 | <1 | Simulium | | | - | • | - | | | | _ | | - | | | _ | - | Tipulidae | | 48 | 2 | 72 | 6 | 28 | 6 | 42 | 3 | 20 | 2 | 3 | <1 | 32 | 4 | Antocha | | | | _ | - | | , | | , | 1 | <1 | | | | = | Tirula | Table 5. Benthic-macroinvertebrate data—Continued 01475830 - Crum Creek near Paoli, Pa. (Site 18) | Total count Organism Co Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae Mollusca (molluscs) Gastropoda Basommatophora | | Percent | | Percent | |--------------------------------------------------------------------------------------------------------------------------------------|----|-----------|----|-----------| | Platyhelminthes (flatworms) Turbellaria Tricladida Planarlidae Mollusca (molluscs) Gastropoda | | | | Percent | | Turbellaria Tricladida Planariidae Mollusca (molluscs) Gastropoda | 6 | <1 | 9 | | | Tricladida<br>Planariidae<br>Mollusca (molluscs)<br>Gastropoda | 6 | <1 | 9 | | | Planariidae<br>Mollusca (molluscs)<br>Gastropoda | 6 | <1 | 9 | | | Mollusca (molluscs) Gastropoda | 6 | <1 | 9 | | | Gastropoda | | | | 2 | | • | | | | | | Basommatophora | | | | | | | | | | | | Ancylidae | | | | | | Ferrissia - | 4 | <1 | 3 | <1 | | Lymnaeldae | | | | | | Lymnaea | 2 | <1 | _ | | | Annelida (segmented worms) | | | | | | Oligochaeta | | | | | | Tubificida | | | | | | Naididae - | | | 6 | 1 | | Arthropoda (arthropods) | | | U | • | | Acariformes | | | | | | | | 2 | 20 | - | | | 25 | 2 | 39 | 7 | | Crustacea | | | | | | Decapoda | | | | | | Cambaridae | | | | | | Procambarus - | _ | | 1 | <1 | | Insecta | | | | | | Ephemeroptera | | | | | | Baetidae | | | | | | Baetis | 4 | <1 | _ | | | Pseudocloeon | 2 | <1 | _ | | | Ephemerellidae | | | | | | Ephemerella 8 | 37 | 8 | 26 | 4 | | Heptageniidae | | | | | | Stenonema 16 | 50 | 15 | 75 | 13 | | Isonychiidae | | | | | | | 32 | 7 | 8 | 1 | | Odonata | | | | | | Coenagrionidae | | | | | | Argia | 1 | <1 | 1 | <1 | | Plecoptera | - | | _ | - | | Perlidae | | | | | | Paragnetina | 2 | <1 | 1 | <1 | | Taeniopterygidae | - | ~1 | • | <b>\1</b> | | Taeniopteryx | 5 | <1 | | | | | J | <b>\1</b> | _ | | | Megaloptera | | | | | | Corydalidae | | | | | | Corydalus | 1 | <1 | 1 | <1 | | Trichoptera | | | | | | Glossosomatidae | | | | | | Glossosoma | 2 | <1 | 1 | <1 | | Hydropsychidae | | | | | | • • | 00 | 9 | 28 | 5 | | Cheumatopsyche | 73 | 7 | 32 | 5 | | Hydropsyche 10 | 00 | 9 | 40 | 7 | Table 5. Benthic-macroinvertebrate data—Continued 01475830 - Crum Creek near Paoli, Pa. (Site 18)—Continued | Date | Oct. 2 | 6, 1981 | Oct. 1 | 3, 1982 | |---------------------|--------|---------|--------|---------| | Total count | 1, | 133 | 5 | 81 | | Organism | Count | Percent | Count | Percent | | Trichoptera | | - | | | | Hydroptilidae | | | | | | Hydroptila | 23 | 2 | 30 | 5 | | Leucotrichia | 11 | 1 | 63 | 11 | | Philopotamidae | | | | | | Chimarra | 12 | 1 | 2 | <1 | | Lepidoptera | | | | | | Noctuidae | _ | | 1 | <1 | | Pyralidae | | | | | | Petrophila | 53 | 5 | 52 | 9 | | Coleoptera | | | | | | Elmidae | | | | | | Optioservus | 2 | <1 | 4 | <1 | | Stenelmis | 4 | <1 | 6 | 1 | | Psephenidae | | | | | | Ectopria | | | | | | E. nervosa | 1 | <1 | | | | Psephenus Psephenus | 3 | <1 | 1 | <1 | | Diptera | | | | | | Chironomidae | 280 | 25 | 120 | 20 | | Empididae | | | | | | Hemerodromia | 25 | 2 | 13 | 2 | | Simuliidae | | | | | | Simulium | 30 | 3 | 1 | <1 | | Tipulidae | | | | | | Antocha | 33 | 3 | 17 | 3 | Table 5. Benthic-macroinvertebrate data—Continued 01475840 - Crum Creek at Whitehorse, Pa. (Site 19) | Date | Oct. 2 | 6, 1981 | Oct. 1 | 3, 1982 | Oct. 2 | 7, 1983 | Oct. 2 | 25, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | , 1986 | Nov 2 | 2, 1987 | |--------------------------------------|--------|---------|--------|---------|--------|---------|--------|----------|--------|---------|--------|---------|-------|---------| | Total count | 9 | 92 | 1, | 636 | 5 | 25 | 1, | ,222 | 5 | 68 | 9 | 07 | 1,: | 285 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | - | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 6 | <1 | 50 | 3 | 12 | 2 | 6 | <1 | 1 | <1 | 1 | <1 | 8 | <1 | | Nematoda (nematodes) | - | | 2 | <1 | 2 | <1 | _ | | - | | _ | | | | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | 7 | <1 | | | | | _ | | | | _ | | | Mollusca (molluscs) | | | | _ | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | | 9 | <1 | 11 | <1 | 2 | <1 | 7 | <1 | 6 | 1 | 36 | 4 | 19 | 1 | | Ferrissia | 9 | <1 | 11 | <1 | 2 | <1 | , | <1 | 0 | 1 | 30 | 4 | 19 | 1 | | Lymnaeidae | | | | | | | | | | | | | • | | | Lymnaea | 1 | <1 | _ | | _ | | | | _ | | | | 2 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | - | | | | 1 | <1 | _ | | _ | | _ | | | | | Planorbidae | | | | | | | | | | | | | | | | Helisoma | - | | - | | | | _ | | | | - | | 2 | <1 | | Bivalvia | | | | | | | | | | | | | | | | Venerolda | | | | | | | | | | | | | | | | Sphaeriidae | | | | | | | | | | | | | _ | | | Pisidium | _ | | _ | | _ | | _ | | | | _ | | _ | | | Sphaerium | 3 | <1 | | | | | | | | | | | | | | | 3 | <1 | _ | | _ | | | | _ | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | _ | | | | | | | | | | _ | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | 5 | <1 | _ | | - | | 1 | <1 | _ | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 22 | 2 | 98 | 6 | 3 | <1 | 7 | <1 | 2 | <1 | 1 | <1 | 150 | 12 | | Tubificidae | _ | | _ | | | | | | | | | | 3 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 1 | <1 | 4 | <1 | | | | | 3 | <1 | 1 | <1 | 87 | 7 | | Crustacea | • | | - | | | | | | • | | - | | • | • | | Cyclopoida | _ | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Caecidotea | _ | | | | 1 | <1 | _ | | _ | | _ | | | | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | | | 1 | <1 | _ | | | | _ | | _ | | _ | | | Cambarus | 1 | <1 | _ | | _ | | - | | - | | - | | _ | | | Podocopa | _ | | _ | | | | | | _ | | _ | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 4 | <1 | 5 | <1 | | | 2 | <1 | 2 | <1 | 12 | 1 | 10 | <1 | | Pseudocloeon | 5 | <1 | _ | | 1 | <1 | _ | | 3 | <1 | | • | | | | Caenidae | J | <1 | | | 1 | <1 | _ | | J | <1 | | | _ | | | | | | | | _ | . • | | | | | | | 4 | . • | | Caenis | 1 | <1 | _ | | 2 | <1 | | | _ | | _ | | 4 | <1 | | Ephemerellidae | | | | | | | _ | _ | | | | _ | | _ | | Ephemerella | 29 | 3 | 67 | 4 | 19 | 4 | 34 | 3 | 20 | 3 | 21 | 2 | 40 | 3 | | Oct. 1 | 8, 1988 | Oct. 1 | 8, 1989 | Nov. 2 | 2, 1990 | Oct. 2 | 9, 1991 | Oct. 2 | 1, 1992 | Oct. 2 | 8, 1993 | Oct. 3 | , 1994 | Date | |---------|---------|---------|----------|--------|---------|----------|---------|----------|---------|--------|---------|---------|-----------|-------------------------------------------------------------------| | 1 2 | ,028 | 1,0 | 644 | 1, | 117 | 1,7 | 789 | 1,8 | 381 | 5 | 38 | 1,2 | 240 | Total count | | Count | Percent Organism | | | | 8 | <1 | 19 | 2 | 20 | 1 | 5 | <1 | 22 | 4 | 12 | 1 | Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae | | | | 5 | <1<br><1 | 3 | <1 | 20<br>16 | 1 | 3 | <1 | | 4 | 12 | -1<br><1 | Nematoda (nematodes) | | | | J | ~1 | J | ~1 | 10 | 1 | _ | | _ | | 1 | <b>\1</b> | Nemertea (probosc's worms) Enopla Hoplonemortea Tetrastemmatidae | | 3 | <1 | 2 | <1 | 2 | <1 | 11 | <1 | 5 | <1 | | | 3 | <1 | Prvstoma Mollusca (molluscs\ Gastropoda Basommat phora Ancylidae | | _ | | _ | | 1 | <1 | 1 | <1 | 4 | <1 | 1 | <1 | 6 | <1 | <i>Ferrissia</i><br>Lymnaeidae | | | | | | _ | | _ | | | | _ | | | | <i>Lymnaea</i><br>Physidae | | _ | | 1 | <1 | 1 | <1 | | | | | | | | | <i>Physa</i><br>Planorbidae | | _ | | _ | | _ | | | | | | _ | | _ | | Helisoma<br>Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | _ | | 1 | <1 | | | | | | | Sphaeriidae | | | | 2 | <1 | _ | | _ | | _ | | _ | | _ | | Pi∘idium | | _ | | | | _ | | _ | | _ | | _ | | | | Sphaerium | | _ | | _ | | _ | | | | _ | | 2 | <1 | _ | | Annelida (segmented worms) Oligochaeta | | | | | | | | | | | | | | | | Lumbricul da | | | | | | _ | | _ | | | | _ | | | | Lumbriculidae<br>Tubificida | | 21<br>— | 1 | 98<br>— | 6 | 10 | <1 | 95<br> | 5 | 250<br>— | 13 | _ | | 45<br>— | 4 | Naididae<br>Tubificidae<br>Arthropoda (arthropods)<br>Acariformes | | _ | | 87 | 5 | 40 | 4 | 51 | 3 | 36 | 2 | 3 | <1 | 16 | 1 | Hydrachnidia<br>Crustacea | | _ | | _ | | _ | | 2 | <1 | _ | | _ | | _ | | Cyclopoida<br>Isopoda<br>Asellidae | | - | | | | | | _ | | _ | | | | | | Caecidotea<br>Decapoda | | | | _ | | | | _ | | _ | | _ | | _ | | Cambaridae | | | | | | _ | | _ | | _ | | _ | | _ | | Cambarus | | | | | | 1 | <1 | _ | | | | _ | | _ | | Podocopa | | | | | | | | | | | | | | | | Insecta<br>Ephemeroptera<br>Baetid •• | | | _ | 1 | <1 | _ | | 1 | <1 | 1 | <1 | _ | _ | 52 | 4 | Baetis | | 27 | 1 | 1 | <1 | 1 | <1 | 2 | <1 | 6 | <1 | 1 | <1 | 7 | <1 | Pseudocloeon | | 5 | <1 | | | _ | | _ | | | | _ | | 2 | <1 | Caenidae<br>Caenis | | _ | | 29 | 2 | 15 | 1 | 75 | 4 | 53 | 3 | 13 | 2 | 17 | 1 | Ephemerellidae<br><i>Ephemerella</i> | Table 5. Benthic-macroinvertebrate data—Continued 01475840 - Crum Creek at Whitehorse, Pa. (Site 19)—Continued | Date | Oct. 2 | 6, 1981 | Oct. 1: | 3, 1982 | Oct. 2 | 7, 1983 | Oct. 2 | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | , 1986 | Nov. 2 | 1, 1987 | |-------------------------------|--------|----------------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 9 | 92 | 1,0 | 636 | 5 | 25 | 1,2 | 222 | 5 | 68 | 9 | 07 | 1,2 | ?45 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | 1 | <1 | _ | | 5 | 1 | _ | | _ | | _ | | 35 | 3 | | Stenonema | 55 | 6 | 51 | 3 | 24 | 4 | 39 | 3 | 25 | 4 | 33 | 4 | 39 | 3 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 17 | 2 | 14 | <1 | 19 | 4 | 27 | 2 | 8 | 1 | 19 | 2 | 21 | 2 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | 2 | <1 | 1 | <1 | _ | | _ | | _ | | _ | | | Leptophlebiidae | | | | | | | | | | | | | | | | Paraleptophlebia | _ | | _ | | _ | | _ | | | | _ | | _ | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | _ | | 1 | <1 | - | | _ | | _ | | _ | | 1 | <1 | | Aeshnidae | | | | | | | | | | | | | | | | Aeshna | 1 | <1 | 1 | <1 | _ | | _ | | | | _ | | _ | | | Gomphidae | 1 | <1 | _ | | - | | _ | | | | _ | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | | | _ | | _ | | 3 | <1 | _ | | 18 | 1 | | Chloroperlidae | | | _ | | | | _ | | _ | | _ | | 12 | <1 | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | | | _ | | _ | | _ | | _ | | 2 | <1 | _ | | | Agnetina | | | 2 | <1 | | | | | _ | | _ | | _ | | | Neoperla | _ | | | | | | | | _ | | _ | | | | | Paragnetina | 2 | <1 | | | | | | | _ | | _ | | _ | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 1 | <1 | 1 | <1 | 2 | <1 | 1 | <1 | _ | | 2 | <1 | 55 | 4 | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | 1 | <1 | 3 | <1 | | | | | _ | | _ | | | | | Megaloptera | _ | · <del>-</del> | _ | _ | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 1 | <1 | | | | | 6 | <1 | 1 | <1 | _ | | | | | Nigronia | 1 | <1 | _ | | 1 | <1 | _ | | _ | | _ | | | | | Sialidae | • | ~• | | | • | | | | | | | | | | | Sialis | | | | | | | | | | | _ | | _ | | | Trichoptera | | | | | | | _ | | | | - | | - | | | Apataniidae | | | | | | | | | | | | | | | | Apatanidae<br>Apatania | | | _ | | | | _ | | _ | | | | 1 | <1 | | Brachycentridae | | | | | | | | | | | | | 1 | ~1 | | Micrasema | | | | | | | | | | | | | 1 | <1 | | Glossosomatidae | _ | | _ | | | | _ | | _ | | | | 1 | <1 | | Glossosomatidae<br>Glossosoma | , | <1 | , | <1 | | | 5 | <1 | • | <1 | 1 | <1 | 3 | _1 | | | 1 | <1 | 1 | <1 | _ | | э | <1 | 3 | <1 | 1 | <1 | 3 | <1 | | Hydropsychidae | 100 | 10 | 270 | 17 | 40 | • | 210 | 10 | 20 | • | 40 | - | 200 | 15 | | Ceratopsyche | 160 | 16 | 270 | 17 | 43 | 8 | 210 | 18 | 36 | 6 | 48 | 5 | 200 | 15 | | Cheumatopsyche | 68 | 7 | 55 | 3 | 8 | 2 | 130 | 11 | 35 | 6 | 7 | <1 | 9 | <1 | | Hydropsyche | 32 | 3 | 67 | 4 | 1 | <1 | 10 | <1 | 1 | <1 | 24 | 3 | 40 | 3 | | Hydroptilidae | | _ | _ | _ | | - | | _ | _ | _ | _ | _ | | _ | | Hydroptila | 65 | 7 | 3 | <1 | 14 | 3 | 19 | 2 | 2 | <1 | 7 | <1 | 14 | 1 | | Leucotrichia | 63 | 6 | 290 | 18 | 35 | 6 | 420 | 35 | 100 | 17 | 420 | 46 | 170 | 13 | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 49 | 5 | 35 | 2 | 3 | <1 | 12 | 1 | 3 | <1 | 11 | 1 | 14 | 1 | | Oct. 1 | 8, 1988 | Oct. 1 | 8, 1989 | Nov. 2 | 2, 1990 | Oct. 2 | 9, 1991 | Oct. 2 | 1, 1992 | Oct. 2 | 8, 1993 | Oct. 3 | 3, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------------------------------------| | 1 2 | ,028 | 1, | 644 | 1, | 117 | 1, | 789 | 1, | 381 | 5 | 38 | 1,2 | 240 | Total count | | Count | Percent Organism | | | | | | | | | | | | ** | | | | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | | | 11 | <1 | 11 | <1 | 12 | <1 | 10 | <1 | _ | | | | Epeorus | | 11 | <1 | 41 | 2 | 36 | 3 | 26 | 1 | 19 | 1 | 7 | 1 | 11 | <1 | Stenorema | | | | | | | | | | | | | | | | Isonychiidae | | 27 | 1 | 4 | <1 | 13 | 1 | 21 | 1 | 27 | 1 | 5 | 1 | 13 | 1 | Isony chia | | | | | | | | | | _ | _ | | | | | Leptohyphidae | | | | _ | | | | _ | | 1 | <1 | | | _ | | Tricorythodes | | _ | _ | | | | | _ | _ | | | | | | | Leptophlebiidae | | 3 | <1 | _ | | _ | | 2 | <1 | | | | | _ | | Paralentophlebia | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | _ | | | | - | | | | _ | | | | | | Argia | | | | | | | | | | | | | | | | Aeshnida: | | | | _ | | _ | | | | | | | | _ | | Aeshra | | | | _ | | | | | | | | | | _ | | Gomphid ** | | | | | | | | | | | | | | | | Plecoptera | | _ | _ | | _ | | _ | _ | _ | _ | _ | | | | | Capniidae | | 5 | <1 | 1 | <1 | 1 | <1 | 7 | <1 | 6 | <1 | 1 | <1 | | | Allocapnia | | | | | | 4 | <1 | 19 | 1 | 3 | <1 | _ | | | | Chloroperlidae | | | | | | | | | | _ | | | | | | Perlidae | | _ | | 2 | <1 | _ | | | | 3 | <1 | | | _ | | Acror ouria | | _ | | _ | | _ | | _ | | | | _ | | | | Agnetina | | _ | | 1 | <1 | _ | | _ | | | | | | _ | | Neoperla | | _ | | _ | | _ | | - | | | | | | | | Paragnetina | | | | | | | | | | | | | | | | Taeniopte~ygidae | | 80 | 4 | 46 | 3 | 9 | <1 | 19 | 1 | 13 | <1 | | | 5 | <1 | Taenienteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | _ | | | | | | | | _ | | _ | | | | Rhagevelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | | | _ | | 1 | <1 | _ | | | | _ | | Corycalus - | | _ | | 1 | <1 | | | _ | | | | | | _ | | Nigronia | | | | | | | | | | | | | | | | Sialidae | | _ | | | | | | | | | | _ | | 1 | <1 | Sialis | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniicae | | _ | | _ | | | | | | _ | | | | _ | | Apatania | | | | | | | | _ | _ | _ | | _ | | _ | | Brachycentridae | | _ | | _ | | 1 | <1 | 7 | <1 | 6 | <1 | 2 | <1 | 3 | <1 | Micrasema | | _ | _ | _ | | _ | _ | | | _ | | | | _ | | Glossosomatidae | | 3 | <1 | 6 | <1 | 2 | <1 | | | 2 | <1 | | | 3 | <1 | Glossosoma | | 67 | • | 00 | | 100 | 10 | 100 | - | 110 | • | 1. | • | 010 | 10 | Hydropsychidae | | 67 | 3 | 60 | 4 | 130 | 12 | 120 | 7 | 110 | 6 | 14 | 3 | 210 | 18 | Ceratopsyche | | 11 | <1 | 9 | <1 | 14 | 1 | 58 | 3 | 42 | 2 | 20 | 4 | 44 | 4 | Cheurratopsyche | | 8 | <1 | 1 | <1 | 3 | <1 | 11 | <1 | 1 | <1 | 57 | 10 | 11 | <1 | Hydronsyche | | • | -1 | 100 | c | 20 | 2 | 20 | | 110 | c | | | 22 | 2 | Hydroptilidae | | 3 | <1 | 160 | 9 | 20 | 2<br>25 | 20 | 1 | 110 | 6 | 5 | 1 | 22 | 2 | Hydrontila | | 330 | 17 | 410 | 24 | 280 | 23 | 130 | 7 | 270 | 14 | 95 | 17 | 170 | 14 | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | - | | | | 1 | <1 | _ | | _ | | _ | | | | <i>Mystacides</i><br>Philopotamidae | | | | | | | | | | | | | | | | | | | | 4 | <1 | 14 | 1 | 8 | <1 | 3 | <1 | 4 | <1 | 3 | <1 | Chimarra | Table 5. Benthic-macroinvertebrate data—Continued 01475840 - Crum Creek at Whitehorse, Pa. (Site 19)—Continued | Date | Oct. 2 | 6, 1981 | Oct. 1 | 3, 1982 | Oct. 2 | 7, 1983 | Oct. 2 | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | , 1986 | Nov. 2 | 2, 1987 | |-------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------------|---------| | Total count | 9 | 92 | 1,0 | 636 | 5 | 25 | 1, | 222 | 5 | 68 | 9 | 07 | 1, | 285 | | Organism | Count | Percent | Coun | Percent | | Trichoptera | -m- | | | | | | | | | | | | ··········· | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | | | | | | | | | _ | | 1 | <1 | | | | Polycentropus | | | 2 | <1 | 2 | <1 | | | _ | | 1 | <1 | | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyia | | | | | - | | _ | | 1 | <1 | | | | | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | | | 2 | <1 | 1 | <1 | | | _ | | | | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | | | _ | | | | _ | | | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 24 | 2 | 31 | 2 | 62 | 11 | 24 | 2 | 5 | <1 | 39 | 4 | 24 | 2 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | | | | | _ | | _ | | _ | | | | | | | Optioservus | 15 | 2 | 17 | 1 | 7 | 1 | 15 | 1 | 16 | 3 | 4 | <1 | 14 | 1 | | Oulimnius | | | | | | | 7 | <1 | 1 | <1 | _ | | | | | Stenelmis | 6 | <1 | 7 | <1 | 1 | <1 | 7 | <1 | 2 | <1 | 5 | <1 | 5 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | 2 | <1 | 2 | <1 | _ | | | | _ | | | | | | | Psephenus | 2 | <1 | 4 | <1 | _ | | 7 | <1 | 6 | 1 | 3 | <1 | _ | | | Hymenoptera | | | | | | | | | _ | | 4 | <1 | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | | _ | | _ | | | | | | | | | Chironomidae | 270 | 27 | 450 | 28 | 200 | 37 | 160 | 13 | 250 | 43 | 140 | 15 | 150 | 12 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 15 | 2 | 15 | <1 | 2 | <1 | 4 | <1 | 3 | <1 | 4 | <1 | 6 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 5 | <1 | 46 | 3 | 2 | <1 | 2 | <1 | 12 | 2 | 11 | 1 | 28 | 2 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 47 | 5 | 19 | 1 | 49 | 9 | 60 | 5 | 18 | 3 | 49 | 5 | 100 | 8 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Date | i, 1994 | Oct. 3 | , 1993 | Oct. 28 | , 1992 | Oct. 21 | 9, 1991 | Oct. 29 | , 1990 | Nov. 2 | 3, 1989 | Oct. 18 | 3, 1988 | OCI. I | |-------------------|---------|--------|---------|---------|---------|---------|---------|-----------|---------|--------|---------|---------|---------|--------| | Total count | 240 | 1,2 | 8 | 53 | 81 | 1,8 | '89 | 1,7 | 17 | 1,1 | 344 | 1,6 | 028 | 1 2 | | Organism | Percent | Count | Trichoptera | | | | | | | | ********* | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | | _ | | | | | | | | _ | | | | _ | | Polycentropus | | _ | | | | _ | <1 | 1 | <1 | 1 | <1 | 2 | | _ | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyia | <1 | 1 | 1 | 5 | | _ | | | | _ | <1 | 1 | | _ | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | | _ | | _ | | _ | | | | | | | | _ | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | | _ | | | | _ | | | <1 | 1 | | _ | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 4 | 45 | 6 | 33 | 3 | 49 | 2 | 35 | 3 | 37 | 4 | 67 | 2 | 37 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | | _ | | _ | | _ | | _ | | _ | <1 | 1 | | | | Optioservus | 3 | 31 | 1 | 5 | 2 | 34 | 4 | 67 | <1 | 6 | <1 | 16 | <1 | 8 | | Oulimnius | <1 | 4 | | | | | <1 | 2 | <1 | 6 | <1 | 1 | | _ | | Stenelmis | 2 | 21 | 3 | 17 | <1 | 9 | 2 | 34 | <1 | 6 | <1 | 6 | <1 | 3 | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | _ | | | | | | | <1 | 2 | <1 | 2 | <1 | 3 | | Psephenus | <1 | 8 | <1 | 2 | <1 | 5 | <1 | 3 | <1 | 5 | | | <1 | 3 | | Hymenoptera | | _ | | _ | | | | | | _ | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | _ | | _ | | | | | <1 | 1 | | | | _ | | Chironomidae | 28 | 340 | 33 | 180 | 36 | 690 | 44 | 800 | 25 | 280 | 25 | 420 | 65 | 1,300 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 2 | 28 | 1 | 5 | <1 | 11 | <1 | 9 | 1 | 16 | 2 | 41 | <1 | 3 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 3 | 34 | <1 | 1 | <1 | 13 | <1 | 2 | <1 | 5 | <1 | 10 | 1 | 27 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 6 | 71 | 7 | 38 | 4 | 84 | 6 | 100 | 11 | 120 | 5 | 85 | 2 | 40 | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01476430 - Ridley Creek at Goshenville, Pa. (Site 20) | Date | Nov. 5 | 5, 1981 | | 4, 1982 | | 7, 1983 | | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | 9, 1986 | Oct. 2 | ন, 1987 | |-----------------------------|--------|---------|-------|---------|-------|-----------|-------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2 | 41 | 1 1 | ,345 | 1 8 | 355 | 11 | ,688 | 7 | 22 | 9 | 80 | 1, | 881 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | - | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 1 | <1 | 8 | <1 | 5 | <1 | _ | | 41 | 6 | 36 | 4 | 35 | 2 | | Nematoda (nematodes) | | | | | | | _ | | | | _ | | 7 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 2 | 1 | 3 | <1 | | | 3 | <1 | | | 3 | <1 | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | 3 | <1 | | | | | | | | | 20 | 1 | | Lymnaeidae | | | • | | | | | | | | | | | - | | Lymnaea | 1 | <1 | | | _ | | | | | | | | | | | Physidae | • | ~1 | | | | | | | | | | | | | | Physa | 6 | 3 | | | 3 | <1 | | | | | | | 4 | <1 | | Planorbidae | U | 3 | | | 3 | <b>~1</b> | | | _ | | | | * | ~1 | | | | | | | | | | | | | | | | | | Gyraulus | 1 | <1 | | | | | | | | | | | _ | | | Helisoma | | | | | | | - | | | | _ | | 1 | <1 | | Bivalvia | | | | | | | | | | | | | | | | Venerolda | | | | | | | | | | | | | | | | Sphaeriidae | _ | | | | | | _ | | | | _ | | 6 | <1 | | Pisidium | | | 5 | <1 | 5 | <1 | 5 | <1 | _ | | _ | | | | | Sphaerium | | | _ | | - | | | | _ | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | 5 | <1 | 8 | <1 | | | _ | | _ | | | Tubificida | | | | | | | | | | | | | | | | Naididae | | | | | _ | | | | | | _ | | 94 | 5 | | Tubificidae | 3 | 1 | | | | | | | | | | | 6 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | 3 | <1 | _ | | | | 8 | 1 | 26 | 3 | 58 | 3 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | _ | | | | | | | | | | | | | Cyclopidae | | | _ | | | | | | _ | | | | 3 | <1 | | Amphipoda | | | | | | | | | | | | | _ | _ | | Crangonyctidae | | | | | | | | | | | | | | | | Crangonyx | _ | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | | | | | | | | | | | | | | | _ | | | | _ | | _ | | | | _ | | _ | | | Talitridae | | | | | | | | | | | | | | | | Hyallela | | | | | | | | | | | | | | _ | | H. azteca | | | | | _ | | _ | | _ | | | | 11 | <1 | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | _ | | | | | | | | | | | Caecidotea | 1 | <1 | | | 3 | <1 | _ | | _ | | | | | | | Podocopa | | | | | _ | | | | _ | | | | _ | | | Oct. 2 | 5, 1988 | Nov. 1 | 4, 1989 | Oct. 3 | 0, 1990 | Nov. 6 | 5, 1991 | Oct. 2 | 0, 1992 | Oct. 2 | 5, 1993 | Oct. 7 | , 1994 | Dat: | |--------|---------|--------|---------|--------|---------|--------|---------|-------------|---------|--------|---------|----------------|--------|----------------------------------------------------------------------------------------| | 1 1 | ,660 | 7 | 67 | 7 | 57 | 5 | 47 | 1, | 297 | 5 | 11 | 5 | 72 | Total count | | Count | Percent | Count | Percen | t Organ <sup>i</sup> ∾m | | | <u></u> | | | | | | | <del></del> | | | | | | Platyhelminthes (flatworms) Turbellaria Tricladida | | 35 | 2 | 18 | 2 | 31 | 4 | 6 | 1 | 58 | 4 | 65 | 13 | 14 | 2 | Planarlidae | | _ | | | | _ | | 1 | <1 | 1 | <1 | _ | | _ | | Nematoda (nematod :s) Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | _ | | 2 | <1 | _ | | 1 | <1 | 3 | <1 | | | 10 | 2 | Prortoma Mollusca (molluscs) Gastropoda Basommatophora | | _ | | 2 | <1 | 3 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 25 | 4 | Ancylidae<br><i>Ferrissia</i> | | | | | ~1 | J | ~1 | • | ~1 | • | -,1 | | -, | 23 | * | Lymnaeidae | | _ | | _ | | | | _ | | _ | | 1 | <1 | | | Lynnaea | | | | | | | | | | | | | | | | Physida • | | _ | | 1 | <1 | 1 | <1 | _ | | _ | | | | _ | | Physa | | | | | | | | | | | | | | | | Planorb'dae | | _ | | _ | | 1 | <1 | | | 3 | <1 | _ | | _ | | Gyraulus | | _ | | _ | | | | _ | | - | | - | | _ | | Hel`~oma | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | .1 | 10 | | | .1 | | | Veneroida | | 8 | <1 | 3 | <1 | 1 | <1 | 1 | <1 | 13 | 1 | 2 | <1 | | | Sphaeri'dae<br><i>Pisi-</i> lium | | 3 | <1 | _ | ~1 | | <1 | _ | | _ | | _ | | _ | | r isi nam<br>Sph≈ <del>eri</del> um | | · | •• | | | | | | | | | | | | | Annelida (segmented worms) Oligochaeta Lumbriculida | | _ | | 2 | <1 | 1 | <1 | 1 | <1 | 5 | <1 | 3 | <1 | 3 | <1 | Lumbriculidae<br>Tubificida | | 3 | <1 | 17 | 2 | 40 | 5 | 4 | <1 | 25 | 2 | 4 | <1 | 3 | <1 | Naidida e | | | | _ | | _ | | _ | | _ | | _ | | _ | | Tubificidae Arthropoda (arthropods) Acariformes | | | | 74 | 10 | 15 | 2 | 19 | 3 | 72 | 6 | 55 | 11 | 30 | 5 | Hydrachnid'a<br>Crustacea | | _ | | _ | | 6 | <1 | _ | | _ | | _ | | _ | | Cyclopoida | | _ | | _ | | _ | | _ | | _ | | _ | | | | Cyclopi lae | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Crangonyctidae | | _ | | | | _ | | _ | | | | 3 | <1 | | | <i>Crangonyx</i><br>Gammanidae | | | | 7 | <1 | 3 | <1 | _ | | 21 | 2 | | | | | Garimarus | | | | • | 71 | 3 | ~1 | - | | <i>L</i> 1 | L | | | _ <del>-</del> | | Talitrida: | | | | | | | | | | | | | | | | Hyrllela | | | | | | _ | | - | | _ | | _ | | _ | | H. azteca | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | _ | | - | | _ | | _ | | 1 | <1 | | | | | Caecidotea | | - | | _ | | _ | | | | 17 | 1 | _ | | | | Podocopa | Table 5. Benthic-macroinvertebrate data—Continued 01476430 - Ridley Creek at Goshenville, Pa. (Site 20)—Continued | Date | Nov. 5 | 5, 1981 | | 4, 1982 | | 7, 1983 | | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | 9, 1986 | Oct. 2 | €, 1987 | |-------------------|--------|---------|-----------------|---------|-------|---------|-----------------|---------|--------|---------|---------|---------|---------|---------| | Total count | 2 | 41 | <sup>1</sup> 1, | 345 | 1 ( | 355 | <sup>1</sup> 1, | 688 | 7: | 22 | 9 | 80 | 1,8 | ER1 | | Organism | Count | Percent | nsecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | _ | | | | | | | Baetis | _ | | 3 | <1 | _ | | 3 | <1 | 5 | <1 | 38 | 4 | 4 | <1 | | Pseudocloeon | _ | | 3 | <1 | _ | | _ | | | | _ | | | | | Ephemerellidae | | • | 20 | • | 100 | 1 | 100 | • | 10 | • | | • | 100 | • | | Ephemerella | 14 | 6 | 32 | 2 | 130 | 15 | 130 | 8 | 17 | 2 | 57 | 6 | 120 | 6 | | Heptageniidae | | | | | | | | | | | | | | | | Stenacron | <br>17 | 7 | 48 | • | | | 19 | | 16 | 2 | —<br>73 | 7 | —<br>79 | 4 | | Stenonema | 17 | 7 | 48 | 3 | 35 | 4 | 19 | 1 | 10 | 2 | 13 | 7 | 19 | 4 | | Isonychiidae | | | | | - | | • | | | | | | • | | | Isonychia | _ | | _ | | 5 | <1 | 3 | <1 | _ | | _ | | 3 | <1 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | _ | | _ | | 3 | <1 | _ | | _ | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 1 | <1 | | | _ | | | | _ | | 2 | <1 | 2 | <1 | | Enallagma | | | _ | | | | _ | | _ | | _ | | _ | | | Aeshnidae | | | | | | | | | | | | | | | | Aeshna | _ | | | | | | | | _ | | _ | | _ | | | Boyeria | _ | | | | | | | | 1 | <1 | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Taenlopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 1 | <1 | 3 | <1 | | | _ | | 1 | <1 | 1 | <1 | 20 | 1 | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | _ | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Nigronia | 1 | <1 | 3 | <1 | 3 | <1 | _ | | _ | | 1 | <1 | _ | | | Sialidae | | | | | | | | | | | | | | | | Sialis | 2 | 1 | _ | | | | _ | | _ | | _ | | _ | | | Trichoptera | | | | | | | | | | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | | | _ | | | | 3 | <1 | _ | | _ | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 1 | <1 | 5 | <1 | 3 | <1 | 21 | 1 | 1 | <1 | 2 | <1 | 1 | <1 | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 12 | 5 | 220 | 16 | 150 | 17 | 290 | 17 | 90 | 12 | 99 | 10 | 220 | 12 | | Cheumatopsyche | 23 | 9 | 290 | 21 | 40 | 5 | 400 | 24 | 83 | 11 | 18 | 2 | 58 | 3 | | Hydropsyche | 14 | 6 | 45 | 3 | 35 | 4 | 100 | 6 | 31 | 4 | 220 | 22 | 310 | 16 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 2 | 1 | 48 | 3 | 13 | 2 | 11 | <1 | 4 | <1 | 25 | 3 | 100 | 5 | | Leucotrichia | _ | | 130 | 9 | | | 3 | <1 | 12 | 2 | 73 | 7 | 56 | 3 | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | | | | | _ | | _ | | _ | | _ | | | Oecetis | _ | | 5 | <1 | | | | | _ | | | | _ | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | _ | | 53 | 4 | 37 | 4 | 29 | 2 | 7 | 1 | 49 | 5 | 2 | <1 | | Wormaldia | _ | | _ | - | | - | _ | | _ | - | | - | _ | _ | | | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | | 5, 1988 | | 4, 1989 | | 0, 1990 | | 5, 1991 | | 0, 1992 | | 5, 1993 | | ', 1994<br> | Dat | |-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|-------------|----------------------------| | 11 | ,660 | 7 | 67 | 7 | 57 | 5 | 47 | 1,2 | 297 | 5 | 11 | 5 | 72 | Total count | | Count | Percent Organ <sup>i</sup> em | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetida: | | 3 | <1 | _ | | | | 1 | <1 | _ | | _ | | 1 | <1 | Baetis | | | | | | _ | | | | | | _ | | | | Pse adocloeon | | | | | | | | | | | | | | | | Ephemerellidae | | 37 | 2 | 36 | 5 | 4 | <1 | 1 | <1 | 8 | <1 | 27 | 5 | 17 | 3 | Ept ~merella | | | _ | - | • | - | - | _ | | _ | | | • | | _ | Heptageniidae | | _ | | | | 2 | <1 | _ | | | | _ | | | | Stenacron | | 10 | 6 | 7 | <1 | 10 | 1 | | | 14 | 1 | | | 5 | <1 | Stenonema | | 10 | U | • | _1 | 10 | | | | 13 | 1 | | | 3 | <b>~1</b> | | | _ | | | | | | | | | | | | | | Isonychidae | | 3 | <1 | 1 | <1 | 1 | <1 | | | | | | | | | Isorvchia | | | | | | | | | | | | | | | | Leptohynhidae | | _ | | | | 1 | <1 | | | 1 | <1 | _ | | _ | | Tricorythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenag ionidae | | 3 | <1 | | | | | | | _ | | _ | | 2 | <1 | Argia | | 3 | <1 | | | _ | | | | | | _ | | _ | | Ena llagma | | | | | | | | | | | | | | | | Aeshnidae | | | | | | | | | | 1 | <1 | _ | | | | Aeshna | | | | | | _ | | | | _ | ~- | _ | | | | Boyeria | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | Taeniopterygidae | | 19 | 1 | | | | | _ | | _ | | _ | | _ | | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliida€ | | | | | | | | _ | | | | | | 2 | <1 | Rhaeovelia | | | | | | | | | | | | | | | | Megalopter? | | | | | | | | | | | | | | | | Corydalidae | | _ | | 1 | <1 | | | | | | | _ | | | | Nigronia | | | | | | | | | | | | | | | | Sialidae | | | | | | | | | | _ | | | | | | Sialis | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | _ | | _ | | | | _ | | | | _ | | | | | | Micrasema | | | | _ | _ | _ | | | | | | | | | | Glossos~matidae | | _ | | 2 | <1 | 1 | <1 | | | _ | | _ | | | | Glo∾osoma | | | | | | | | | | | | | | | | Hydropsychidae | | 50 | 9 | 84 | 11 | 56 | 7 | 23 | 4 | 36 | 3 | 22 | 4 | 18 | 3 | Ceratopsyche | | 96 | 6 | 28 | 4 | 10 | 1 | 100 | 18 | 11 | <1 | 9 | 2 | 81 | 14 | Cheumatopsych | | 20 | 7 | 14 | 2 | 24 | 3 | 95 | 17 | 140 | 11 | 28 | 5 | 53 | 9 | Hydropsyche | | | | | | | | | | | | | | | | Hydroptlidae | | 250 | 15 | 67 | 9 | 17 | 2 | _ | | 11 | <1 | 3 | <1 | 16 | 3 | Hyc <sup>t-</sup> roptila | | 44 | 3 | | | 4 | <1 | | | _ | | | | _ | | Leucotrichia | | | | | | - | - | | | | | | | | | Leptoceridae | | | | | | | | | | | | 2 | <1 | | | Mystacides | | | | | | | | | | | | 3 | <1 | | | Oecetis | | | | | | _ | | | | | | J | <1 | | | | | • | | | | | | | | _ | | | | _ | | Philopotamidae | | 3 | <1 | _ | | _ | | | | 5 | <1 | | | 6 | 1 | Chimarra | | _ | | | | _ | | | | 2 | <1 | _ | | | | Wormaldia | | | | | | | | | | | | | | | | Polycen tropodidae | | | | | | | | | | | | | | | | Pol <sub>i</sub> centropus | Table 5. Benthic-macroinvertebrate data—Continued 01476430 - Ridley Creek at Goshenville, Pa. (Site 20)—Continued | Date | Nov. | 5, 1981 | Oct. 1 | 4, 1982 | Oct. 2 | 7, 1983 | Oct. 2 | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | 9, 1986 | Oct. 2 | €, 1987 | |----------------|-------|---------|--------|---------|--------|---------|----------------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2 | 41 | 11 | ,345 | 1 | 855 | <sup>1</sup> 1 | ,688 | 7 | 22 | 9 | 80 | 1, | 8°1 | | Organism | Count | Percent | Count | Percen | | Trichoptera | | ,. | | | | | | | | | | | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | 2 | 1 | 110 | 8 | | | _ | | | | | | - | | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | _ | | | | | | | | | | | | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | | | _ | | | | _ | | _ | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | | | | | | | | | | | | | | | | Archanara | - | | _ | | _ | | | | ~ | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Curculionidae | _ | | | | | | | | _ | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | - | | | | | | | | | | _ | | _ | | | A. variegata | _ | | | | - | | | | | | | | | | | Dubiraphia | 2 | 1 | | | | | | | | | _ | | _ | | | Optioservus | 1 | <1 | 56 | 4 | 13 | 2 | 8 | <1 | 1 | <1 | 4 | <1 | 16 | <1 | | Oulimnius | - | | 3 | <1 | - | | _ | | | | | | | | | Promoresia | | | 3 | <1 | | | | | | | - | | _ | | | Stenelmis | 1 | <1 | 5 | <1 | 3 | <1 | _ | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | | | | | | | | | | | | | | | | Psephenus | | | | | | | | | | | | | _ | | | Hymenoptera | | | | | | | _ | | | | 2 | <1 | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 39 | 16 | 140 | 10 | 180 | 21 | 260 | 15 | 280 | 38 | 82 | 8 | 250 | 13 | | Empididae | | | | | | | | | | | | | | | | Chelifera | | | _ | | | | | | _ | | _ | | _ | | | Hemerodromia | 4 | 2 | 11 | <1 | 11 | 1 | 3 | <1 | 4 | <1 | 10 | 1 | 13 | <1 | | Ephydridae | _ | | | | 19 | 2 | | | _ | | _ | | 2 | <1 | | Psychodidae | | | | | | | | | | | | | | | | Telmatoscopus | | | _ | | - | | | | | | 1 | <1 | _ | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 80 | 32 | 27 | 2 | 130 | 15 | 290 | 17 | 47 | 6 | 58 | 6 | 240 | 13 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 7 | 3 | 69 | 5 | 27 | 3 | 96 | 6 | 73 | 10 | 96 | 10 | 140 | 7 | | Tipula | | | _ | | _ | | | | | | 1 | <1 | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 2 | 5, 1988 | Nov. 1 | 4, 1989 | Oct. 3 | 0, 1990 | Nov. 6 | 5, 1991 | Oct. 2 | 0, 1992 | Oct. 2 | 5, 1993 | Oct. 7 | , 19 <del>9</del> 4 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|---------|----------|---------|------------|--------|---------------------|----------------------| | 1 1, | ,660 | 7 | 67 | 7 | 57 | 5 | 47 | 1, | 297 | 5 | 11 | 5 | 72 | Total count | | Count | Percent Organ'em | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Psychomylidae | | | | _ | | _ | | | | | | _ | | 1 | <1 | <i>Psychomyla</i> | | | | | | | | | | | | | | | | Rhyacophilidae | | 3 | <1 | _ | | _ | | | | | | _ | | | | Rhy¬cophila | | | | | | | | | | | | | | | | Uenoldae | | 3 | <1 | 1 | <1 | | | _ | | _ | | | | _ | | Necohylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | | | | | | | | | | | | _ | | 1 | <1 | Archanara . | | | | | | | | | | | | | | | | Coleoptera | | _ | | | | | | | | 1 | <1 | _ | | | | Curculionidae | | | | | | | | | | | | | | | | Elmida€ | | 8 | <1 | _ | | _ | | | | | | 4 | <1 | | | Ancyronyx | | _ | | _ | | 2 | <1 | | | _ | | _ | | | | A. variegata | | | | _ | | _ | | | | | | 3 | <1 | | | Dubiraphia | | 22 | 1 | 10 | 1 | 8 | 1 | 31 | 6 | 39 | 3 | 87 | 17 | 45 | 8 | Optioservus - | | | | | | | | | | | | | | 1 | <1 | Oulimnius | | _ | | | | | | | | | | | | | | Pro:noresia . | | 8 | <1 | 4 | <1 | 2 | <1 | 4 | <1 | 5 | <1 | 30 | 6 | 10 | 2 | Sterelmis | | - | | _ | | _ | _ | | - | _ | - | | _ | | | Psepher†dae | | | | | | | | | | | | | | | | Ectoria | | | | | | | | | | | | | | | | E. nervosa | | _ | | 1 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | 21 | 4 | 17 | 3 | Psephenus | | | | _ | | | | _ | | _ | ~* | | • | _ | Ū | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | 20 | 25 | 260 | 34 | 330 | 43 | 190 | 35 | 510 | 39 | 110 | 21 | 130 | 22 | Chironomidae | | | 20 | 200 | 0.1 | 000 | 10 | 100 | - | 010 | | 110 | <b>D</b> 1 | 100 | <b></b> | Empididae | | | | _ | | 1 | <1 | _ | | | | | | _ | | Chelifera | | 8 | <1 | 6 | <1 | 14 | 2 | 2 | <1 | 13 | 1 | 6 | 1 | 7 | 1 | Hemerodromia | | | ~1 | | ~. | | L | | ~1 | | | | • | | 1 | Ephydridae | | _ | | | | | | | | | | | | | | Psychod dae | | _ | | | | | | | | _ | | | | | | Telmatoscopus | | | | _ | | | | _ | | _ | | _ | | | | Simuliidae | | 10 | 12 | 100 | 13 | 37 | 5 | 64 | 12 | 210 | 16 | 1 | <1 | 30 | 5 | Simulium | | .10 | 12 | 100 | 13 | 31 | ð | 04 | 12 | 210 | 10 | 1 | <1 | 30 | ่อ | Simulum<br>Tipulidee | | 00 | 5 | 19 | 2 | 130 | 17 | 1 | <1 | cc | <b>E</b> | 21 | 4 | 4.4 | 8 | npundre<br>Ant~ha | | 88 | J | 19 | ۷ | 130 | 17 | 1 | 1> | 66<br>2 | 5<br><1 | Z1<br>— | 4 | 44 | ō | Ant~na<br>Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21) | Date | Nov. 5 | , 1981 | | 4, 1982 | | 7, 1983 | | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | , 1986 | Oct. 1 | E, 1987 | |-----------------------------|--------|---------|----------|---------|-------|---------|-------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1,4 | 07 | 1 1 | ,578 | 1 1 | ,697 | 1 3 | ,842 | 1,0 | 617 | 1,0 | 629 | 1, | 198 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | _ | | | | | | _ | | _ | | _ | | _ | | Planariidae | 31 | 2 | | | 61 | 4 | 27 | <1 | 37 | 2 | 50 | 3 | 10 | <1 | | Nematoda (nematodes) | | | | | _ | | | | _ | | | | - | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | _ | _ | _ | _ | | | | | _ | | _ | | | | | Prostoma | 2 | <1 | 3 | <1 | | | | | 5 | <1 | 2 | <1 | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 2 | <1 | | | _ | | 21 | <1 | 5 | <1 | 13 | <1 | 47 | 4 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | | _ | | | | | | _ | | 1 | <1 | | | | Physidae | | | | | | | | | | | | | | | | Physa | | | _ | | _ | | | | | | | | _ | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | | | _ | | _ | | | | _ | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | _ | | _ | | | | 10 | <1 | 8 | <1 | _ | | | Pisidium | 3 | <1 | | | 5 | <1 | _ | | _ | | _ | | _ | | | Sphaerium | _ | | _ | | _ | | | | | | - | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | 3 | <1 | _ | | 3 | <1 | _ | | | | 1 | <1 | | Tubificida | | | | | | | | | | | | | | | | Naididae | 1 | <1 | _ | | _ | | | | _ | | | | 2 | <1 | | Tubificidae | | | 3 | <1 | _ | | | | | | | | _ | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | 3 | <1 | 3 | <1 | | | 3 | <1 | 140 | 9 | 16 | 1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | | | | | _ | | _ | | | | | Cyclopidae | _ | | | | _ | | | | _ | | | | 1 | <1 | | Amphipoda | | | | | | | | | | | | | | | | Crangonyctidae | | | | | | | | | | | | | | | | Crangonyx | | | _ | | _ | | _ | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | _ | | _ | | 5 | <1 | | | _ | | | | | | | Insecta | | | | | _ | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | 35 | 2 | 5 | <1 | 64 | 2 | 4 | <1 | 18 | 1 | 10 | <1 | | Pseudocloeon | | | 33<br>19 | 1 | 35 | 2 | 80 | 2 | * | ~1 | 10 | 1 | 42 | 3 | | Caenidae | | | 19 | 1 | 33 | 2 | ου | 2 | | | | | 42 | 3 | | Caenidae<br>Caenis | | | | | | | | | | | | | | | | Ephemerellidae | | | | | | | | | _ | | _ | | | | | | *** | • | | | 200 | | 200 | - | 100 | _ | 70 | - | 07 | • | | Ephemerella | 110 | 8 | 64 | 4 | 260 | 15 | 200 | 5 | 100 | 6 | 72 | 5 | 27 | 2 | | Oct. 2 | 5, 1988 | Nov. 1 | 4, 1989 | Oct. 3 | 0, 1990 | Nov. 6 | 5, 1991 | Oct. 2 | 0, 1992 | Oct. 2 | 5, 1993 | Oct. 7 | 7, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|-----------|--------|---------|--------|---------|---------------------------------------------------------------------------------------| | 1 2 | 446 | 1, | 347 | 2, | 813 | 1, | 509 | 1, | 391 | 1, | 467 | 1, | 322 | Total count | | Count | Percent d Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatv'orms) Turbellaria Tricladida | | 3 | <1 | 7 | <1 | 27 | <1 | 3 | <1 | 21 | 2 | 25 | 2 | 14 | 1 | Planariic'ae | | | | 3 | <1 | _ | | _ | | _ | | 1 | <1 | _ | | Nematoda (nematodes) Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | | | 1 | <1 | 4 | <1 | _ | | 1 | <1 | _ | | _ | | Prostoma Mollusca (molluscs) Gastropoda | | 19 | <1 | 2 | <1 | 32 | 1 | | | 120 | 9 | 11 | <1 | 4 | <1 | Basommatop bora<br>Ancylida e<br>Ferrissia | | 10 | ~2 | - | ν. | 05 | • | | | 150 | Ū | •• | -1 | • | ~~ | Lymnaeldae | | - | | _ | | - | | - | | | | | | | | <i>Lymпaea</i><br>Physidae | | | | | | | | | | 1 | <1 | _ | | | | Physa | | _ | | _ | | 1 | <1 | _ | | | | | | | | Planorbidae<br><i>Gyravlus</i> | | | | | | • | ~1 | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | _ | | | | | | _ | | | | _ | | | | Sphaerlidae | | | | 1 | <1 | _ | | _ | | _ | | _ | | | | Pisidium | | _ | | | | 1 | <1 | | | | | _ | | _ | | Spha⊶ium Annelida (segmented worms) Oligochaeta Lumbriculida | | _ | | _ | | 1 | <1 | _ | | | | - | | _ | | Lumbriculidae<br>Tubificida | | | | 21 | 2 | | | | | 4 | <1 | 4 | <1 | 2 | <1 | Naididae | | _ | | _ | _ | _ | | - | | _ | | _ | _ | _ | _ | Tubificid ** Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | 19 | 1 | 15 | <1 | 13 | <1 | 21 | 2 | 11 | <1 | 10 | <1 | Hydrachnidia<br>Crustacea | | | | 4 | <1 | 2 | <1 | | | | | 1 | <1 | | | Cyclopoida | | | | _ | | _ | | _ | | _ | | _ | | _ | | Cyclopidae<br>Amphipoda | | | | | | | | | | | | | | | | Crangon ctidae | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | Cran ronyx<br>Isopoda | | | | | | | | | | | | | | | | Asellida€ | | _ | | _ | | _ | | _ | | - | | _ | | | | Caecidotea<br>Insecta | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | 21 | <1 | | | | | _ | | 1 | <1 | 7 | <1 | 52 | 4 | baeudae<br><i>Baeti</i> ∘ | | | ~1 | _ | | 2 | <1 | | | | <b>~1</b> | 2 | <1 | 2 | <1 | Pseudocloeon | | | | | | _ | _ | | | | | 2 | <1 | _ | - | Caenidae<br>Caenis | | | | _ | | | | | | _ | | 2 | <1 | | | Ephemerellidae | | 61 | 2 | 77 | 6 | 150 | 5 | 28 | 2 | 36 | 3 | 37 | 2 | 10 | <1 | Ephemerella | Table 5. Benthic-macroinvertebrate data—Continued 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21)—Continued | Date | Nov. 5 | 5, 1981 | | 4, 1982 | Oct. 2 | 7, 1983 | | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | 9, 1986 | Oct. 1 | 5, 1987 | |-------------------|--------|---------|-------|---------|--------|---------|-------|---------|--------|---------|--------|---------|--------|------------| | Total count | 1,4 | 407 | 11 | ,578 | 11 | ,697 | 1 3 | ,842 | 1,0 | 617 | 1, | 629 | 1, | 198 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | 2 | <1 | 5 | <1 | 5 | <1 | 3 | <1 | | | _ | | _ | | | Stenonema | 44 | 3 | 91 | 6 | 170 | 10 | 91 | 2 | 38 | 2 | 78 | 5 | 51 | 4 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 3 | <1 | | | 21 | 1 | 72 | 2 | 41 | 3 | 99 | 6 | 37 | 3 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | _ | | 3 | <1 | | | _ | | | | 1 | <1 | | Leptophlebiidae | | | _ | | | | | | _ | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | 3 | <1 | 3 | <1 | | | | | | | | | | Aeshnidae | | | • | | • | | | | | | | | | | | Boyeria | | | _ | | _ | | | | _ | | | | _ | | | Macromiidae | | | | | | | | | | | | | _ | | | Macromia | | | | | 1 | <1 | _ | | _ | | _ | | | | | Plecoptera | | | | | 1 | <1 | _ | | _ | | | | _ | | | • | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | _ | | _ | | | | | | | | _ | | | Chloroperlidae | _ | _ | _ | | | | _ | | _ | | | | _ | | | Nemouridae | 1 | <1 | _ | | _ | | | | _ | | _ | | _ | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | 3 | <1 | | | | | 3 | <1 | | | _ | | | | | Agnetina | _ | | 5 | <1 | | | | | | | | | _ | | | Paragnetina | 1 | <1 | _ | | 3 | <1 | _ | | - | | | | _ | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 7 | <1 | 3 | <1 | 8 | <1 | 13 | <1 | 17 | 1 | 2 | <1 | 95 | 8 | | ·lemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Microvelia | _ | | _ | | | | _ | | _ | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 2 | <1 | _ | | 5 | <1 | | | | | 3 | <1 | | | | Nigronia | | - | | | 3 | <1 | | | | | _ | | | | | Trichoptera | | | | | · | | | | | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | 1 | <1 | | | | | 3 | <1 | 4 | <1 | 19 | 1 | 1 | <1 | | Glossosomatidae | 1 | ~1 | | | | | 3 | <1 | 7 | <1 | 19 | | 1 | <b>~</b> 1 | | Glossosoma | 1 | -1 | 2 | -1 | • | -1 | 16 | -1 | | | | | | | | | 1 | <1 | 3 | <1 | 3 | <1 | 16 | <1 | _ | | _ | | _ | | | Hydropsychidae | 100 | 10 | 430 | 20 | 210 | 10 | 1000 | 20 | 440 | 07 | 200 | 10 | 240 | 20 | | Ceratopsyche | 180 | 13 | 420 | 26 | 310 | 18 | 1000 | 26 | 440 | 27 | 260 | 16 | 240 | 20 | | Cheumatopsyche | 240 | 17 | 59 | 4 | 270 | 16 | 660 | 17 | 260 | 16 | 27 | 2 | 18 | 2 | | Hydropsyche | 10 | <1 | 11 | <1 | 24 | 1 | 91 | 2 | 36 | 2 | 100 | 6 | 78 | 7 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 4 | <1 | 3 | <1 | 3 | <1 | | | 5 | <1 | 4 | <1 | 1 | <1 | | Leucotrichia | 210 | 15 | 130 | 8 | 11 | <1 | 140 | 4 | 4 | <1 | 120 | 8 | 8 | <1 | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 79 | 6 | 72 | 5 | 61 | 4 | 80 | 2 | 24 | 2 | 2 | <1 | 3 | <1 | | Dolophilodes | | | _ | | | | | | - | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | 3 | <1 | _ | | _ | | _ | | | | _ | | | | | Polycentropus - | 4 | <1 | 3 | <1 | _ | | 3 | <1 | 1 | <1 | 1 | <1 | | | | | | | | | | | | | ** | ** | | | | | | Psychomylidae | | | | | | | | | | | | | | | | Oct. 2 | 5, 1988 | Nov. 1 | 4, 1989 | Oct. 3 | 0, 1990 | Nov. 6 | 5, 1991 | Oct. 2 | 0, 1992 | Oct. 2 | 5, 1993 | Oct. 7 | 7, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------------------| | 1 2 | ,446 | 1, | 347 | 2, | 813 | 1,5 | 509 | 1, | 391 | 1, | 467 | 1, | 322 | Total cornt | | Count | Percent Organism | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | | | _ | | 6 | <1 | _ | | _ | | _ | | _ | | Epecrus | | 110 | 4 | 24 | 2 | 160 | 6 | 15 | 1 | 90 | 6 | 76 | 5 | 51 | 4 | Stennema - | | | | | | | | | | | | | | | | Isonychi' lae | | 51 | 2 | 42 | 3 | 79 | 3 | 34 | 2 | 60 | 4 | 23 | 2 | 36 | 3 | Ison; rchia | | | | | | | | | | | | | | | | Leptohyphidae | | 8 | <1 | 2 | <1 | 1 | <1 | 3 | <1 | 2 | <1 | _ | | _ | | Tricrrythodes | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | Leptoph ebildae | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagr'onidae | | _ | | | | 1 | <1 | _ | | 2 | <1 | _ | | _ | | Argi? | | | | | | | | | | | | | | | | Aeshnid · · | | | | _ | | 1 | <1 | | | | | | | _ | | Воустіа | | | | | | | | | | | | | | | | Macrom'idae | | _ | | | | _ | | _ | | | | | | _ | | Mac~mia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 8 | <1 | 8 | <1 | 3 | <1 | 8 | <1 | 4 | <1 | 30 | 2 | _ | | Allocapnia | | _ | | | | _ | | | | 1 | <1 | 1 | <1 | _ | | Chloroperlidae | | 3 | <1 | | | | | | | | | _ | | _ | | Nemour'dae | | | | | | | | | | | | | | | | Perlidae | | | | - | | _ | | _ | | _ | | _ | | _ | | Acreneuria | | _ | | - | | | | _ | | _ | | | | _ | | Agnatina | | _ | | - | | | | _ | | - | | _ | | _ | | Para enetina | | | | | | | | | | | | | | | | Taeniopterygidae | | 200 | 8 | 62 | 4 | 24 | <1 | 23 | 2 | 23 | 2 | 18 | 1 | _ | | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | - | | _ | | | | | | _ | | 1 | <1 | Microvelia . | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydal dae | | _ | | 3 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | Corydalus | | | | _ | | _ | | _ | | _ | | _ | | _ | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | _ | | | | | | | | _ | | Brachycentridae | | 3 | <1 | _ | | 2 | <1 | _ | | 2 | <1 | 6 | <1 | 8 | <1 | Micrasema | | | | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | | Glossosomatidae | | | | 3 | <1 | 2 | <1 | _ | | 1 | <1 | 1 | <1 | 1 | <1 | Glossosoma | | | | | | | | | | | | | | | | Hydropsychidae | | 640 | 26 | 240 | 17 | 870 | 31 | 320 | 21 | 310 | 22 | 250 | 17 | 260 | 20 | Cerrtopsyche | | 160 | 6 | 21 | 2 | 110 | 4 | 110 | 7 | 54 | 4 | 280 | 19 | 110 | 8 | Cheumatopsyche | | 500 | 20 | 18 | 1 | 190 | 7 | 63 | 4 | 150 | 11 | 49 | 3 | 180 | 14 | Hydropsyche | | | | | | | _ | | | | | -00 | _ | | | Hydrop ilidae | | 19 | <1 | - | _ | 2 | <1 | 20 | 1 | 15 | 1 | 23 | 2 | 17 | 1 | Hydroptila | | 8 | <1 | 1 | <1 | 13 | <1 | _ | | _ | | 2 | <1 | 1 | <1 | Leucotrichia | | • | | | | | _ | | | | | ~ | | | - | Philopotamidae | | 3 | <1 | _ | | 36 | 1 | _ | | 1 | <1 | 7 | <1 | 66 | 5 | Chimarra | | _ | | _ | | _ | | _ | | | | _ | | 1 | <1 | Dolophilodes | | | | | | | | | | | | | | | | Polycen ropodidae | | _ | _ | _ | | - | _ | _ | | _ | | _ | | - | | Neureclipsis | | 3 | <1 | _ | | 1 | <1 | _ | | _ | | | | _ | | Polycentropus | | | | | | | | | | | | | | | | Psychornylidae | | | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | Psychomyia | Table 5. Benthic-macroinvertebrate data—Continued 01476435 - Ridley Creek at Dutton Mill near West Chester, Pa. (Site 21)—Continued | Date | Nov. | 5, 1981 | Oct. 1 | 4, 1982 | Oct. 2 | 7, 1983 | Oct. 1 | 5, 1984 | Oct. 1 | 5, 1985 | Oct. 9 | , 1986 | Oct. 1 | 5, 1987 | |--------------|-------|---------|--------|---------|-----------------------------------------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 407 | 1 1 | ,578 | 1 1 | ,697 | 1 3 | ,842 | 1,0 | 617 | 1,0 | 529 | 1, | 198 | | Organism | Count | Percent | Trichoptera | | | | | *************************************** | | | | | | | - | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | 1 | <1 | | | | | | | _ | | | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 37 | 3 | | | 3 | <1 | 3 | <1 | 1 | <1 | 2 | <1 | 1 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | _ | | | | _ | | _ | | | | | A.variegata | | | | | | | | | _ | | _ | | | | | Dubiraphia | | | _ | | 3 | <1 | | | | | _ | | | | | Optioservus | 8 | <1 | 16 | 1 | 6 | <1 | 21 | <1 | 10 | <1 | 6 | <1 | 5 | <1 | | Oulimnius | _ | | | | | | | | | | 2 | <1 | | | | Stenelmis | 6 | <1 | 3 | <1 | 13 | <1 | 30 | <1 | 4 | <1 | 8 | <1 | 2 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | | _ | | _ | | | | | | | | | Hymenoptera | | | _ | | | | _ | | 2 | <1 | 1 | <1 | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 160 | 11 | 430 | 27 | 290 | 17 | 680 | 18 | 400 | 25 | 410 | 26 | 310 | 26 | | Empididae | | | | | | | | | | | | | | | | Chelifera | | | | | _ | | | | _ | | | | | | | Hemerodromia | 7 | <1 | | | _ | | 3 | <1 | 6 | <1 | 14 | <1 | 3 | <1 | | Ephydridae | | | 3 | <1 | 3 | <1 | | | _ | | 5 | <1 | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 170 | 12 | 180 | 11 | 96 | 6 | 530 | 14 | 120 | 8 | 63 | 4 | 110 | 9 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 45 | 3 | 5 | <1 | 5 | <1 | 5 | <1 | 39 | 2 | 99 | 6 | 78 | 7 | | Tipula | | | | | | | | | | | _ | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 2 | 5, 1988 | Nov. 1 | 4, 1989 | Oct. 3 | 0, 1990 | Nov. 6 | 5, 1991 | Oct. 2 | 0, 1992 | Oct. 2 | 5, 1993 | Oct. 7 | ', 19 <del>9</del> 4 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|----------------------|--------------------| | 1 2 | ,446 | 1, | 347 | 2,8 | 313 | 1, | 509 | 1, | 391 | 1,4 | 167 | 1, | 322 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Uenoidae | | | | | | | | _ | | _ | | | | _ | | Neop tylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | 3 | <1 | _ | | 1 | <1 | 2 | <1 | 1 | <1 | | | 2 | <1 | Petro, hila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | - | | _ | | _ | | _ | | 2 | <1 | 3 | <1 | _ | | Ancyronyx | | | | 3 | <1 | 3 | <1 | | | _ | | | | | | A.variegata | | _ | | 1 | <1 | | | | | | | 1 | <1 | | | Dubi aphia | | 6 | <1 | 4 | <1 | 11 | <1 | 54 | 4 | 11 | <1 | 88 | 6 | 11 | <1 | <i>Opticservus</i> | | | | | | | | | | | | 2 | <1 | | | Oulimnius | | 11 | <1 | 1 | <1 | 12 | <1 | 6 | <1 | 2 | <1 | 50 | 3 | 5 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | | | _ | | 4 | <1 | 3 | <1 | _ | | 3 | <1 | 5 | <1 | Psept∘nus | | _ | | | | _ | | _ | | | | _ | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | 460 | 18 | 610 | 44 | 880 | 31 | 750 | 50 | 390 | 28 | 350 | 23 | 340 | 26 | Chironomidae | | | | | | | | | | | | | | | | Empididee | | | | _ | | 1 | <1 | | | _ | | | | | | Cheli ~ra | | 3 | <1 | 21 | 2 | 23 | <1 | 8 | <1 | 3 | <1 | 5 | <1 | 18 | 1 | Hemerodromia | | | | _ | | _ | | _ | | _ | | | | _ | | Ephydridae | | | | | | | | | | | | | | | | Simuliidae | | 43 | 2 | 110 | 8 | 29 | 1 | 44 | 3 | 17 | 1 | 26 | 2 | 65 | 5 | Simu¹ium | | | | | | | | | | | | | | | | Tipulidae | | 100 | 4 | 37 | 3 | 110 | 4 | 1 | <1 | 43 | 3 | 69 | 5 | 49 | 4 | Antocha | | | | | | 1 | <1 | | | _ | | 1 | <1 | _ | | Tipul> | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22) | Date | Nov. 2 | 7, 1981 | Oct. 1 | 5, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 5, 1986 | Nov. 9 | 9, 1987 | |----------------------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 3 | 23 | 4 | 64 | 3 | 19 | 5 | 19 | 2 | 47 | 3 | 38 | 1, | 304 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | - | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | | | _ | | _ | | 1 | <1 | | | _ | | 16 | 1 | | Nematoda (nematodes) | | | _ | | - | | _ | | | | — | | <1 | 1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | _ | | | | | | _ | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | _ | | _ | | _ | | - | | _ | | _ | | _ | | | Physidae | | | | | | | | | | | | | | | | Physa | 1 | <1 | - | | 5 | 2 | _ | | _ | | 4 | 1 | 2 | <1 | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | 1 | <1 | _ | | _ | | _ | | _ | | _ | | 2 | <1 | | Pisidium | | | _ | | _ | | | | | | _ | | _ | | | Annelida (segmented worms) Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | 1 | <1 | _ | | _ | | _ | | | | | | _ | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 3 | 1 | _ | | - | | _ | | _ | | 1 | <1 | 390 | 30 | | Tubificidae | | | _ | | _ | | _ | | | | | | 1 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | 1 | <1 | 3 | 1 | 1 | <1 | _ | | 1 | <1 | 35 | 3 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | _ | | _ | | _ | | | | _ | | _ | | | | | Cyclopidae | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | _ | | 1 | <1 | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | 9 | 3 | 4 | <1 | 6 | 2 | 4 | <1 | _ | | 4 | 1 | 3 | <1 | | Lirceus | _ | | 4 | <1 | _ | | _ | | _ | | | | _ | | | Podocopa | | | _ | | | | _ | | _ | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | | | | | | | | | | | | | | | Baetis | 15 | 5 | 51 | 11 | 1 | <1 | 32 | 6 | 7 | 3 | 18 | 5 | 91 | 7 | | Pseudocloeon | | | _ | | _ | | _ | | | | _ | | 96 | 7 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 28 | 8 | 75 | 16 | 4 | 1 | 21 | 4 | 19 | 8 | 2 | <1 | 130 | 10 | | | 2, 1988 | Oct. 2 | 6, 1989 | Oct. | 5, 1990 | Oct. 2 | 1, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 28, 1993 | Oct. 1 | 7, 1994 | Date | |-------|---------|--------|---------|-------|---------|--------|---------|--------|---------|--------|----------|--------|---------|-----------------------------| | 1 1, | ,014 | 2 | 31 | 4 | 25 | 5 | 05 | 4 | 51 | 1 | 106 | 2 | 94 | Total count | | Count | Percent | Count | Percen | <u> </u> | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | _ | | 14 | 6 | 1 | <1 | - | | | | _ | | 7 | 3 | Planariid · e | | | | _ | | 1 | <1 | 1 | <1 | | | _ | | 2 | <1 | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis v/orms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemert | | | | | | | | | | | | | | | | Tetrastemmatidae | | _ | | 2 | 1 | _ | | _ | | | | - | | _ | | Prostama | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Lymnaeidae | | | | _ | | _ | | 6 | 1 | _ | | — | | _ | | Lymnrea | | | | | | | | | | | | | | | | Physidae | | _ | | 2 | 1 | 2 | <1 | 4 | <1 | 8 | 2 | _ | | 1 | <1 | Physa | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | _ | | | | | | _ | | _ | | - | | _ | | Sphaeriidae | | _ | | 4 | 2 | | | 1 | <1 | | | _ | | _ | | Pisid'um | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | 2 | 1 | 1 | <1 | _ | | _ | | _ | | _ | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | _ | | 170 | 71 | 39 | 9 | 180 | 35 | _ | | _ | | 4 | 2 | Naididae | | _ | | 4 | 2 | _ | | _ | | | | _ | | _ | | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | _ | | 3 | 1 | _ | | 3 | <1 | _ | | | | 4 | 2 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | _ | | 1 | <1 | | | _ | | | | _ | | _ | | Cyclopoida | | | | | | | | | | | | | | | | Cyclopid 10 | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | _ | d | _ | | _ | | | | _ | | 1 | 1 | | | Gammarus | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | 3 | <1 | 1 | <1 | _ | | _ | | 4 | <1 | | | 2 | <1 | Caecidotea | | | | _ | | | | _ | | 6 | 1 | | | _ | | Lirceus | | _ | | _ | | _ | | 1 | <1 | 1 | <1 | _ | | 1 | <1 | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeropte <sup>-</sup> a | | | | | | | | | | | | | | | | Baetidae | | 3 | <1 | | | _ | | _ | | 17 | 4 | 8 | 8 | 13 | 4 | Baeti <sup>~</sup> | | _ | | _ | | _ | | _ | | 6 | 1 | - | | 2 | <1 | Pseudocloeon | | | | | | | | | | | | | | | | Ephemerellidae | | 130 | 13 | _ | | | | _ | | | | 4 | 4 | 4 | 2 | Ephenerella | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22)—Continued | Date | Nov. 2 | 7, 1981 | Oct. 1 | 5, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 5, 1986 | Nov. 9 | 9, 1987 | |-----------------------------------|--------|-----------------------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 3 | 123 | 4 | 64 | 3 | 19 | 5 | 19 | 2 | 47 | 3 | 338 | 1, | 304 | | Organism | Count | Percent | Count | Percen | | Ephemeroptera | | *************************************** | | | | | | | | | | | | | | Heptageniidae | | | | | | | | | | | | | | | | Stenonema | 47 | 14 | 82 | 17 | 54 | 16 | 36 | 7 | 36 | 14 | 51 | 15 | 28 | 2 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | | | | | | | 1 | <1 | _ | | _ | | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | | | | | _ | | | | _ | | | | | Leptophlebiidae | | | | | | | | | | | | | | | | Paraleptophlebia | _ | | _ | | | | | | | | _ | | _ | | | Odonata | | | | | | | | | | | | | | | | Calopterygidae | | | | | | | | | | | | | | | | Calopteryx | _ | | _ | | 1 | <1 | _ | | _ | | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | 1 | <1 | 33 | 10 | 36 | 7 | 16 | 6 | 100 | 29 | 100 | 8 | | Chloroperlidae | _ | | _ | | | | - | | | | | | 3 | <1 | | Perlodidae | | | | | | | | | | | | | | | | Isoperla | | | | | _ | | _ | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | 2 | <1 | 4 | <1 | | | 5 | 1 | | | _ | | 1 | <1 | | Megaloptera | - | ~~ | • | ~1 | | | , | • | | | | | • | ~- | | Sialidae | | | | | | | | | | | | | | | | Sialis | | | _ | | | | | | _ | | _ | | 1 | <1 | | Trichoptera | | | | | | | | | | | | | - | 7- | | Apataniidae | | | | | | | | | | | | | | | | Apatania | 3 | 1 | _ | | _ | | | | | | _ | | 14 | 1 | | Glossosomatidae | J | • | | | | | | | | | | | | - | | Glossosoma | 57 | 17 | 39 | 8 | 64 | 19 | 160 | 31 | 39 | 16 | 23 | 7 | 86 | 7 | | Hydropsychidae | ٠, | • • • | 57 | Ū | 01 | 17 | 100 | 51 | 27 | 10 | | • | 00 | , | | Ceratopsyche | 53 | 16 | 55 | 12 | 63 | 19 | 75 | 14 | 24 | 10 | 30 | 9 | 24 | 2 | | Cheumatopsyche | 7 | 2 | 35 | 7 | 17 | 5 | 20 | 4 | 23 | 9 | 16 | 5 | 5 | <1 | | Diplectrona | _ | - | | , | | , | | • | | , | | 3 | _ | ~1 | | Hydropsyche | 19 | 6 | 23 | 5 | 17 | 5 | 44 | 8 | 22 | 9 | 11 | 3 | 84 | 6 | | Potamyia | | U | | 3 | | , | _ | Ü | | , | | 3 | _ | Ū | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | _ | | | | | | | | | | | | | | | Leucotrichia | | | _ | | | | _ | | | | _ | | _ | | | | | | | | _ | | | | | | _ | | | | | Leptoceridae<br><i>Mystacides</i> | | | | | | | | | | | | | 1 | <1 | | Philopotamidae | | | | | | | | | _ | | _ | | 1 | <1 | | Chimarra | | | | | | | | | | | | | | | | Dolophilodes | | <1 | | <1 | 6 | 2 | 4 | <1 | 1 | <1 | 1 | .1 | | <1 | | | 2 | <1 | 2 | <1 | 0 | 2 | 4 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | | | _ | | _ | | _ | | _ | | _ | | _ | | | Rhyacophilidae | ^ | .1 | ^ | | | | | | | | 4 | | | .1 | | Rhyacophila | 2 | <1 | 2 | <1 | _ | | _ | | | | 1 | <1 | 1 | <1 | | Uenoidae | _ | _ | | | | | | | | | | | _ | | | Neophylax | 6 | 2 | _ | | 1 | <1 | | | _ | | | | 7 | <1 | | Nov. 2 | 2, 1988 | Oct. 2 | 6, 1989 | Oct. 5 | , 1990 | Oct. 2 | 1, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 28, 1993 | Oct. 1 | 7, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|----------|--------|---------|------------------------------| | 1 1, | ,014 | 2 | 31 | 4: | 25 | 5 | 05 | 4 | 51 | 1 | 06 | 2 | 94 | Total co 'nt | | Count | Percent Organism | | - | | | | | | | | | | | - | | | Ephemeroptera | | | | | | | | | | | | | | | | Heptage~iidae | | 100 | 10 | _ | | _ | | 1 | <1 | 1 | <1 | 3 | 3 | _ | | Stenonema | | | | | | | | | | | | | | | | Isonychi`dae | | | | | | | | | | | | | | | | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | | Tricerythodes | | | | | | | | | | | | | | | | Leptoph <sup>1</sup> ebiidae | | _ | | | | _ | | _ | | | | _ | | 1 | <1 | Para¹entophlebia | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Caloptery gidae | | _ | | | | _ | | _ | | | | _ | | _ | | Calonteryx | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 5 | <1 | _ | | _ | | 2 | <1 | _ | | | | _ | | Allocapnia | | _ | | _ | | _ | | | | _ | | _ | | _ | | Chloroperlidae | | | | | | | | | | | | | | | | Perlodid 10 | | 5 | <1 | | | _ | | _ | | _ | | | | _ | | Isoperla | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | _ | | | | | | _ | | | | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Sialidae | | | | | | _ | | | | | | | | _ | | Siali. · | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apatanii ⁴ae | | _ | | | | | | | | | | | | | | Apat ınia | | | | | | | | | | | | | | | | Glossosomatidae | | 59 | 6 | 1 | <1 | _ | | 1 | <1 | 2 | <1 | 1 | 1 | 4 | 2 | Glos: osoma | | | | | | | | | | | | | | | | Hydropsychidae | | 170 | 17 | | | | | 1 | <1 | | | 1 | 1 | 6 | 2 | Ceratopsyche | | | | | | 1 | <1 | | | 1 | <1 | 1 | 1 | 1 | <1 | Chevmatopsyche | | 53 | 5 | 1 | <1 | _ | | 10 | 2 | | | 6 | 6 | 26 | 9 | Diplectrona | | 88 | 9 | 6 | 3 | | | 15 | 3 | 200 | 43 | 28 | 25 | 42 | 14 | Hydr:psyche | | _ | | | | | | | | 41 | 9 | | | | | Potarryia | | | | | | | | | | | | | | | | Hydropt'idae | | _ | | | | 1 | <1 | 1 | <1 | _ | | | | _ | | Hydr:ptila | | 3 | <1 | _ | | _ | | | | | | _ | | _ | | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | _ | | | | | | | | | | _ | | _ | | Myst?cides | | | | | | | | | | | | | | | | Philopotamidae | | _ | | | | _ | | | | 20 | 4 | 2 | 2 | | | Chimarra | | _ | | | | | | 21 | 4 | 2 | <1 | _ | | 14 | 5 | Dolophilodes | | | | | | | | | | | | | | | | Polycent ropodidae | | _ | | _ | | 1 | <1 | _ | | _ | | 3 | 3 | | | Polycentropus | | | | | | | | | | | | | | | | Rhyacophilidae | | 11 | 1 | _ | | _ | | | | 2 | <1 | | | _ | | Rhyacophila | | | | | | | | | | | | | | | | Uenoida? | | 3 | <1 | 4 | 2 | _ | | _ | | _ | | _ | | _ | | Neophylax | | | | | | | | | | | | | | | | * * | Table 5. Benthic-macroinvertebrate data—Continued 01476790 - East Branch Chester Creek at Green Hill, Pa. (Site 22)—Continued | Date | Nov. 2 | 7, 1981 | Oct. 1 | 5, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 5, 1986 | Nov. 9 | , 1987 | |---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 3 | 23 | 4 | 64 | 3 | 19 | 5 | 19 | 2 | 47 | 3 | 38 | 1,5 | 304 | | Organism | Count | Percent | Coleoptera | | - | | | | | | | | | | | | | | Curculionidae | _ | | | | | | 1 | <1 | _ | | _ | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | _ | | | | | | _ | | _ | | | | | A.varlegata | | | _ | | _ | | | | — | | | | _ | | | Dubiraphia | 1 | <1 | — | | | | | | | | _ | | — | | | Optioservus | 29 | 9 | 37 | 8 | 9 | 3 | 17 | 3 | 37 | 15 | 14 | 4 | 42 | 3 | | Oulimnius | 1 | <1 | 2 | <1 | 3 | 1 | 2 | <1 | 2 | 1 | 3 | 1 | 9 | <1 | | Promoresia | 1 | <1 | | | 1 | <1 | _ | | | | — | | _ | | | Stenelmis | | | _ | | _ | | | | | | | | — | | | Hydrophilidae | | | | | | | | | | | | | | | | Helophorus | _ | | _ | | _ | | _ | | | | _ | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | _ | | | | _ | | _ | | _ | | _ | | _ | | | Hymenoptera | _ | | 1 | <1 | _ | | | | | | 3 | 1 | _ | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 24 | 7 | 35 | 7 | 23 | 7 | 39 | 8 | 12 | 5 | 17 | 5 | 110 | 8 | | Empididae | | | | | | | | | | | | | | | | Chelifera | _ | | | | _ | | | | _ | | | | _ | | | Clinocera | _ | | _ | | | | | | _ | | _ | | | | | Hemerodromia | | | _ | | | | | | | | | | 3 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 3 | 1 | 2 | <1 | 1 | <1 | 17 | 3 | _ | | 1 | <1 | 2 | <1 | | Tipulidae | - | | | | _ | | 1 | <1 | _ | | _ | | _ | | | Antocha | 5 | 2 | 10 | 2 | 5 | 2 | _ | | 9 | 4 | 35 | 10 | 12 | <1 | | Hexatoma | _ | | _ | | _ | | | | | | _ | | _ | | | Tipula | 3 | 1 | | | 1 | <1 | 2 | <1 | _ | | 2 | <1 | 2 | <1 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 2 | 2, 1988 | Oct. 2 | 6, 1989 | Oct. 5 | , 1990 | Oct. 2 | 1, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 8, 1993 | Oct. 1 | 7, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------------|---------|------------------| | 1 1 | ,014 | 2 | 31 | 4 | 25 | 5 | 05 | 4 | 51 | 1 | 06 | 2 | 94 | Total count | | Count | Percent Organism | | | | | | | | ** | | | | | | <del> </del> | | Coleoptera | | _ | | _ | | | | | | _ | | | | | | Curculionidae | | | | | | | | | | | | | | | | Elmidae | | | | | | _ | | - | | _ | | | | 1 | <1 | Ancyronyx | | | | 1 | <1 | | | | | | | | | _ | | A.variegata | | _ | | _ | | | | | | | | 1 | 1 | | | Dubi~aphia | | 75 | 8 | 6 | 3 | 1 | <1 | 2 | <1 | _ | | | | 1 | <1 | Optioservus | | _ | | _ | | _ | | | | | | _ | | | | Oulirmius | | | | _ | | | | | | | | _ | | | | Promoresia | | | | 1 | <1 | 3 | <1 | | | | | 3 | 3 | 2 | <1 | Stenelmis | | | | | | | | | | | | | | | | Hydrophilidae | | _ | | _ | | 1 | <1 | | | | | | | | | Helophorus | | | | | | | | | | | | | | | | Psephenidae | | | | 1 | <1 | | | _ | | _ | | _ | | _ | | Psephenus | | | | _ | | | | _ | | _ | | | | _ | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | 280 | 28 | 3 | 1 | 320 | 74 | 170 | 33 | 120 | 26 | 35 | 32 | 110 | 37 | Chironomidae | | | | | | | | | | | | | | | | <b>Empididae</b> | | _ | | _ | | 1 | <1 | 10 | 2 | _ | | | | | | Chelifera | | _ | | _ | | | | 2 | <1 | _ | | _ | | _ | | Clinccera | | 5 | <1 | 1 | <1 | _ | | 5 | 1 | _ | | | | _ | | Hemerodromia | | | | | | | | | | | | | | | | Simuliidae | | 5 | <1 | 2 | 1 | 49 | 11 | 63 | 12 | 16 | 3 | 9 | 9 | 42 | 14 | Simu'ium | | _ | | _ | | _ | | _ | | _ | | | | _ | | Tipulidae | | 13 | 1 | _ | | 1 | <1 | 2 | <1 | 2 | <1 | | | _ | | Antocha | | 3 | <1 | _ | | _ | | | | _ | | _ | | _ | | Hexa*oma | | _ | | 1 | <1 | 2 | <1 | 3 | <1 | 1 | <1 | | | 4 | 2 | Tipul₹ | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23) | Date | Oct. 2 | 7, 1981 | Oct. 2 | 2, 1982 | Oct. 26 | 5, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 5, 1986 | Nov. 9 | 9, 1987 | |-----------------------------|--------|---------|--------|---------|---------|---------|--------|---------|--------|-------------|--------|---------|--------|---------| | Total count | 1,3 | 371 | 1,3 | 700 | 1,2 | 247 | 1,0 | 085 | 9 | 91 | 5 | 18 | 2. | 252 | | Organism | Count | Percent | Platyhelminthes (flatworms) | - | | | | | | | | | · · · · · · | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 6 | <1 | 7 | <1 | 4 | <1 | 5 | <1 | 15 | 2 | | | 7 | <1 | | Nematoda (nematodes) | _ | | _ | | _ | | | | | | | | 1 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | | | _ | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 31 | 2 | 19 | 1 | 16 | 1 | 15 | 1 | 24 | 2 | 56 | 11 | 110 | 5 | | | 31 | 2 | 19 | 1 | 10 | 1 | 13 | 1 | 24 | L | 30 | 11 | 110 | , | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | | | | _ | | _ | | - | | | | | | | Physidae | | | | | | _ | | _ | | | | | • | | | Physa | 1 | <1 | _ | | 1 | <1 | 1 | <1 | _ | | 1 | <1 | 3 | <1 | | Planorbidae | | | | | | | | | | | | | | | | Helisoma | 1 | <1 | _ | | | | _ | | _ | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | _ | | _ | | _ | | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | _ | | 13 | <1 | 10 | <1 | 3 | <1 | 2 | <1 | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | 1 | <1 | _ | | | | | | | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 25 | 2 | | | | | | | | | | | 160 | 7 | | Tubificidae | _ | | | | _ | | | | | | _ | | 1 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | 1 | <1 | 1 | <1 | | | 4 | <1 | | | 27 | 1 | | Crustacea | | | - | | - | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | _ | | _ | | _ | | | | | | _ | | _ | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | 1 | <1 | | | , | <1 | | | | | | | 2 | <1 | | | 1 | <1 | | | 1 | | | | _ | | | | 2 | <1 | | Lirceus | | | | | 1 | <1 | _ | | | | | | _ | | | Podocopa | _ | | 1 | <1 | | | _ | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | - | | | | | | | _ | | | | | | Baetis | _ | | 9 | <1 | 4 | <1 | 100 | 9 | 26 | 3 | - | | 11 | <1 | | Pseudocloeon | 1 | <1 | _ | | _ | | | | _ | | - | | - | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 3 | <1 | 1 | <1 | _ | | 1 | <1 | 2 | <1 | _ | | 17 | <1 | | Ephemeridae | | | | | | | | | | | | | | | | Ephemera | _ | | | | _ | | _ | | 1 | <1 | | | | | | Nov. 2 | , 1988 | Oct. 2 | 6, 1989 | Oct. 5 | 5, 1990 | Oct. 2 | 1, 1991 | Oct. 2 | 3, 1992 | Oct. 2 | 6, 1993 | Oct. 2 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|-------------|---------|--------|---------|--------|---------|--------|---------|-----------------------------------------------------------------------| | 1 2 | 477 | 4, | 174 | 2, | 625 | 1, | 731 | 2, | 926 | 6 | 93 | 2,6 | 543 | Total count | | Count | Percent <u> </u> | | | | | | | | | | | | | | | | Platyhelminthes (flatv'orms)<br>Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 16 | <1 | 110 | 3 | 45 | 2 | 9 | <1 | 36 | 1 | | | 18 | <1 | Planariicae | | _ | | 5 | <1 | 2 | <1 | <del></del> | | 2 | <1 | _ | | 2 | <1 | Nematoda (nematodes) Nemertea (proboscis vvorms) Enopla Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | 8 | <1 | 2 | <1 | | | 9 | <1 | | | 11 | <1 | Prostoma Mollusca (molluscs) Gastropoda Basommatophora Ancylidae | | | | | | | | | | | | _ | | | | Ferri~sia | | | | | | | | | | | | | | | | Lymnaeidae | | _ | | 1 | <1 | | | | | _ | | | | _ | | <i>Lymпаеа</i> | | _ | | _ | | | | _ | | 1 | <1 | | | - | | Physidae<br><i>Ph</i> ysa<br>Planorbidae | | _ | | | | | | | | | | _ | | | | rianoroidae<br>Helisoma | | | | | | | | | | | | | | | | Bivalvia<br>Veneroida | | | | | | _ | | | | 1 | <1 | - | | _ | | Sphaeriidae<br>Annelida (segmented worms) | | _ | | _ | | _ | | - | | _ | | _ | | | | Oligochaeta Lumbriculida | | | | 2 | <1 | _ | | | | | | | | | | Lumbriculidae<br>Tubificida | | | | 480 | 11 | 10 | <1 | 1 | <1 | 75 | 3 | _ | | 64 | 2 | Naididae | | | | | | _ | | _ | | | | _ | | | | Tubificid 16 | | | | | | | | | | | | | | | | Arthropoda (arthropods) Acariformes | | | | 190 | 5 | 58 | 2 | 8 | <1 | 140 | 5 | 17 | 2 | 56 | 2 | Hydrachnidia<br>Crustacea<br>Amphipoda | | | | _ | | | | _ | | 1 | <1 | | | _ | | Gammar'dae<br>Gammarus | | | | | | | | | | | | | | | | Isopoda<br>Asellida∈ | | _ | | 1 | <1 | _ | | _ | | | | | | _ | | Caec'dotea | | | | | 7. | _ | | _ | | | | | | | | Lircers | | | | _ | | 10 | <1 | | | | | | | | | Podocopa | | | | | | | - | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | 3 | <1 | 12 | <1 | 55 | 2 | 6 | <1 | 2 | <1 | 2 | <1 | 4 | <1 | Baeti∘ | | _ | | | | _ | | 3 | <1 | 3 | <1 | 1 | <1 | | | Pseudocloeon | | | | | | | | _ | | | - | - | | | | Ephemerellidae | | 16 | <1 | 42 | 1 | 13 | <1 | 6 | <1 | 85 | 3 | 5 | <1 | 21 | <1 | <i>Ephemerella</i><br>Ephemeridae | | _ | | _ | | 1 | <1 | | | _ | | _ | | _ | | Ephemera | Table 5. Benthic-macroinvertebrate data—Continued 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23)—Continued | Date | Oct. 2 | 7, 1981 | Oct. 2 | 2, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 5, 1986 | Nov. 9 | 9, 1987 | |-------------------|--------|---------|--------|---------|--------|-----------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 371 | 1, | 700 | 1, | 247 | 1,0 | 085 | 9 | 91 | 5 | 18 | 2, | 252 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | • | | | | | | | Heptageniidae | | | | | | | | | | | | | | | | Stenacron | _ | | _ | | | | | | | | 20 | 4 | _ | | | Stenonema | 69 | 5 | 110 | 6 | 63 | 5 | 76 | 7 | 58 | 6 | 12 | 2 | 130 | 6 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | 5 | <1 | 1 | <1 | _ | | | | 1 | <1 | 3 | <1 | | Leptophlebiidae | - | | | | | | 1 | <1 | _ | | - | | - | | | Paraleptophlebia | | | | | | | | | _ | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | _ | | 1 | <1 | 1 | <1 | | | _ | | | | | | | Gomphidae | - | | | | | | | | _ | | _ | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | | | _ | | | | _ | | _ | | 2 | <1 | | Taeniopterygidae | | | | | | | | | | | | | - | - | | Taeniopteryx | | | | | | | | | | | | | 2 | <1 | | Hemiptera | | | | | | | | | | | | | _ | -4 | | Corixidae | | | | | | | | | | | | | | | | Trichocorixa | | | 1 | <1 | 11 | <1 | 3 | <1 | | | | | | | | Veliidae | | | • | ~1 | 11 | -1 | 3 | -1 | | | | | | | | Rhagovelia | | | | | 2 | <1 | | | | | | | | | | Megaloptera | _ | | | | L | <b>\1</b> | | | | | | | _ | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | | | | 1 | <1 | | | | | | | | | | Nigronia | _ | | _ | | 1 | <1 | | | | | | | | | | _ | | | | | 1 | <1 | | | _ | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | • | | | | | | • | | | Glossosoma | | | | | | | 1 | <1 | | | _ | | 2 | <1 | | Hydropsychidae | 200 | 20 | 000 | 10 | 150 | 10 | 1.40 | 10 | 150 | 1.5 | | | 000 | 10 | | Ceratopsyche | 360 | 26 | 300 | 18 | 150 | 12 | 140 | 13 | 150 | 15 | 44 | 8 | 220 | 10 | | Cheumatopsyche | 100 | 7 | 64 | 4 | 28 | 2 | 22 | 2 | 31 | 3 | 1 | <1 | 19 | <1 | | Diplectrona | _ | _ | | _ | - | _ | | _ | | | _ | _ | | _ | | Hydropsyche | 16 | 1 | 84 | 5 | 38 | 3 | 35 | 3 | 10 | 1 | 2 | <1 | 52 | 2 | | Hydroptilidae | 0.0- | | 200 | | | | | _ | 9.5 | _ | _ | _ | | _ | | Hydroptila | 200 | 14 | 290 | 17 | 220 | 17 | 70 | 6 | 20 | 2 | 2 | <1 | 46 | 2 | | Leucotrichia | 10 | <1 | 100 | 6 | 57 | 4 | 250 | 23 | 80 | 8 | 2 | <1 | 370 | 16 | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | | | _ | | | | - | | | | - | | | | | Oecetis | _ | | _ | | | | 1 | <1 | 1 | <1 | | | _ | | | Triaenodes | | | | | | | | | _ | | _ | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 3 | <1 | 13 | <1 | 1 | <1 | 11 | 1 | 23 | 2 | | | 6 | <1 | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | 1 | <1 | | | 1 | <1 | 1 | <1 | | | 1 | <1 | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | 1 | <1 | 14 | <1 | 95 | 7 | 61 | 6 | 120 | 12 | 190 | 37 | 660 | 29 | | | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Nov. 2 | 2, 1988 | Oct. 2 | 6, 1989 | Oct. 5 | 5, 1990 | Oct. 2 | 1, 1991 | Oct. 2 | 3, 1992 | Oct. 2 | 6, 1993 | Oct. 2 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-------------|----------------------------| | | ,477 | | 174 | | 625 | | 731 | | 926 | | 93 | | 643 | Total count | | | | | | | | | | | | Count | Percent | | | Organism | | | | | | | | - | | | | | | | <del></del> | Ephemeropte-a | | | | | | | | | | | | | | | | Heptageniidae | | 13 | <1 | 7 | <1 | | | | | | | _ | | | | Stenacron | | 50 | 6 | 100 | 2 | 77 | 3 | 46 | 3 | 110 | 4 | 12 | 2 | 58 | 2 | Stenenema | | | | | | | | | | | | | | | | Leptohyphidae | | 13 | <1 | 14 | <1 | 26 | 1 | 12 | <1 | 77 | 3 | | | 25 | <1 | Trico ythodes | | _ | | _ | | 3 | <1 | _ | | | | _ | | | | Leptophl hiidae | | 3 | <1 | | | _ | | | | _ | | _ | | | | Paraleptophlebia | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | 2 | <1 | 3 | <1 | | | 6 | <1 | | | 3 | <1 | Argia | | | | | | | | _ | | 2 | <1 | | | | | Gomphic <sup>1</sup> 3e | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniida > | | | | | | _ | | | | 1 | <1 | 1 | <1 | 1 | <1 | Allocapnia | | | | | | | | | | - | | - | | _ | | Taeniopterygidae | | _ | | 1 | <1 | | | | | 1 | <1 | | | | | Taeniopteryx | | | | - | | | | | | - | ٠. | | | | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | | | | | | | | _ | | | | Trichmorixa | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagavelia | | _ | | | | _ | | _ | | | | _ | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | 2 | <1 | | | Cory talus | | | | | | _ | | | | | | 2 | <1 | | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | _ | | | | _ | | _ | | | | | | _ | | | | 20 | _ | 120 | 2 | 200 | | 220 | 14 | 60 | 2 | 22 | 2 | C4 | 2 | Hydropsychidae | | 30 | 5 | 120 | 3 | 200 | 8 | 230 | 14 | 60 | 2 | 23 | 3 | 64 | 2 | Ceratopsyche | | 7 | 3 | 15 | <1 | 56 | 2 | 17 | 1 | 14 | <1 | 4 | <1 | 13 | <1 | Cheumatopsyche | | - | | 100 | | | - | 1 | <1 | | | | | | • | Diple~trona | | 70 | 11 | 180 | 4 | 180 | 7 | 45 | 3 | 81 | 3 | 41 | 6 | 54 | 2 | Hydransyche | | | _ | 400 | | 040 | | 050 | | 200 | | | | | | Hydropti <sup>11</sup> dae | | 48 | 2 | 480 | 11 | 310 | 12 | 270 | 16 | 390 | 13 | 26 | 4 | 390 | 15 | Hydrotila | | 10 | 8 | 1 | <1 | 6 | <1 | _ | | | | | | _ | | Leucrtrichia | | | | | | | | | | 00 | | | | | | Leptoceri dae | | | | | | _ | | 1 | <1 | 26 | <1 | _ | | - | | Mystarides | | | | 8 | <1 | 30 | 1 | 2 | <1 | 10 | <1 | 3 | <1 | 24 | <1 | Oecetis This can be a | | _ | | _ | | 1 | <1 | _ | | | | | | | | Triaenodes | | | _ | | _ | _ | - | _ | - | | | | | _ | _ | Philopotemidae | | 75 | 3 | 36 | <1 | 3 | <1 | 4 | <1 | | | | | 8 | <1 | Chimarra | | _ | | | | | | | | | | | | | | Polycentropodidae | | 3 | <1 | | | 6 | <1 | 2 | <1 | 5 | <1 | 1 | <1 | 1 | <1 | Polycentropus | | _ | | | | | | | | | | | | | | Psychom didae | | 77 | 3 | 1 | <1 | 1 | <1 | _ | | | | | | 4 | <1 | Psychomyia | | | | | | | | | | | | | | | | Lepidoptera | | _ | | | | | | | | | | | | | | Noctuida? | Table 5. Benthic-macroinvertebrate data—Continued 01476830 - East Branch Chester Creek at Milltown, Pa. (Site 23)—Continued | Date | Oct. 2 | 7, 1981 | Oct. 2 | 2, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 5, 1986 | Nov. 9 | , 1987 | |---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 371 | 1, | 700 | 1,2 | 247 | 1,0 | 085 | 9 | 91 | 5 | 18 | 2, | 252 | | Organism | Count | Percent | Coleoptera | | | *** | | | | | | | - | | | | | | Curculionidae | | | 1 | <1 | | | _ | | | | | | _ | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | _ | | | A.variegata | _ | | _ | | | | _ | | | | _ | | 1 | <1 | | Dubiraphia | 1 | <1 | 1 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | _ | | | Macronychus | | | | | | | | | | | | | | | | M. glabratus | | | | | | | 1 | <1 | _ | | | | | | | Optioservus | 4 | <1 | 11 | <1 | 13 | 1 | 6 | <1 | 11 | 1 | 1 | <1 | 26 | 1 | | Oulimnius | 2 | <1 | 1 | <1 | | | 2 | <1 | | | _ | | 2 | <1 | | Stenelmis | 12 | <1 | 23 | 1 | 63 | 5 | 12 | 1 | 21 | 2 | 17 | 3 | 31 | 1 | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | _ | | | | 1 | <1 | | | | | 1 | <1 | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | | | | | | 1 | <1 | | | 11 | <1 | | Hymenoptera | 1 | <1 | _ | | | | | | 1 | <1 | _ | | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 420 | 30 | 570 | 34 | 400 | 31 | 190 | 17 | 170 | 17 | 120 | 23 | 230 | 10 | | Dixidae | | | | | | | | | | | | | | | | Dixa | | | | | _ | | 1 | <1 | | | | | | | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 15 | 1 | 15 | <1 | 5 | <1 | 8 | <1 | 6 | <1 | _ | | 21 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 21 | 2 | 9 | <1 | 6 | <1 | 61 | 6 | 63 | 6 | 34 | 7 | 49 | 2 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 64 | 5 | 36 | 2 | 49 | 4 | 6 | <1 | 150 | 15 | 11 | 2 | 30 | 1 | | Dicranota | | | | | _ | | _ | | _ | | | | | | | Tipula | | | | | _ | | _ | | | | _ | | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 2 | 2, 1988 | Oct. 2 | 6, 1989 | Oct. 5 | , 1990 | Oct. 2 | 1, 1991 | Oct. 2 | 3, 1992 | Oct. 2 | 6, 1993 | Oct. 2 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------| | 1 2 | ,477 | 4, | 174 | 2,0 | 625 | 1,3 | 731 | 2,9 | 926 | 6 | 93 | 2, | 643 | Total count | | Count | Percent Organism | | | | | | - | | | | | | | - | | | Coleoptera | | - | | _ | | | | _ | | _ | | _ | | | | Curculionidae | | | | | | | | | | | | | | | | Elmidae | | 3 | <1 | _ | | | | 2 | <1 | 3 | <1 | _ | | _ | | Ancyronyx | | | | 7 | <1 | 2 | <1 | | | | | | | _ | | A.variegata | | | | 8 | <1 | 1 | <1 | _ | | 42 | 1 | _ | | 5 | <1 | Dul iraphia | | | | | | | | | | | | | | | | Macronychus | | _ | | _ | | | | _ | | 3 | <1 | _ | | _ | | M. glabratus | | 35 | 1 | 51 | 1 | 38 | 1 | 28 | 2 | 110 | 4 | 14 | 2 | 62 | 2 | Opt'oservus | | | | 7 | <1 | 1 | <1 | 6 | <1 | 8 | <1 | 3 | <1 | 10 | <1 | Oul mnius | | 29 | 1 | 32 | <1 | 78 | 3 | 22 | 1 | 290 | 10 | 2 | <1 | 93 | 4 | Ster •lmis | | | | | | | | | | | | | | | | Hydrophilidae | | _ | | _ | | _ | | _ | | 4 | <1 | | | 1 | <1 | Berc«us | | | | | | | | | | | | | | | | Psephenidae | | 19 | <1 | 44 | 1 | 62 | 2 | 29 | 2 | 57 | 2 | 10 | 1 | 31 | 1 | Pserhenus | | | | _ | | _ | | _ | | | | | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | 960 | 38 | 1,700 | 40 | 1,300 | 50 | 880 | 52 | 1,200 | 41 | 480 | 69 | 1,500 | 58 | Chironomidae | | | | - | | | | | | - | | | | | | Dixidae | | _ | | _ | | _ | | | | _ | | _ | | | | Dixa | | | | | | | | | | | | | | | | Empididae | | 3 | <1 | 130 | 3 | 26 | 1 | 13 | <1 | 23 | <1 | 10 | 1 | 73 | 3 | Hen∾rodromia | | | | | | | | | | | | | | | | Simuliidae | | 310 | 12 | 350 | 8 | 3 | <1 | 20 | 1 | 30 | 1 | _ | | 27 | 1 | Sim:tlium | | | | | | | | | | | | | | | | Tipulidae | | 11 | <1 | 29 | <1 | 16 | <1 | 68 | 4 | 16 | <1 | 36 | 5 | 19 | <1 | Antroha | | 3 | <1 | _ | | | | _ | | 1 | <1 | _ | _ | | | Dicranota | | | | _ | | _ | | _ | | 1 | <1 | | | 1 | <1 | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24) | Date | Oct. 2 | 7, 1981 | Oct. 2 | 2, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 6, 1986 | Nov 8 | 5, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------| | Total count | 1,3 | 783 | 3, | 535 | 2, | 250 | 2, | 424 | 1, | 365 | 1,0 | 026 | 2, | 592 | | Organism | Count | Percent | Court | Percent | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 16 | <1 | 33 | <1 | 65 | 3 | 43 | 2 | 13 | <1 | 8 | <1 | 77 | 3 | | Nematoda (nematodes) | _ | | | | | | | | _ | | | | 3 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | | | | | 1 | <1 | _ | | | | | | | Mollusca (molluscs) | | | | | | | - | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 32 | 2 | 1 | <1 | | | 13 | <1 | 1 | <1 | | | 4 | <1 | | | 32 | 2 | 1 | <1 | | | 13 | <1 | 1 | <1 | | | 4 | <1 | | Physidae | _ | _ | | | | | | | | | | | | | | Physa | 2 | <1 | | | | | | | | | | | | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | _ | | | | | | | | | | | | | | | Helisoma | 4 | <1 | _ | | | | | | _ | | _ | | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaerlidae | | | | | _ | | | | 1 | <1 | | | | | | Pisidium | ··· | | _ | | | | | | | | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | 7 | <1 | 2 | <1 | _ | | 1 | <1 | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | _ | | | | | | | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | _ | | | | | | | | | | | | 78 | 3 | | Hirudinea | | | | | | | | | | | | | | • | | Pharyngobdellida | | | | | | | | | | | | | | | | Erpobdellidae | | | | | | | | | | | 1 | <1 | | | | Arthropoda (arthropods) | | | | | | | _ | | | | • | ~1 | | | | Acariformes | | | | | | | | | | | | | | | | | 2 | <1 | 1 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | | | 31 | | | Hydrachnidia | Z | <1 | 1 | <1 | Z | <1 | 1 | <1 | 1 | <1 | | | 31 | 1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | _ | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | _ | | _ | | 1 | <1 | | | _ | | _ | | | | | Talitridae | | | | | | | | | | | | | | | | Hyallela | | | | | | | | | | | | | | | | H. azteca | _ | | | | | | - | | - | | _ | | 4 | <1 | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | _ | | 1 | <1 | | | _ | | | | | | | Podocopa | | | | | _ | | | | _ | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 26 | 1 | 40 | 1 | 15 | <1 | 26 | 1 | 4 | <1 | 22 | 2 | _ | | | Pseudocloeon | 9 | <1 | | - | 10 | <1 | 90 | 4 | _ | - | | - | 16 | <1 | | Ephemerellidae | • | | | | | | | • | | | | | -0 | | | Ephemerella | 2 | <1 | 2 | <1 | 10 | <1 | 5 | <1 | 3 | <1 | 2 | <1 | 45 | 2 | | ърнене: спа | L | ~1 | L | ~1 | 10 | ~1 | J | ~1 | J | ~1 | L | ~1 | 73 | L | | Nov. 3 | 3, 1988 | Oct. 2 | 6, 1989 | Oct. 2 | 5, 1990 | Oct. 2 | 2, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 6, 1993 | Oct. 2 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|----------------------------------------------------| | 1 1, | ,677 | 1,: | 518 | 3,0 | 087 | 1,8 | 808 | 2, | 471 | 6 | 43 | 7 | 67 | Total count | | Count | Percent | Count | Percen | t Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) Turbellaria Tricladida | | 56 | 3 | 86 | 6 | 110 | 4 | 22 | 1 | 88 | 4 | 28 | 4 | 1 | <1 | Planariidae | | _ | | 3 | <1 | _ | | | | _ | | _ | | | | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis v <sup>7</sup> orms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemert:a | | | | | | • | | | | • | | | | | | Tetrasterrmatidae | | _ | | 1 | <1 | 3 | <1 | _ | | 2 | <1 | _ | | | | Prostoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda<br>Basommatophora | | | | | | | | | | | | | | | | Ancylida: | | _ | | 6 | <1 | 1 | <1 | 13 | <1 | 4 | <1 | 5 | <1 | | | Ferri~ia | | _ | | U | ~1 | 1 | ~1 | 10 | -1 | 7 | ~1 | J | ~1 | _ | | Physidae | | _ | | _ | | _ | | _ | | _ | | _ | | | | Physa | | | | | | | | | | | | | | | | Planorbidae | | | | | | 2 | <1 | 1 | <1 | _ | | _ | | _ | | Gyravlus | | _ | | _ | | _ | | _ | | | | _ | | | | Helisama | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | _ | | | | 2 | <1 | | | _ | | | | | | Sphaertidae | | | | 1 | <1 | _ | | _ | | | | _ | | _ | | Pisid*um | | | | | | | | | | | | | | | | Annelida (segmented worms) | | _ | | _ | | _ | | | | _ | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | 3 | <1 | | | _ | | _ | | _ | | _ | | | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | | | 460 | 31 | 360 | 12 | 2 | <1 | 29 | 1 | 9 | 1 | _ | | Naididae | | | | | | | | | | | | | | | | Hirudinea | | | | | | | | | | | | | | | | Pharyngobde <sup>tt</sup> ida<br>Erpobdellidae | | _ | | _ | | | | | | _ | | _ | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | 89 | 6 | 62 | 2 | 7 | <1 | 3 | <1 | 50 | 8 | 1 | <1 | Hydrachnidia | | | | 0) | • | 02 | - | • | ~1 | , | ~1 | 50 | Ū | • | ~1 | Crustacea | | | | 1 | <1 | 17 | <1 | _ | | _ | | _ | | | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammar'dae | | _ | | 1 | <1 | 2 | <1 | | | | | _ | | | | Gammarus | | | | | | | | | | | | | | | | Talitridae | | | | | | | | | | | | | | | | Hyal`•la | | _ | | _ | | _ | | _ | | | | _ | | | | H. azteca | | | | | | | | | | | | | | | | Isopoda | | _ | | _ | | | | _ | | _ | | _ | | - | | Asellida€ | | _ | | _ | | 3 | <1 | _ | | 1 | <1 | 1 | <1 | _ | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeropte a | | _ | _ | | | _ | _ | • - | _ | | _ | | | | _ | Baetidae | | 3 | <1 | _ | | 4 | <1 | 11 | <1 | 11 | <1 | _ | | 13 | 2 | Baetis | | _ | | _ | | _ | | 3 | <1 | | | _ | | 3 | <1 | Pseudocloeon | | 67 | 4 | 15 | 1 | 5 | <1 | 12 | <1 | 2 | <1 | 7 | 1 | 1 | <1 | Ephemerellidae<br><i>Ephemerella</i> | | U/ | * | 13 | 1 | 3 | ~1 | 12 | ~1 | 2 | <1 | , | 1 | 1 | <1 | Ерне негена | Table 5. Benthic-macroinvertebrate data—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24)—Continued | Date | Oct. 2 | 7, 1981 | Oct. 2 | 2, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 6, 1986 | Nov. 5 | 5, 1987 | |--------------------------|--------|-----------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 783 | 3, | 535 | 2, | 250 | 2,4 | 124 | 1, | 365 | 1, | 026 | 2, | 592 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | • | | | | | Heptageniidae | | | | | | | | | | | | | | | | Stenonema | 73 | 4 | 79 | 2 | 120 | 5 | 110 | 5 | 12 | <1 | 51 | 5 | 60 | 2 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | 13 | <1 | 22 | <1 | 24 | 1 | 1 | <1 | _ | | 1 | <1 | 4 | <1 | | Leptophlebiidae | | | _ | | 1 | <1 | | | _ | | _ | | _ | | | Paraleptophlebia | - | | | | - | | | | _ | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 1 | <1 | _ | | | | 1 | <1 | | | | | _ | | | lecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 2 | <1 | - | | 2 | <1 | | | 3 | <1 | | | _ | | | legaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | | | | 1 | <1 | 1 | <1 | | | | | | | | Nigronia | 3 | <1 | | | | ~1 | | ~1 | | | | | | | | Trichoptera | 3 | <b>~1</b> | | | _ | | _ | | _ | | _ | | _ | | | Apataniidae | | | | | | | | | | | | | | | | <del>-</del> | | | | | | | | | | | | | | | | Apatania | | | | | | | _ | | _ | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 1 | <1 | | | _ | | 1 | <1 | | | | | | | | Hydropsychidae | | _ | | | | | | | | _ | | | | _ | | Ceratopsyche | 150 | 8 | 380 | 11 | 600 | 26 | 440 | 18 | 41 | 3 | 260 | 26 | 180 | 7 | | Cheumatopsyche | 120 | 7 | 240 | 7 | 370 | 16 | 160 | 7 | 71 | 5 | 86 | 9 | 41 | 2 | | Hydropsyche | 72 | 4 | 180 | 5 | 96 | 4 | 180 | 7 | 20 | 1 | 200 | 20 | 220 | 8 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 180 | 10 | 69 | 2 | 120 | 5 | 4 | <1 | 4 | <1 | 3 | <1 | 79 | 3 | | Leucotrichia | 85 | 5 | 120 | 3 | 56 | 2 | 540 | 22 | 27 | 2 | 14 | 1 | 62 | 2 | | Leptoceridae | | | | | | | | | | | | | | | | Oecetis | - | | | | 1 | <1 | 2 | <1 | _ | | | | 1 | <1 | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 4 | <1 | 16 | <1 | 4 | <1 | 17 | <1 | 2 | <1 | 88 | 9 | 180 | 7 | | Wormaldia | _ | | | | _ | | _ | | _ | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | | | | | 1 | <1 | | | | | | | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | | | | | | | 1 | <1 | 2 | <1 | | | 6 | <1 | | epidoptera. | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 2 | <1 | 3 | <1 | 9 | <1 | 29 | 1 | 5 | <1 | 2 | <1 | 4 | <1 | | Coleoptera | - | • | • | | · | | | • | • | | _ | | - | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | | | | Ancylonyx<br>A.variegata | _ | | _ | | | | | | | | _ | | 2 | <1 | | Dubiraphia | _ | | _ | | | | | | 1 | .1 | | | 2 | <1 | | | _ | | _ | .1 | _ | | _ | | _ | <1 | _ | | 2 | <1 | | Macronychus | _ | | 1 | <1 | | | 1 | <1 | 1 | <1 | _ | | | | | Optioservus | 2 | <1 | 3 | <1 | 13 | | 9 | <1 | 11 | <1 | 16 | 2 | 34 | 1 | | Oulimnius | _ | | _ | | 1 | <1 | | | _ | | _ | | 3 | <1 | | Promoresia | _ | | _ | | | | _ | | _ | | | | | | | Stenelmis | 15 | <1 | 31 | <1 | 27 | 1 | 46 | 2 | 36 | 3 | 49 | 5 | 38 | 1 | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | _ | | | | - | | | | - | | _ | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | | 1 | <1 | | | 1 | <1 | | | 3 | <1 | | | | | | | | | | | | | | | | | | | 3, 1988 | Oct. 20 | 6, 1989 | Oct. 2 | 5, 1990 | Oct. 2 | 2, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 6, 1993 | Oct. 2 | 1, 1994 | Date | |-----------------|---------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------------| | <sup>1</sup> 1, | ,677 | 1,5 | 518 | 3,0 | 087 | 1, | 808 | 2, | 471 | 6 | 43 | 7 | 67 | Total count | | ount | Percent | Count | Percent | Organism | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | 43 | 3 | 4 | <1 | 44 | 1 | 46 | 3 | 13 | <1 | 13 | 2 | 13 | 2 | Stenonema | | | | | | | | | | | | | | | | Leptohyphidae | | 11 | <1 | | | 5 | <1 | 2 | <1 | _ | | | | _ | | Trico~ythodes | | _ | | | | 2 | <1 | _ | | | | | | _ | | Leptophlebiidae | | _ | | _ | | _ | | | | | | | | 1 | <1 | Paraleptophlebia | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrinnidae | | — | | 1 | <1 | | | _ | | _ | | _ | | 1 | <1 | Argia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniida• | | | | | | _ | | | | 1 | <1 | | | | | Allocapnia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | _ | | | | _ | | _ | | Corydalus | | _ | | | | | | _ | | | | | | _ | | Nigmnia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apatanlidae | | 3 | <1 | | | | | | | | | | | | | Apatanidae<br>Apatania | | 3 | <1 | | | _ | | | | _ | | _ | | _ | | Glossosomatidae | | | | | | • | .1 | | | | | | | | | | | _ | | _ | | 2 | <1 | _ | | _ | | | | | | Gloscosoma | | | • | | • | | | 4.50 | _ | | _ | | | | _ | Hydropsychidae | | 00 | 6 | 23 | 2 | 110 | 4 | 150 | 8 | 78 | 3 | 87 | 13 | 61 | 8 | Ceratopsyche | | 59 | 3 | 22 | 1 | 550 | 18 | 130 | 7 | 43 | 2 | 53 | 8 | 53 | 7 | Cheumatopsych | | 50 | 21 | 160 | 11 | 350 | 11 | 340 | 19 | 410 | 16 | 92 | 14 | 97 | 13 | Hydrosyche | | | | | | | | | | | | | | | | Hydroptilidae | | 3 | <1 | 10 | <1 | 79 | 3 | 16 | <1 | 30 | 1 | 5 | <1 | 1 | <1 | Hydrotila | | 11 | <1 | 2 | <1 | _ | | 14 | <1 | 1 | <1 | 5 | <1 | 10 | 1 | Leucrtrichia | | | | | | | | | | | | | | | | Leptocer/dae | | _ | | _ | | | | 1 | <1 | _ | | 1 | <1 | | | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 29 | 2 | 1 | <1 | 10 | <1 | 21 | 1 | 4 | <1 | 3 | <1 | 9 | 1 | Chimarra | | | | | | | | | | | | | | 1 | <1 | Wormaldia | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | _ | | Polycentropus | | | | | | | | | | | | | | | | Psychomyiidae | | | | | | | | 58 | 3 | 4 | <1 | _ | | 1 | <1 | Psychomyta | | | | | | | | - | J | • | ~- | | | • | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | 3 | <1 | | | | | | | | | | | | | Petrophila | | 3 | ~1 | | | | | _ | | | | _ | | _ | | Coleoptera | | | | | | | | | | | | | | | | - | | | | | | | | 7 | 1 | | | 9 | .1 | 9 | -1 | Elmidae | | - | | | .1 | | 1 | 7 | <1 | _ | | 2 | <1 | 2 | <1 | Ancyronyx | | - | | 4 | <1 | 5 | <1 | _ | | _ | | | | _ | | A.variegata | | - | | _ | | 3 | <1 | | | | | | | _ | | Dubi aphia | | - | | | _ | | _ | _ | | _ | _ | - | _ | | | Macronychus | | 5 | 4 | 37 | 2 | 51 | 2 | 25 | 1 | 78 | 3 | 40 | 6 | 33 | 4 | Optioservus | | - | | 2 | <1 | 3 | <1 | 4 | <1 | 1 | <1 | 9 | 1 | - | | Oulimnius | | 5 | <1 | - | | - | | _ | | _ | | _ | | - | | Promoresia | | 2 | 2 | 25 | 2 | 61 | 2 | 44 | 2 | 36 | 1 | 38 | 6 | 6 | <1 | Stenclmis | | | | | | | | | | | | | | | | Hydrophilidae | | - | | _ | | 1 | <1 | _ | | - | | 1 | <1 | _ | | Berosus | | | | | | | | | | | | | | | | Psepheni dae | | | | | | 8 | <1 | | <1 | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01476835 - East Branch Chester Creek at Westtown, Pa. (Site 24)—Continued | Date | Oct. 2 | 7, 1981 | Oct. 2 | 2, 1982 | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 1 | 6, 1985 | Oct. 1 | 6, 1986 | Nov. | 5, 1987 | |-----------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------| | Total count | 1, | 783 | 3, | 535 | 2, | 250 | 2, | 424 | 1, | 365 | 1,0 | 026 | 2, | 592 | | Organism | Count | Percent | Hymenoptera | | | | | 2 | <1 | 1 | <1 | 2 | <1 | | | | | | Diptera | | | | | | | | | | | | | | | | Ceratopogonidae | _ | | _ | | _ | | | | | | | | | | | Chironomidae | 450 | 25 | 700 | 20 | 330 | 14 | 400 | 17 | 260 | 19 | 56 | 6 | 230 | 9 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 55 | 3 | 2 | <1 | 6 | <1 | 19 | <1 | | | 1 | <1 | 8 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 440 | 24 | 1,600 | 46 | 310 | 13 | 230 | 9 | 780 | 56 | 150 | 15 | 1,100 | 42 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 15 | <1 | 10 | <1 | 51 | 2 | 51 | 2 | 63 | 5 | 16 | 2 | 77 | 3 | $<sup>^{1}</sup>$ Extrapolated from a 3/8 subsample. | Nov. 3 | 3, 1988 | Oct. 2 | 6, 1989 | Oct. 2 | 5, 1990 | Oct. 2 | 2, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 6, 1993 | Oct. 2 | 1, 1994 | Date | |--------|------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-----------------| | 1 1 | ,677 | 1,5 | 518 | 3, | 087 | 1,8 | 808 | 2, | 471 | 6 | 43 | 7 | 67 | Total count | | Count | Percent Organism | | | | | | _ | | _ | | | | | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | _ | | _ | | 3 | <1 | | | _ | | _ | | _ | | Ceratopngonidae | | 510 | 30 | 250 | 17 | 1,000 | 32 | 680 | 38 | 950 | 38 | 80 | 12 | 220 | 29 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | 5 | <1 | 17 | 1 | 33 | 1 | 7 | <1 | 8 | <1 | 16 | 2 | 2 | <1 | Hemerodromia | | | | | | | | | | | | | | | | Simuliidae | | 280 | 1 <b>6</b> | 230 | 15 | 100 | 3 | 93 | 5 | 580 | 23 | 5 | <1 | 210 | 27 | Sim~lium | | | | | | | | | | | | | | | | Tipulide∘ | | 16 | <1 | 53 | 4 | 96 | 3 | 90 | 5 | 94 | 4 | 75 | 12 | 25 | 3 | Ant∾ha | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01476840 - Goose Creek tributary to East Branch Chester Creek near West Chester, Pa. (Site 25) | Total count Organism Platyhelminthes (flatworms) | | 56 | 1 9 | ,644 | 2 5 | 87 | 0.4 | ~~1 | | | |--------------------------------------------------|-------|---------|-------|---------|-------|---------|-----------|---------|-------|-----------| | Platyhelminthes (flatworms) | | | | ,0-1- | | ю, | 3,0 | 091 | 1, | 111 | | - | Count | Percent | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | Tricladida | | | | | | | | | | | | Planariidae | _ | | _ | | 11 | 2 | 91 | 3 | 73 | 7 | | Nematoda | _ | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | Enopla | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | Prostoma | | | _ | | | | _ | | | | | Mollusca (molluscs) | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | Ferrissia | _ | | | | | | 7 | <1 | 3 | <1 | | Physidae | | | | | | | | | | | | Physa | 71 | 20 | 88 | <1 | | | _ | | | | | Bivalvia | | | | | | | | | | | | Veneroida | | | | | | | | | | | | Sphaeriidae | _ | | _ | | | | | | 2 | <1 | | Annelida (segmented worms) | | | | | | | | | - | ~- | | Oligochaeta | | | 440 | 5 | | | | | | | | Lumbriculida | | | 0 | , | | | | | | | | Lumbriculidae | | | | | | | | | 7 | <1 | | Tubificida | | | _ | | | | _ | | , | <b>\1</b> | | | | | | | _ | <1 | 450 | 15 | , | <1 | | Naididae | 9 | 3 | _ | | 5 | <1 | 450<br>74 | 2 | 1 | <1 | | Tubificidae | 9 | 3 | | | | | /4 | 2 | | | | Arthropoda (arthropods) | | | | | | | | | | | | Acariformes | | | | | | | _ | | 40 | | | Hydrachnidia | | | | | | | 7 | <1 | 42 | 4 | | Crustacea | | | | | | | _ | | _ | _ | | Cyclopoida | | | _ | | _ | | 1 | <1 | 2 | <1 | | Isopoda | | | | | | | | | | | | Asellidae | | | | | | | | | | | | Caecidotea | 2 | <1 | _ | | 3 | <1 | 21 | <1 | 27 | 2 | | Podocopa | _ | | | | | | | | 110 | 10 | | Insecta | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | Baetidae | | | | | | | | | | | | Baetis | 2 | <1 | 4 | <1 | | | _ | | | _ | | Pseudocloeon | _ | | | | 3 | <1 | | | _ | | | Ephemerellidae | | | | | | | | | | | | Ephemerella | | | | | | | | | _ | | | Heptageniidae | | | | | | | | | | | | Epeorus | _ | | _ | | - | | _ | | _ | | | Stenonema | _ | | 4 | <1 | | | _ | | _ | | | Leptohyphidae | | | | | | | | | | | | Tricorythodes | _ | | | | _ | | _ | | 1 | <1 | | Odonata | | | | | | | | | • | | | Gomphidae | | | _ | | | | _ | | _ | | | Hemiptera | _ | | | | _ | | - | | _ | | | Corixidae | _ | | | | _ | | _ | | | | | Date | , 1994 | Oct. 21 | 9, 1993 | Nov. 1 | 3, 1992 | Oct. 23 | , 1991 | Nov. 4 | |------------------------------------|--------|---------|---------|--------|---------|---------|---------|--------| | Total count | | 67 | 56 | | )95 | | 108 | | | | | Count | Percent | Count | Percent | Count | Percent | Count | | Platyhelminthes (flatworms) | | | | | | | | | | Turbellaria | | | | | | | | | | Tricladida | | | | | | | | | | Planariidae | <1 | 1 | 2 | 17 | 3 | 32 | <1 | 5 | | Nematoda | <1 | 2 | <1 | 6 | <1 | 2 | <1 | 1 | | Nemertea (proboscis worms) Enopla | | | | | | | | | | Hoplonemertea | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | Prostoma | | | | | | | <1 | 1 | | Mollusca (molluscs) | | | | | | | | - | | Gastropoda | | | | | | | | | | Basommatophora | | | | | | | | | | Ancylidae | | | | | | | | | | | | | -1 | 1 | | | 1 | | | Ferrissia | | _ | <1 | 1 | | | <1 | 1 | | Physidae | | | | | | | | | | Physa | | | | | | | | | | Bivalvia | | | | | | | | | | Veneroida | | | | | | | | | | Sphaeriidae | | | | | | | | - | | Annelida (segmented worms) | | | | | | | | | | Oligochaeta | | — | | | 2 | 26 | | | | Lumbriculida | | | | | | | | | | Lumbriculidae | | | | | | | | | | Tubificida | | | | | | | | | | Naididae | | | 10 | 74 | | | <1 | 2 | | Tubificidae | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | Acariformes | | | | | | | | | | Hydrachnidia | | | 1 | 9 | 5 | 55 | <1 | 12 | | Crustacea | | | • | , | - | 55 | ~1 | 12 | | Cyclopoida | | | | | | | | | | · · | | _ | | | | | | | | Isopoda | | | | | | | | | | Asellidae | | | | | | | | | | Caecidotea | | | | | _ | | _ | | | Podocopa | | _ | | _ | <1 | 4 | <1 | 19 | | Insecta | | | | | | | | | | Ephemeroptera | | | | | | | | | | Baetidae | | | | | | | | | | Baetis | <1 | 1 | | - | | 2 | 20 | | | Pseudocloeon | | | | | | | | | | Ephemerellidae | | | | | | | | | | Ephemerella | | | | | | | <1 | 1 | | Heptageniidae | | | | | | | | | | Epeorus | | | | | <1 | 2 | | _ | | Stenonema | | | | | | | | _ | | Leptohyphidae | | | | | | | | | | Tricorythodes | | | | | | | | | | Odonata | | | | | | | | _ | | Gomphidae | | | <1 | 1 | | | | _ | | • | | | <1 | 1 | | _ | | _ | | Hemiptera<br>Corixidae | | | | | | • | | | | CONTINA | | | | | <1 | 2 | | _ | Table 5. Benthic-macroinvertebrate data—Continued 01476840 - Goose Creek tributary to East Branch Chester Creek near West Chester, Pa. (Site 25)—Continued | Date | Oct. 2 | 7, 1981 | Oct. 2 | 2, 1982 | Nov. | 4, 1988 | Oct. 2 | 5, 1989 | Oct. 2 | 5, 1990 | |----------------|--------|---------|--------|---------|-------|---------|--------|---------|--------|---------| | Total count | 3 | 56 | 1 9 | ,644 | 2 , | 587 | 3,0 | 091 | 1, | 111 | | Organism | Count | Percent | | Trichoptera | | | | | | | | | | | | Hydropsychidae | | | | | | | | | | | | Ceratopsyche | 4 | 1 | 4 | <1 | 11 | 2 | | | 3 | <1 | | Cheumatopsyche | _ | | _ | | 3 | <1 | _ | | 1 | <1 | | Diplectrona | _ | | | | | | 1 | <1 | _ | | | Hydropsyche | | | | | 150 | 25 | 3 | <1 | 15 | 1 | | Hydroptilidae | | | | | | | | | | | | Agraylea | _ | | | | | | | | 1 | <1 | | Hydroptila | 2 | <1 | | | 5 | <1 | 1 | <1 | 16 | 1 | | Leucotrichia | _ | | | | | | 1 | <1 | _ | | | Lepidoptera | | | | | | | | | | | | Noctuidae | | | | | | | | | | | | Archanara | _ | | | | | | 1 | <1 | | | | Coleoptera | | | | | | | | | | | | Elmidae | | | | | | | | | | | | Optioservus | | | | | | | | | _ | | | Stenelmis | | | 4 | <1 | 3 | <1 | 2 | <1 | 7 | <1 | | Psephenidae | | | | | | | | | | | | Psephenus | _ | | | | _ | | _ | | | | | Diptera | | | | | | | | | | | | Chironomidae | 230 | 64 | 2,300 | 24 | 160 | 27 | 490 | 16 | 190 | 17 | | Empididae | | | | | | | | | | | | Hemerodromia | _ | | | | 3 | <1 | 140 | 5 | 9 | <1 | | Psychodidae | | | | | | | | | | | | Telmatoscopus | 1 | <1 | | | | | | | | | | Simuliidae | | | | | | | | | | | | Simulium | 35 | 10 | 6,800 | 71 | 230 | 39 | 1,800 | 58 | 600 | 55 | | Tipulidae | | | • | | | | • | | | | | Antocha | _ | | | | _ | | _ | | _ | | | Tipula | | | | | | | 1 | <1 | 1 | <1 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. <sup>&</sup>lt;sup>2</sup> Extrapolated from a 1/4 subsample. | Nov. 4 | l, 1991 | Oct. 2 | 3, 1992 | Nov. 1 | 9, 1993 | Oct. 2 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|------------------| | 2, | 108 | 1,0 | 095 | 7 | 56 | 6 | 71 | Total count | | Count | Percent | Count | Percent | Count | Percent | Count | Percent | Organism | | | | | | | | | | Trichoptera | | | | | | | | | | Hydropsychidae | | 21 | 1 | 23 | 2 | 29 | 4 | 8 | 1 | Ceratopsyche | | 2 | <1 | 7 | <1 | 69 | 9 | 110 | 16 | Cheumatopsyche | | _ | | _ | | _ | | | | Diplectrona | | 24 | 1 | 190 | 17 | 150 | 20 | 60 | 9 | Hydropsyche | | | | | | | | | | Hydroptilidae | | _ | | _ | | _ | | _ | | Agraylea | | 1 | <1 | 2 | <1 | _ | | | | Hydroptila | | 1 | <1 | | | | | | | Leucotrichia | | | | | | | | | | Lepidoptera | | | | | | | | | | Noctuidae | | _ | | | | _ | | _ | | <b>Archanara</b> | | | | | | | | | | Coleoptera | | | | | | | | | | Elmidae | | _ | | 1 | <1 | 1 | <1 | _ | | Optioservus | | 2 | <1 | 10 | <1 | _ | | | | Stenelmis | | | | | | | | | | Psephenidae | | | | 3 | <1 | _ | | _ | | Psephenus | | | | | | | | | | Diptera | | 1,200 | 57 | 570 | 52 | 360 | 47 | 94 | 14 | Chironomidae | | | | | | | | | | Empididae | | 5 | <1 | 10 | <1 | 4 | <1 | 3 | <1 | Hemerodromia | | | | | | | | | | Psychodidae | | _ | | | | 1 | <1 | | | Telmatoscopus | | | | | | | | | | Simuliidae | | 810 | 39 | 130 | 12 | 17 | 2 | 390 | 58 | Simulium | | | | | | | | | | Tipulidae | | | | 2 | <1 | 16 | 2 | 1 | <1 | Antocha | | | | 4 | <1 | 1 | <1 | 1 | <1 | Tipula | [<, less than; —, not found] Table 5. Benthic-macroinvertebrate data—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51) | Date | Oct. 26 | 1983 | Oct. 1 | 1, 1984 | Oct. 2 | 8, 1985 | Oct. 1 | 6, 1986 | Nov. 1 | 5, 1987 | | 3, 1988 | Oct. 2 | 5 1989 | |-----------------------------|-------------|---------|--------|---------|--------|---------|--------|----------|--------|---------|----------------|---------|--------|---------| | Total count | 2,8 | 69 | 2, | 374 | 4,2 | 236 | 1,8 | 514 | 12, | 174 | <sup>1</sup> 3 | ,963 | 9 | ?6 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | <u>.</u> | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 195 | 7 | 351 | 12 | 32 | <1 | 17 | 1 | 69 | <1 | 16 | <1 | | | | Nematoda (nematodes) | 2 | <1 | 4 | <1 | - | | | | _ | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 1 | <1 | 1 | <1 | 8 | <1 | _ | | | | 8 | <1 | 1 | <1 | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | _ | | _ | | 32 | <1 | 1 | <1 | 20 | <1 | _ | | 9 | 1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | | _ | | _ | | | | _ | | | | 1 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | 18 | <1 | _ | | _ | | _ | | | | _ | | 2 | <1 | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | | Helisoma | | | _ | | 8 | <1 | 3 | <1 | 1 | <1 | _ | | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | _ | | _ | | 16 | <1 | 53 | 4 | 30 | <1 | | | _ | | | Pisidium | _ | | | | _ | | _ | | | | 5 | <1 | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | _ | | | | _ | | _ | | | | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | _ | | _ | | _ | | _ | | | | 3 | <1 | | Tubificida | | | | | | | | | | | | | | | | Naididae | 110 | 4 | 190 | 7 | | | | | 7,200 | 60 | 960 | 24 | 300 | 32 | | Tubificidae | 380 | 13 | 190 | 7 | 1,400 | 33 | 7 | <1 | 120 | 1 | 27 | <1 | _ | | | Hirudinea | | | | | | | | | | | | | | | | Pharyngobdellida | | | | | | | | | | | | | | | | Erpobdellidae | | | _ | | 8 | <1 | 1 | <1 | 1 | <1 | _ | | _ | | | Rhynchobdellida | | | | | | | | | | | | | | | | Glossiphoniidae | 1 | <1 | _ | | | | | | | | _ | | _ | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | _ | | _ | _ | | | | | _ | | | | _ | | Hydrachnidia | 1 | <1 | 4 | <1 | 8 | <1 | 1 | <1 | 4 | <1 | _ | | 78 | 8 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | <del></del> | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | _ | | | | _ | _ | | | | | | | | | | Gammarus | 2 | <1 | _ | | 8 | <1 | _ | | _ | | _ | | _ | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | _ | | _ | ~~ | _ | | _ | | | | _ | | Caecidotea | 1,000 | 34 | 18 | <1 | 180 | 4 | 93 | 6 | 51 | <1 | _ | | 1 | <1 | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | _ | _ | 1 | <1 | _ | _ | _ | | _ | _ | _ | | | | | Podocopa | 79 | 3 | _ | | 16 | <1 | 4 | <1 | 20 | <1 | _ | | | | | Oct. 2 | 5, 1990 | Oct. 2 | 2, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 6, 1993 | Oct. 1 | 7, 1994 | Date | |----------------|-----------|--------|-----------|--------|-----------|--------|---------|--------|-----------|----------------------------------------------------------------------| | 3, | 033 | 3,9 | 951 | 3,0 | 046 | 1, | 169 | 2, | 093 | Total count | | Count | Percent | Organism | | | | | | | | | | | | Platyhelminthes (flatworms) Turbellaria Tricladida | | | | 4 | <1 | 8 | <1 | 17 | 1 | 6 | <1 | Planariidae | | 3 | <1 | 9 | <1 | | | 1 | <1 | 1 | <1 | Nematoda (nematodes) | | | | | | | | | | | | Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | 16 | <1 | 17 | <1 | 2 | <1 | 3 | <1 | 2 | <1 | Prostoma Mollusca (molluscs) Gastropoda Basommatophora Ancylidae | | 61 | 2 | 16 | <1 | 7 | <1 | 21 | 2 | 21 | 1 | Ferrissia | | | | | | | | | | | | Lymnaeidae<br>_ | | _ | | _ | | _ | | _ | | | | Lymnaea | | | | | | | | | | | | Physidae | | _ | | | | | | _ | | | | Physa | | • | .1 | | | | | • | | | | Planorbidae | | 2 | <1 | | | | | 1 | <1 | | | Gyraulus | | | | _ | | _ | | _ | | | | Helisoma | | | | | | | | | | | | Bivalvia | | • | .4 | | | | | | | | | Venerolda | | 3 | <1 | _ | | _ | | _ | | | | Sphaeriidae | | _ | | _ | | _ | | _ | | | | Pisidium | | | | | | | | _ | | | | Annelida (segmented worms) | | _ | | | | | | 2 | <1 | _ | | Oligochaeta | | 5 | -1 | | | | | | | | | Lumbriculida | | 3 | <1 | | | | | | | | | Lumbriculidae<br>Tubificida | | 60 | • | 420 | 11 | | | 220 | 10 | £2 | • | | | 68 | 2 | 430 | 11 | | | 230 | 19 | 53 | 3 | Naididae | | _ | | | | | | _ | | _ | | Tubificidae<br>Hirudinea | | | | | | | | | | | | | | | | | | | | | | 1 | <1 | Pharyngobdellida<br>Erpobdellidae | | | | _ | | _ | | | | 1 | <1 | Rhynchobdellida | | | | | | | | | | | | Glossiphoniidae | | | | _ | | | | _ | | | | Arthropoda (arthropods) | | | | | | | | | | | | Acariformes | | 110 | 4 | 19 | <1 | 3 | <1 | 28 | 2 | 13 | <1 | Hydrachnidia | | 110 | * | 19 | <b>\1</b> | 3 | <b>\1</b> | 20 | 2 | 13 | <b>\1</b> | Crustacea | | 1 | <1 | | | | | | | | | Cyclopoida | | 1 | <b>\1</b> | _ | | _ | | _ | | | | Amphipoda | | | | | | | | | | | | Gammaridae | | 1 | <1 | | | 1 | <1 | _ | | | | Gammarus | | - | ~1 | | | • | ~1 | | | | | Isopoda | | | | | | | | | | | | Asellidae | | _ | | | | 1 | <1 | _ | | _ | | Caecidotea | | _ <del>_</del> | | | | 1 | ~1 | | | | | Decapoda Decapoda | | _ | | | | | | _ | | _ | | Cambaridae | | 12 | <1 | 2 | <1 | 5 | <1 | _ | | _ | | Podocopa | | 14 | ~1 | 2 | ~1 | 3 | <b>\1</b> | _ | | _ | | 1 одосора | Table 5. Benthic-macroinvertebrate data—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51)—Continued | Date | Oct. 26, | 1983 | Oct. 11 | 1, 1984 | Oct. 2 | 8, 1985 | Oct. 10 | 6, 1986 | Nov. 1 | 5, 1987 | | 3, 1988 | Oct. 2 | 1989 | |-----------------|----------|---------|---------|---------|--------|-----------|---------|---------|--------|---------|-------|---------|--------|---------| | Total count | 2,86 | 59 | 2,8 | 374 | 4,2 | 236 | 1,5 | 514 | 12, | 174 | 1 3 | ,963 | 9 | ?6 | | Organism | Count | Percent | nsecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | _ | | 3 | <1 | _ | | 1 | <1 | _ | | _ | | | | | Pseudocloeon | | | _ | | | | _ | | _ | | _ | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | _ | | | | | | _ | | _ | | 3 | <1 | 2 | <1 | | Heptageniidae | | | | | | | | | | | | | | | | Stenonema | 3 | <1 | 1 | <1 | _ | | 3 | <1 | 1 | <1 | 21 | <1 | 3 | <1 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | _ | | | | | | | | | | | | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | 3 | <1 | _ | | _ | | 1 | <1 | _ | | 3 | <1 | 4 | <1 | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | _ | | | | | | 2 | <1 | | | _ | | | | | Enallagma | | | | | | | _ | | _ | | _ | | 1 | <1 | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | | | _ | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | _ | | | | | | | | 1 | <1 | | | | | | Sialidae | | | | | | | | | | | | | | | | Sialis | | | | | _ | | _ | | _ | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | | | | | | _ | | | | | | | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 11 | <1 | 430 | 15 | 8 | <1 | 110 | 7 | 60 | <1 | 260 | 7 | 58 | 6 | | Cheumatopsyche | 16 | <1 | 63 | 2 | 0 | -1 | 28 | 2 | | ~1 | 160 | 4 | 9 | 1 | | Hydropsyche | 40 | 1 | 140 | 5 | _ | | 490 | 33 | 750 | 6 | 1,500 | 38 | 220 | 23 | | Hydroptilidae | 70 | | 140 | 3 | _ | | 470 | 33 | 750 | U | 1,500 | 30 | 220 | 23 | | Hydroptila | | | | | 8 | <1 | | | 17 | <1 | | | 72 | 8 | | Leucotrichia | _ | | 2 | <1 | | <b>\1</b> | | | 17 | _1 | _ | | 12 | 0 | | Leptoceridae | | | 2 | <1 | | | _ | | _ | | | | _ | | | Oecetis | | | | | | | | | | | | | | | | | | | | | | | _ | | _ | | _ | | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | _ | | | | | | _ | | _ | | _ | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | _ | . 4 | | | | | | | | | | | | Petrophila | _ | | 3 | <1 | _ | | _ | | _ | | _ | | _ | | | Oct. 2 | 5, 1990 | Oct. 2 | 2, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 6, 1993 | Oct. 1 | 7, 1994 | Date | |--------|---------|--------|-----------------------------------------|--------|-----------|--------|-----------|--------|----------|--------------------------| | 3,0 | 033 | 3,9 | 951 | 3,0 | 046 | 1, | 169 | 2,0 | 093 | Total count | | Count | Percent | Organism | | | | | *************************************** | | | | | | | Insecta | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | Baetidae | | 2 | <1 | 4 | <1 | 9 | <1 | _ | | 6 | <1 | Baetis | | _ | | _ | | 2 | <1 | 1 | <1 | 1 | <1 | Pseudocloeon | | | | | | | | | | | | Ephemerellidae | | _ | | 1 | <1 | 3 | <1 | 1 | <1 | | | Ephemerella | | | | | | | | | | | | Heptageniidae | | 10 | <1 | 4 | <1 | 22 | <1 | 3 | <1 | 3 | <1 | Stenonema | | | | | | | | | | | | Isonychiidae | | _ | | | | 1 | <1 | | | _ | | Isonychia | | | | | | | | | | | | Leptohyphidae | | 9 | <1 | 3 | <1 | 14 | <1 | 1 | <1 | 5 | <1 | Tricorythodes | | | | | | | | | | | | Odonata | | | | | | | | | | | | Coenagrionidae | | 1 | <1 | | | _ | | | | 1 | <1 | Argia | | | | _ | | _ | | | | | | Enallagma | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | Capniidae | | | | | | _ | | 1 | <1 | _ | | Allocapnia | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | Corydalidae | | _ | | | | | | _ | | 2 | <1 | Corydalus | | | | | | | | | | _ | | Sialidae | | _ | | _ | | | | 1 | <1 | | | Sialis | | | | | | | | • | ~~ | | | Trichoptera | | | | | | | | | | | | Glossosomatidae | | | | 1 | <1 | 1 | <1 | _ | | | | Glossosoma | | | | • | ~1 | • | ~1 | | | | | Helicopsychidae | | | | | | | | | | 7 | <1 | Helicopsyche | | | | | | | | | | , | ~1 | Hydropsychidae | | 340 | 11 | 780 | 20 | 250 | 8 | 140 | 12 | 450 | 21 | Ceratopsyche | | 54 | 2 | 44 | 1 | 2.50 | 0 | 23 | 2 | 98 | 5 | Cheumatopsyche | | 1,100 | 37 | 1,200 | 30 | 690 | 22 | 47 | 4 | 290 | 14 | Hydropsyche | | 1,100 | 31 | 1,200 | 30 | 050 | 22 | ٠, | 7 | 290 | 17 | Hydroptilidae | | 55 | 2 | 24 | <1 | 10 | <1 | 10 | <1 | 25 | 1 | Hydroptila | | 2 | <1 | 1 | <1 | 4 | <1 | 2 | <1 | 5 | <1<br><1 | Leucotrichia | | 2 | ~1 | 1 | <b>~1</b> | | <b>\1</b> | 2 | <b>\1</b> | 3 | _1 | | | 2 | <1 | | | | | 2 | ار | | | Leptoceridae | | 2 | <1 | _ | | | | 2 | <1 | _ | | Oecetis Developmentidae | | 1 | .1 | 1 | -1 | 4 | _1 | | | 1 | 1 | Psychomylidae | | 1 | <1 | 1 | <1 | 4 | <1 | | | 1 | <1 | Psychomyla | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | Pyralidae | | _ | | | | | | _ | | | | Petrophila | Table 5. Benthic-macroinvertebrate data—Continued 01476848 - East Branch Chester Creek below Goose Creek near West Chester, Pa. (Site 51)—Continued | Date | Oct. 2 | 6, 1983 | Oct. 1 | 1, 1984 | Oct. 2 | B, 1985 | Oct. 10 | 6, 1986 | Nov. 1 | 5, 1987 | Nov. 3 | 3, 1988 | Oct. 2 | 1989 | |--------------------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2,8 | 369 | 2,8 | 374 | 4,2 | 236 | 1,5 | 514 | 12, | 174 | 13 | ,963 | 9 | 26 | | Organism | Count | Percent | Coleoptera | | | | - | | ~ | | | | | | | | | | Curculionidae | | | 1 | <1 | | | | | _ | | | | | | | Dytiscidae | 1 | <1 | | | | | _ | | | | _ | | _ | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | _ | | _ | | 1 | <1 | _ | | | | 3 | <1 | | Dubiraphia | _ | | _ | | 8 | <1 | _ | | _ | | | | 1 | <1 | | <b>Optioservus</b> | 1 | <1 | 3 | <1 | _ | | 2 | <1 | 1 | <1 | 13 | <1 | 4 | <1 | | Oulimnius | _ | | _ | | | | _ | | | | _ | | 6 | <1 | | Promoresia | | | | | _ | | | | | | _ | | | | | Stenelmis | 4 | <1 | 30 | 1 | 72 | 2 | 25 | 2 | 44 | <1 | 170 | 4 | 22 | 2 | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | _ | | _ | | | | _ | | _ | | _ | | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | _ | | - | | | | | | _ | | | | 1 | <1 | | Hymenoptera | _ | | 2 | <1 | 8 | <1 | 1 | <1 | _ | | _ | | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 920 | 32 | 950 | 33 | 1,100 | 26 | 590 | 39 | 2,900 | 24 | 440 | 11 | 55 | 6 | | Empididae | | | | | | | | | | | | | | | | Clinocera | _ | | | | _ | | _ | | _ | | | | | | | Hemerodromia | 1 | <1 | 18 | <1 | 16 | <1 | 2 | <1 | 24 | <1 | 8 | <1 | 28 | 3 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 75 | 3 | 470 | 16 | 1,300 | 31 | 78 | 5 | 860 | 7 | 340 | 9 | 32 | 3 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | | | _ | | | | | | _ | | 29 | <1 | 8 | <1 | | Hexatoma | _ | | _ | | | | | | | | | | _ | | | Tipula | _ | | | | | | | | _ | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 2 | 5, 1990 | Oct. 2 | 2, 1991 | Oct. 2 | 2, 1992 | Oct. 2 | 6, 1993 | Oct. 1 | 7, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------| | 3,0 | 033 | 3,9 | 951 | 3, | 046 | 1, | 169 | 2,0 | 093 | Total count | | Count | Percent | Organism | | | | | | | | | | | | Coleoptera | | _ | | | | _ | | | | _ | | Curculionidae | | | | _ | | _ | | _ | | _ | | Dytiscidae | | | | | | | | | | | | Elmidae | | | | 3 | <1 | | | _ | | 4 | <1 | Ancyronyx | | | | | | _ | | 1 | <1 | 1 | <1 | Dubiraphia | | 7 | <1 | 54 | 1 | 18 | <1 | 33 | 3 | 19 | <1 | Optioservus | | 3 | <1 | 1 | <1 | 1 | <1 | 6 | <1 | _ | | Oulimnius | | | | _ | | | | | | 1 | <1 | Promoresia | | 30 | 4 | 180 | 5 | 98 | 3 | 110 | 9 | 120 | 6 | Stenelmis | | | | | | | | | | | | Hydrophilidae | | | | 3 | <1 | _ | | | | | | Berosus | | | | | | | | | | | | Psephenidae | | 2 | <1 | | | | | | | 1 | <1 | Psephenus | | | | | | | | | | | | Hymenoptera | | | | | | | | | | | | Diptera | | 830 | 28 | 1,000 | 25 | 1,300 | 42 | 370 | 31 | 810 | 39 | Chironomidae | | | | | | | | | | | | Empididae | | | | | | | | | | 1 | <1 | Clinocera | | 18 | <1 | 24 | <1 | 2 | <1 | 4 | <1 | 16 | <1 | Hemerodromia | | | | | | | | | | | | Simuliidae | | 110 | 4 | 58 | 1 | 410 | 13 | 17 | 1 | 83 | 4 | Simulium | | | | | | | | | | | | Tipulidae | | 74 | 2 | 68 | 2 | 180 | 6 | 93 | 8 | 45 | 2 | Antocha | | | | | | _ | | | | 1 | <1 | Hexatoma | | 1 | <1 | _ | | | | | | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued '[<, less than; —, not found] 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28) | Date | Oct. 3 | 0, 1981 | Oct. 2 | 0, 1982 | Nov. | 1, 1983 | Oct. 1 | 9, 1984 | Oct. 2 | 5, 1985 | Oct. 3 | 0, 1986 | Nov. 1 | 7, 1987 | |-----------------------------|--------|---------|--------|-------------|-------|---------|--------|---------|--------|---------|--------|---------------------------------------|--------|---------| | Total count | 8 | 36 | 1, | 295 | 1, | 368 | 9 | 32 | 1, | 007 | 1,0 | 025 | 4, | 223 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | - | | <del></del> | | | | | | | " | · · · · · · · · · · · · · · · · · · · | | - | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 95 | 11 | 46 | 4 | 11 | <1 | | | 27 | 3 | 4 | <1 | 25 | <1 | | Nematoda (nematodes) | | | | | | | | | | | _ | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | - | | - | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | | | | | | | | | | | | | | | Amnicola | | | | | | | | | _ | | | | _ | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 1 | <1 | 3 | <1 | 1 | <1 | | | 1 | <1 | | | 1 | <1 | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | | | | | | | | | | | | Pisidium | | | | | | | | | _ | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | _ | | | | | | 11 | 1 | | | | | | Lumbriculida | | | | | | | | | ** | • | | | | | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | _ | | _ | | _ | | | | _ | | _ | | | | | Naididae | 29 | 3 | 84 | 6 | | | | | | | 5 | <1 | 1,300 | 31 | | Arthropoda (arthropods) | 25 | 3 | 04 | U | | | | | | | 3 | <1 | 1,500 | 31 | | Acariformes | | | | | | | | | | | | | | | | | 45 | 5 | 65 | 5 | 2 | <1 | 2 | <1 | 4 | <1 | 4 | <1 | | | | Hydrachnidia<br>Crustacea | 43 | 3 | 03 | 3 | 2 | <1 | 2 | <1 | * | <1 | * | <1 | _ | | | | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | _ | | | | | | _ | | | | 1 | <1 | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | _ | _ | _ | _ | | | | | | | | | | Caecidotea | _ | | 2 | <1 | 2 | <1 | | | | | | | 1 | <1 | | Podocopa | | | | | _ | | | | | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | | | 1 | | 2 | <1 | _ | | 1 | <1 | | | | Pseudocloeon | | | _ | | 1 | <1 | 2 | <1 | 8 | <1 | _ | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | | | _ | | _ | | _ | | _ | | | | 3 | <1 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | _ | | _ | | | | _ | | _ | | _ | | | Stenacron | _ | | | | _ | | _ | | _ | | | | | | | Stenonema | 12 | 1 | 10 | <1 | 13 | <1 | 7 | <1 | 2 | <1 | 19 | 2 | 11 | <1 | | Isonychiidae | | | | | | | | | | | | _ | | | | Isonychia | _ | | _ | | _ | | 1 | <1 | 5 | <1 | 5 | <1 | 5 | <1 | | y | | | | | | | * | ~- | | ~- | , | ~~ | - | 7. | | Nov. 8 | 3, 1988 | Oct. 3 | 1, 1989 | Nov. | 1, 1990 | Nov. 1 | 4, 1991 | Nov. 1 | 6, 1992 | Nov. 2 | 4, 1993 | Nov. 3 | 3, 1994 | Date | |--------|---------|---------|---------|-------|---------|-------------|---------|----------------------------------------|---------|--------|---------|--------|---------|---------------------------------------------------------------------------------------| | 1 2 | ,624 | 1, | 797 | 1, | 492 | 2, | 007 | 2, | 514 | 2, | 090 | 1, | 779 | Total count | | Count | Percent | Count | Percen | t Organism | | | | | | | | | | ······································ | | | | | | Platyhelminthes (flatv/orms) Turbellaria Tricladida | | 0 | 2 | 52 | 3 | 180 | 12 | 28 | 1 | 190 | 8 | 89 | 4 | 20 | 1 | Planariic'ae | | v | - | 2 | <1 | 100 | 12 | 20 | • | 130 | Ü | 00 | 7 | 3 | <1 | Nematoda (nematodes) | | _ | | 2 | <1 | | | <del></del> | | _ | | _ | | 3 | <1 | Nematoda (nematodes) Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | - | | 2 | <1 | _ | | | | _ | | - | | | | Prostoma Mollusca (molluscs) Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda<br>Hydroblidae | | | | | | | | | | 1 | <1 | | | | | Amnicola | | • | | | | _ | | _ | | 1 | <1 | _ | | _ | | Basommatophora Ancylida | | - | | _ | | _ | | _ | | _ | | _ | | 5 | <1 | Ferri~sia | | | | | | | | | | | | | | | | Planorbidae | | - | | _ | | _ | | _ | | 1 | <1 | _ | | 3 | <1 | Gyravdus | | | | | | | | | | | | | | | | Bivalvia<br>Veneroida<br>Sphaeriidae | | | <1 | _ | | _ | | _ | | | | _ | | _ | | Pisidium | | | | _ | | _ | | _ | | _ | | _ | | _ | | Annelida (segmented worms)<br>Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | - | | 1 | <1 | _ | | _ | | 1 | <1 | | _ | _ | _ | Lumbriculidae<br>Tubificida | | 1 | <1 | 61 | 3 | 5 | <1 | 84 | 4 | 160 | 6 | 140 | 7 | 170 | 9 | Naididae<br>Arthropoda (arthropods)<br>Acariformes | | i | <1 | 9 | <1 | 4 | <1 | 4 | <1 | 250 | 10 | 37 | 2 | 15 | <1 | Hydrachnidia<br>Crustacea | | | | | | | | | | | | | | | | Amphipoda | | | | | | | .1 | | | - | -1 | | .1 | | | Gammar'dae | | - | | | | 1 | <1 | _ | | 5 | <1 | 1 | <1 | _ | | <i>Gam∙narus</i><br>Isopoda<br>Asellida∈ | | _ | | 1 | <1 | | | _ | | 3 | <1 | _ | | _ | | Caec'dotea | | - | | _ | - | _ | | | | 1 | <1 | - | | _ | | Podocopa<br>Insecta | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | — | | 1 | <1 | 1 | <1 | _ | | 4 | <1 | _ | | _ | | Baetis | | _ | | 11 | <1 | _ | | _ | | _ | | | | | | Pseudocloeon | | ., | . 4 | | _ | | | | | 100 | _ | 20 | _ | _ | _ | Ephemer ellidae | | 16 | <1 | 52<br>1 | 3<br><1 | | | 15 | <1 | 180 | 7 | 39 | 2 | 2 | <1 | <i>Ephemerella</i><br>Heptageniidae<br><i>Epeo</i> ~is | | _ | | | ~1 | _ | | _ | | _ | | _ | | 1 | <1 | | | 11 | <1 | 41 | 2 | 2 | <1 | 31 | 2 | 44 | 2 | 17 | <1 | 48 | 3 | | | 5 | <1 | 6 | <1 | _ | | 3 | <1 | | | 1 | <1 | 5 | <1 | | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28)—Continued | Date | Oct. 30 | , 1981 | Oct. 20 | 0, 1982 | Nov. 1 | , 1983 | Oct. 19 | 9, 1984 | Oct. 2 | 5, 1985 | Oct. 3 | 0, 1986 | Nov. 1 | 7, 1987 | |------------------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------| | Total count | 83 | 16 | 1,2 | 295 | 1,3 | 368 | 93 | 32 | 1,0 | 007 | 1,0 | 025 | 4,2 | 223 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | 1 | <1 | | | | | | | | | _ | | | Leptophlebiidae | _ | | | | _ | | _ | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 3 | <1 | 1 | <1 | _ | | _ | | | | _ | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | - | | _ | | | | 1 | <1 | _ | | 1 | <1 | | Nemouridae | | | | | | | | | | | _ | | _ | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | _ | | 1 | <1 | 1 | <1 | 6 | <1 | 10 | 1 | 5 | <1 | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | _ | | | | 1 | <1 | _ | | _ | | _ | | _ | | | Trichoptera | | | | | | | | | | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | | | _ | | | | _ | | | | _ | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | _ | | | | | | | | _ | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 51 | 6 | 42 | 3 | 360 | 26 | 140 | 15 | 220 | 22 | 180 | 18 | 37 | <1 | | Cheumatopsyche | 10 | 1 | 4 | <1 | 44 | 3 | 30 | 3 | 48 | 5 | 7 | <1 | 29 | <1 | | Hydropsyche | 36 | 4 | 45 | 3 | 260 | 19 | 34 | 4 | 44 | 4 | 60 | 6 | 270 | 6 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | _ | | 3 | <1 | | | _ | | 7 | <1 | 12 | 1 | _ | | | Leucotrichia | 130 | 15 | 330 | 25 | 310 | 22 | 3 | <1 | 11 | 1 | 3 | <1 | _ | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | | | _ | | | | _ | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | | | _ | | | | _ | | | | | | _ | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyla | _ | | | | | | _ | | | | | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | 1 | <1 | | | _ | | | | | | _ | | | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | _ | | _ | | _ | | _ | | | | _ | | _ | | | Macronychus | | | 1 | <1 | _ | | _ | | _ | | _ | | | | | Microcylloepus | | | _ | | _ | | | | - | | _ | | 1 | <1 | | Optioservus | 56 | 7 | 28 | 2 | 17 | 1 | 4 | <1 | 14 | 1 | 5 | <1 | 43 | 1 | | Oulimnius | _ | | _ | | _ | | | | _ | | _ | | | | | Stenelmis | 10 | 1 | 8 | <1 | _ | | | | 3 | <1 | _ | | 2 | <1 | | Hydrophilidae | 1 | <1 | | | | | 1 | <1 | | | | | _ | | | Berosus | | | 1 | <1 | | | _ | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | _ | | _ | | | | _ | | | | _ | | 1 | <1 | | Hymenoptera | | | _ | | _ | | _ | | 1 | <1 | 2 | <1 | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 280 | 33 | 500 | 38 | 170 | 12 | 530 | 56 | 450 | 45 | 430 | 43 | 1,900 | 45 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 16 | 2 | 32 | 2 | 1 | <1 | _ | | 2 | <1 | 1 | <1 | | | | Muscidae | | | | | | | | | | | | | | | | Limnophora | | | 1 | <1 | _ | | | | _ | | | | | | | Nov. 8, | | *************************************** | 1, 1989 | Nov. 1 | | | 4, 1991 | _ | 5, 1992 | Nov. 2 | | | , 1994 | Date | |---------|---------|-----------------------------------------|---------|--------|---------|-------|---------|-------|---------|--------|---------|-------|-----------|---------------------------------| | 1 2,6 | | 1,7 | | 1,4 | | 2,0 | | 2,5 | | | 090 | | 779 | Total count | | ount I | Percent | Count | Percent | Organism | | | | | | | | | | | | | | | | Ephemeropt ra | | | | | | | | | | | | | | | | Leptohyphidae | | | | | | | | _ | | 22 | <1 | 1 | <1 | 1 | <1 | Tricarythodes | | | | _ | | | | _ | | _ | | | | 1 | <1 | Leptoph lebiidae | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | _ | | _ | | _ | | _ | | _ | | | | | | Arg'a | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capnlid ** | | _ | | 1 | <1 | _ | | _ | | | | _ | | _ | | Allcrapnia | | _ | | 1 | <1 | | | | | | | _ | | 1 | <1 | Nemouridae | | | | | | | | | | | | | | | | Taeniop+erygidae | | | | 11 | <1 | | | 6 | <1 | 1 | <1 | 5 | <1 | 4 | <1 | Taer lopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | _ | | | | | | | | | | _ | | _ | | Rha novelia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Brachycantridae | | _ | | | | _ | | | | | | 1 | <1 | _ | | Micrasema | | _ | | | | | | | | _ | | • | ~1 | | | Glossosomatidae | | 3 | _1 | | | | | 1 | _1 | | <1 | 2 | -1 | | | | | 3 | <1 | | | | | 1 | <1 | 1 | <1 | Z | <1 | _ | | Glorosoma | | 050 | • • | 440 | 24 | 220 | | 450 | 0 | 450 | _ | 150 | • | | | Hydrop≈ychidae | | 370 | 14 | 440 | 24 | 220 | 15 | 170 | 9 | 150 | 6 | 170 | 8 | 220 | 12 | Ceratopsyche | | 140 | 5 | 110 | 6 | 68 | 5 | 35 | 2 | 33 | 1 | 33 | 2 | 42 | 2 | Cheumatopsych | | 180 | 7 | 190 | 11 | 150 | 10 | 150 | 8 | 160 | 6 | 160 | 8 | 79 | 4 | Hydropsyche | | | | | | | | | | | | | | | | Hydroptlidae | | 8 | <1 | _ | | 6 | <1 | 56 | 3 | 170 | 7 | 12 | <1 | 21 | 1 | Hydroptila | | 16 | <1 | 3 | <1 | 7 | <1 | 110 | 6 | 12 | <1 | 27 | 1 | _ | | Leu rotrichia | | | | | | | | | | | | | | | | Leptoceridae | | - | | _ | | | | _ | | _ | | | | 1 | <1 | Mystacides | | | | | | | | | | | | | | | | Philopo + amidae | | _ | | | | 1 | <1 | 4 | <1 | 52 | 2 | 3 | <1 | _ | | Chimarra | | | | | | | | | | | | | | | | Psychomyiidae | | _ | | 3 | <1 | _ | | _ | | 1 | <1 | 7 | <1 | 2 | <1 | Psychomyia | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | _ | | _ | | _ | | | | | | | | | | Helichus | | | | | | | | | | | | | | | | Elmidae | | _ | | _ | | | | | | 1 | <1 | 1 | <1 | | | Duhiraphia | | | | _ | | | | _ | | _ | • | | - | | | Marronychus | | | | _ | | _ | | | | _ | | _ | | _ | | Microcylloepus | | 40 | 2 | 42 | 2 | 20 | 1 | 14 | <1 | 39 | 2 | 59 | 3 | 18 | 1 | Optioservus | | _ | - | 1 | <1 | _ | - | | | _ | _ | 2 | <1 | 2 | <1 | Ou!imnius | | <br>5 | <1 | 12 | <1 | 2 | <1 | | | 11 | <1 | 2 | <1 | 3 | <1 | Stenelmis | | | ~1 | | ~1 | | ~1 | _ | | | ~1 | ۲. | <1 | | <b>\1</b> | Hydrop hilidae | | | | _ | | | | _ | | _ | | _ | | _ | | Hydrophilidae<br><i>Berrsus</i> | | | | _ | | _ | | _ | | _ | | _ | | _ | | | | | | • | | • | | | | | | _ | _ | | | Psephenidae | | | | 3 | <1 | 2 | <1 | _ | | | | 5 | <1 | | | Psenhenus | | | | | | _ | | _ | | _ | | _ | | _ | | Hymenopte <sup>-</sup> a | | | | | | | | | | | | | | | | Diptera | | ,300 | 50 | 410 | 23 | 560 | 37 | 770 | 39 | 650 | 26 | 820 | 39 | 660 | 37 | Chironomidae | | | | | | | | | | | | | | | | Empidi ⁴ae | | 8 | <1 | 22 | 1 | 5 | <1 | 12 | <1 | 18 | <1 | 7 | <1 | 19 | 1 | Hemerodromia | | | | | | | | | | | | | | | | Muscid ™ | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01478120 - East Branch White Clay Creek at Avondale, Pa. (Site 28)—Continued | Date | Oct. 3 | 0, 1981 | Oct. 2 | 0, 1982 | Nov. | 1, 1983 | Oct. 1 | 9, 1984 | Oct. 2 | 5, 1985 | Oct. 3 | 0, 1986 | Nov. 1 | 7, 1987 | |---------------|--------|---------|--------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 8 | 36 | 1, | 295 | 1, | 368 | 9 | 32 | 1,0 | 007 | 1,0 | 025 | 4, | 223 | | Organism | Count | Percent | Court | Percent | | Diptera | | | | | | | | | ***** | | | | | | | Psychodidae | _ | | | | | | | | 3 | <1 | _ | | _ | | | Telmatoscopus | _ | | _ | | _ | | 1 | <1 | | | _ | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 9 | 1 | 13 | 1 | 3 | <1 | 19 | 2 | 15 | 2 | 12 | 1 | 52 | 1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 51 | 6 | 74 | 6 | 170 | 12 | 150 | 16 | 120 | 12 | 270 | 27 | 540 | 13 | | Dicranota | _ | | | | _ | | _ | | _ | | _ | | | | | Tipula | _ | | _ | | _ | | | | _ | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 8 | 3, 1988 | Oct. 3 | 1, 1989 | Nov. | 1, 1990 | Nov. 1 | 4, 1991 | Nov. 1 | 6, 1992 | Nov. 2 | 4, 1993 | Nov. 3 | 3, 1994 | Date | |--------|---------|--------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------| | 1 2 | ,624 | 1, | 797 | 1, | 492 | 2, | 007 | 2, | 514 | 2, | 090 | 1, | 779 | Total connt | | Count | Percent Organism | | | | | | | | | | | | | | | | Diptera | | _ | | _ | | | | | | | | _ | | | | Psychod` lae | | _ | | _ | | | | | | | | | | | | Telmatoscopus | | | | | | | | | | | | | | | | Simuliid | | 21 | <1 | 38 | 2 | 17 | 1 | 14 | <1 | 3 | <1 | 9 | <1 | 22 | 1 | Simvlium | | | | | | | | | | | | | | | | Tipulida: | | 450 | 17 | 270 | 15 | 240 | 16 | 500 | 25 | 350 | 14 | 440 | 21 | 410 | 23 | Antecha | | _ | | | | _ | | _ | | | | | | 1 | <1 | Dicranota | | | | _ | | 1 | <1 | | | | | _ | | _ | | Tipu!a | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01478190 - Middle Branch White Clay Creek near Wickerton, Pa. (Site 29) | Date | Oct. 29 | 9, 1981 | Oct. 2 | 0, 1982 | Nov. 2 | 2, 1983 | Oct. 18 | 8, 1984 | Oct. 2 | 5, 1985 | Dec. 2 | 2, 1986 | Oct. 2 | ጉ, 1987 | |--------------------------------|-------------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------| | Total count | 78 | 30 | 1, | 697 | 8 | 33 | 1,7 | 742 | 1, | 265 | 8 | 98 | 1, | 314 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | - | | | | | | | | 4 | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 1 <b>60</b> | 21 | 2 | <1 | 10 | 1 | 16 | <1 | 24 | 2 | 13 | 1 | 2 | <1 | | Nematoda (nematodes) | _ | | | | _ | | | | _ | | | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | 1 | <1 | 1 | <1 | | | | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | _ | | _ | | | | | | 1 | <1 | | | | Physidae | | | | | | | | | | | - | | | | | Physa | _ | | 1 | <1 | _ | | | | | | _ | | _ | | | Planorbidae | | | • | | | | | | | | | | | | | Gyraulus | | | | | _ | | | | _ | | | | | | | Helisoma | | | | | | | _ | | | | 1 | <1 | | | | Mesogastropoda | | | | | | | | | | | 1 | <1 | | | | | | | | | | | | | | | | | | | | Hydrobiidae<br><i>Amnicola</i> | | | | | | | | | | | | | | | | Aninicoia<br>Bivalvia | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | _ | | | | _ | | _ | | | | | Pisidium | | | | | _ | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | _ | | _ | | _ | | 1 | <1 | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 23 | 3 | - | | _ | | _ | | 5 | <1 | 9 | 1 | 11 | <1 | | Tubificidae | _ | | | | _ | | _ | | | | _ | | 2 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 9 | 1 | 6 | <1 | 2 | <1 | | | 10 | <1 | | | _ | | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | _ | | _ | | _ | | | | _ | | _ | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | 4 | <1 | | | _ | | | | 1 | <1 | | | 3 | <1 | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | 1 | <1 | _ | | 14 | <1 | 6 | <1 | 2 | <1 | 1 | <1 | | Pseudocloeon | _ | | _ | | _ | | 2 | <1 | _ | | | | | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | | | | | 1 | <1 | 2 | <1 | 4 | <1 | 2 | <1 | 6 | <1 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | | | _ | | | | | | | | _ | | | Stenonema | 1 | <1 | 6 | <1 | 25 | 3 | 32 | 2 | 22 | 2 | 7 | <1 | | | | Isonychiidae | - | | - | | | - | | _ | | - | - | | | | | Isonychia | | | 1 | <1 | 9 | 1 | 4 | <1 | 4 | <1 | 3 | <1 | 10 | <1 | | | | | • | | • | - | • | | • | | • | | | | | | | | | | | | | | | | | | | | | | , 1988 | Oct. 3 | 1, 1989 | Nov. 9 | 9, 1990 | Nov. 1 | 3, 1991 | Nov. 1 | 2, 1992 | Nov. 2 | 4, 1993 | Nov. 8 | 3, 1994 | Date | |-----------------|-----------|--------|---------|--------|---------|--------|---------|--------|------------|--------|---------|--------|-----------|-----------------------------| | <sup>1</sup> 3, | 440 | 1,4 | 438 | 2,0 | 008 | 2,4 | 164 | 1,4 | <b>158</b> | 8. | 29 | 1,9 | 912 | Total count | | ount | Percent | Count | | <del>-</del> | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 3 | 2 | 74 | 5 | 47 | 2 | 39 | 2 | 67 | 4 | _ | | 100 | 5 | Planariidae | | _ | | 2 | <1 | 1 | <1 | _ | | | | | | | | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis vorms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastem matidae | | _ | | 5 | <1 | 3 | <1 | _ | | | | | | 5 | <1 | Prostoma | | | | | | | | | | | | | | _ | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | _ | | | | 1 | <1 | 1 | <1 | 1 | <1 | | | _ | | Ferrissia | | | | | | • | ~* | • | ~. | • | ~. | | | | | Physidae | | | | _ | | | | _ | | _ | | | | | | Physe | | _ | | | | _ | | | | | | | | | | Planorbic'ae | | | | | | 1 | <1 | | | 1 | <1 | | | | | Gyraulus | | _ | | | | | <1 | | | 1 | <1 | _ | | | | Helisoma | | _ | | | | _ | | _ | | | | _ | | | | | | | | | | | | | | | | | | | | Mesogastropcda | | | | | | | | | | | | _ | | | | Hydrobiidae | | - | | | | _ | | | | | | 1 | <1 | | | Amnicola | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | - | | | | _ | | _ | | 1 | <1 | | | _ | | Sphaeriid = e | | - | | | | 1 | <1 | | | | | | | | | Pisidim | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | - | | | | 1 | <1 | | | | | _ | | _ | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | 5 | <1 | 150 | 11 | 36 | 2 | 3 | <1 | 20 | 1 | _ | | 15 | <1 | Naididae | | _ | | | | _ | | | | | | _ | | | | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | _ | | 8 | <1 | 9 | <1 | 9 | <1 | 13 | <1 | _ | | 19 | 1 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | _ | | 1 | <1 | _ | | | | 1 | <1 | | | | | Cyclopoida | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | 3 | <1 | 36 | 3 | 3 | <1 | | | 1 | <1 | 1 | <1 | | | Caecidotea | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 8 | <1 | 3 | <1 | 11 | <1 | 5 | <1 | 20 | 1 | _ | | | | Baetis | | _ | | _ | | 4 | <1 | _ | | 4 | <1 | | | | | Pseudocloeon | | | | | | • | ~~ | | | • | ~* | | | | | Ephemerellidae | | 16 | <1 | 6 | <1 | 6 | <1 | 4 | <1 | 19 | 1 | 3 | <1 | 12 | <1 | Epherrerella | | 10 | ~1 | J | ~1 | U | 71 | 7 | _1 | 19 | 1 | , | _1 | 12 | ~1 | Heptageniidae | | _ | | 1 | <1 | _ | | | | | | | | _ | | Epeorus | | 21 | <1 | 12 | <1 | 22 | 1 | 32 | 1 | 25 | 2 | 17 | 2 | 11 | <1 | Steno rema | | 21 | <b>\1</b> | 12 | <1 | 44 | 1 | 34 | 1 | دے | 2 | 17 | 2 | 11 | <b>\1</b> | Isonychiidae | | | | | | - | -1 | 25 | | 15 | | _ | .4 | | _1 | | | _ | | | | 7 | <1 | 25 | 1 | 15 | 1 | 5 | <1 | 4 | <1 | Isonychia | Table 5. Benthic-macroinvertebrate data—Continued 01478190 - Middle Branch White Clay Creek near Wickerton, Pa. (Site 29)—Continued | Date | Oct. 2 | 9, 1981 | Oct. 2 | 0, 1982 | Nov. 2 | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 2 | 5, 1985 | Dec. 2 | 2, 1986 | Oct. 2 | 9, 1987 | |------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-----------|--------|---------|--------|---------| | Total count | 7 | 80 | 1,0 | 697 | 8 | 33 | 1, | 742 | 1, | 265 | 8 | 98 | 1, | 314 | | Organism | Count | Percent | Count | Percen | | Ephemeroptera | | | | | | | | | | | | | | | | Potamanthidae | | | | | | | | | | | | | | | | Anthopotamus | | | _ | | _ | | _ | | _ | | _ | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | _ | | | | | | _ | | | | 1 | <1 | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | _ | | | | | | | | | | | | _ | | | Nigronia | 1 | <1 | _ | | | | | | 1 | <1 | _ | | 2 | <1 | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | -<br>Apatania | _ | | | | | | | | _ | | | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | | | | | | 7 | <1 | 2 | <1 | | | _ | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 21 | 3 | 130 | 8 | 120 | 14 | 460 | 27 | 180 | 14 | 89 | 10 | 35 | 3 | | Cheumatopsyche | 80 | 10 | 440 | 26 | 180 | 21 | 150 | 9 | 64 | 5 | 210 | 23 | 71 | 5 | | Hydropsyche | 61 | 8 | 600 | 35 | 200 | 24 | 230 | 14 | 110 | 8 | 140 | 15 | 270 | 21 | | Hydroptilidae | - | • | - | - | | | 200 | | | · | | | | | | Hydroptila | 1 | <1 | 2 | <1 | 3 | <1 | 1 | <1 | 10 | <1 | 5 | <1 | 9 | <1 | | Leucotrichia | _ | ~, | 10 | <1 | 34 | 4 | 4 | <1 | 8 | <1 | 18 | 2 | 20 | 2 | | Leptoceridae | | | 10 | ~1 | 34 | 7 | 7 | ~1 | 0 | <b>\1</b> | 10 | - | 20 | L | | Oecetis Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | | | | | | _ | | _ | | _ | | | | | Chimarra | | | | | | | | <1 | 4 | .1 | | -1 | | | | Cilinaria<br>Wormaldia | | | | | | | 4 | <1 | 4 | <1 | 5 | <1 | | | | | | | | | | | | | _ | | _ | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | | | _ | | | | | | 1 | <1 | _ | | _ | | | Psychomyildae | | | | | | | | | | | | | | | | Psychomyia | | | _ | | _ | | _ | | | | _ | | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | _ | | _ | | | | | | | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | _ | | 1 | <1 | _ | | _ | | | | _ | | _ | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | _ | | | | | | _ | | _ | | | | | A. varlegata | | | _ | | _ | | _ | | _ | | 2 | <1 | _ | | | Dubiraphia | _ | | _ | | _ | | _ | | | | 2 | <1 | _ | | | Microcylloepus | _ | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | | Optioservus | 3 | <1 | 18 | 1 | 10 | 1 | 18 | 1 | 34 | 3 | 48 | 5 | 68 | 5 | | Oulimnius | _ | | _ | | _ | | | | 7 | <1 | 2 | <1 | 1 | <1 | | Stenelmis | 2 | <1 | 11 | <1 | _ | | 7 | <1 | 12 | <1 | 22 | 2 | 47 | 4 | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | | _ | | | | | | 1 | <1 | 2 | <1 | | Diptera | _ | | _ | | 1 | <1 | _ | | _ | | _ | - | _ | - | | Ceratopogonidae | | | _ | | _ | | _ | | | | | | 1 | <1 | | Chironomidae | 190 | 24 | 310 | 18 | 110 | 13 | 620 | 36 | 520 | 40 | 140 | 15 | 520 | 40 | | Empididae | -50 | | | | | -0 | | | | | | | | 10 | | Hemerodromia | 150 | 19 | 15 | <1 | 6 | <1 | 4 | <1 | 34 | 3 | 8 | <1 | 1 | <1 | | Simuliidae | 130 | 10 | 13 | ~1 | v | ~1 | 7 | ~1 | 07 | • | J | -1 | • | ~1 | | Junumae | | | | | | | | | | | | | | | | | , 1988 | Oct. 3 | 1, 1989 | Nov. 9 | , 1990 | Nov. 1 | 3, 1991 | Nov. 12 | 2, 1992 | Nov. 2 | 4, 1993 | Nov. 8 | , 1994 | Date | |-----------------|---------|--------|---------|--------|---------|--------|-----------|---------|---------|--------|---------|--------|-----------|----------------------------| | <sup>1</sup> 3, | 440 | 1,4 | 438 | 2,0 | 008 | 2, | 464 | 1,4 | 158 | 8 | 29 | 1,9 | 912 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Potaman <sup>+</sup> hidae | | _ | | 1 | <1 | _ | | _ | | _ | | | | _ | | Anth potamus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniida• | | | | 5 | <1 | _ | | | | 2 | <1 | | | _ | | Allocapnia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydali lae | | _ | | _ | | | | _ | | 2 | <1 | _ | | _ | | Corydalus | | 3 | <1 | | | | | | | _ | | _ | | | | Nigmaia | | • | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | 3 | _1 | | | | | | | | | | | | | Apatanidae<br>Apatania | | 3 | <1 | _ | | | | _ | | _ | | _ | | | | | | • | | | | | | | | | | | | | | Glossosomatidae | | 3 | <1 | | | _ | | | | _ | | _ | | _ | | Glossosoma | | | | | | | | | | | | | | | | Hydrops/chidae | | 760 | 22 | 210 | 15 | 430 | 22 | 380 | 15 | 220 | 15 | 37 | 4 | 390 | 21 | Ceratopsyche | | 450 | 13 | 90 | 6 | 92 | 5 | 140 | 6 | 55 | 4 | 150 | 18 | 170 | 9 | Cheumatopsyche | | 580 | 17 | 260 | 19 | 180 | 9 | 550 | 22 | 280 | 19 | 230 | 28 | 160 | 8 | Hydropsyche | | | | | | | | | | | | | | | | Hydroptilidae | | 210 | 6 | 10 | <1 | 120 | 6 | 13 | <1 | 34 | 2 | 2 | <1 | 54 | 3 | Hydrotila | | _ | | _ | | 4 | <1 | 88 | 4 | 84 | 6 | 130 | 16 | 99 | 5 | Leucytrichia | | | | | | | | | | | | | | | | Leptoceridae | | | | _ | | | | _ | | _ | | | | 1 | <1 | Oece†!s | | | | | | | | | | | | | | | | Philopotamidae | | _ | | 1 | <1 | 1 | <1 | 28 | 1 | 46 | 3 | 25 | 3 | 88 | 5 | Chim arra | | | | 1 | <1 | _ | | | - | _ | | | , | _ | 3 | Worraldia | | | | • | •• | | | | | | | | | | | Polycentropodidae | | | | | | 4 | <1 | 2 | <1 | | | | | | | Polycentropus | | | | _ | | • | ~1 | 2 | <b>\1</b> | | | _ | | | | Psychomylidae | | | | | | 5 | <1 | 7 | <1 | 5 | <1 | 1 | ۔ 1 | 4 | <b>_1</b> | | | _ | | _ | | 3 | <1 | , | <1 | 3 | <1 | 1 | <1 | 4 | <1 | Psychomyla | | | | | | | | | | | | | | | | Uenoidae | | | | _ | | _ | | _ | | _ | | | | 1 | <1 | Neophylax | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | _ | | _ | | _ | | | | 1 | <1 | _ | | _ | | Helichus | | | | | | | | | | | | | | | | Elmidae | | _ | | | | | | - | | 1 | <1 | 1 | <1 | | | Ancyronyx | | _ | | 2 | <1 | _ | | _ | | | | | | _ | | A. variegata | | | | | | | | | | 1 | <1 | | | | | Dubi⁻aphia | | _ | | _ | | | | _ | | | | | | | | Microcylloepus | | 11 | <1 | 7 | <1 | 4 | <1 | 12 | <1 | 17 | 1 | 8 | 1 | 67 | 4 | Optioservus | | _ | | | | _ | | 1 | <1 | _ | | _ | | 5 | <1 | Oulimnius | | 13 | <1 | 1 | <1 | 7 | <1 | 2 | <1 | 3 | <1 | 16 | 2 | 23 | 1 | Stenelmis | | | | | | | | | | | | | - | | | Psephenidae | | 5 | <1 | | | _ | | 1 | <1 | 2 | <1 | | | 12 | <1 | Psephenus | | _ | | _ | | | | _ | | | | _ | | | | Diptera | | | | | | | | _ | | | | | | _ | | Ceratopogonidae | | ,000 | 29 | 330 | 24 | 760 | 38 | 890 | 36 | 390 | 26 | 110 | 12 | 390 | 21 | Chironomidae | | ,000 | 29 | 330 | 24 | /00 | 36 | 050 | 30 | 390 | 20 | 110 | 13 | 390 | 21 | | | • | .1 | 20 | ^ | _ | .4 | | .4 | • | .4 | • | | • | | Empididae | | 3 | <1 | 28 | 2 | 6 | <1 | 8 | <1 | 3 | <1 | 3 | <1 | 9 | <1 | Hemerodromia | | | _ | | _ | _ | _ | | _ | | _ | _ | _ | | _ | Simuliidae | | 110 | 3 | 74 | 5 | 2 | <1 | 4 | <1 | 14 | <1 | 2 | <1 | 33 | 2 | Simulium | Table 5. Benthic-macroinvertebrate data—Continued ## 01478190 - Middle Branch White Clay Creek near Wickerton, Pa. (Site 29)—Continued | Date | Oct. 2 | 9, 1981 | Oct. 2 | 0, 1982 | Nov. 2 | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 2 | 5, 1985 | Dec. 2 | 2, 1986 | Oct. 2 | ે, 1987 | |-------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 7 | 80 | 1,0 | 697 | 8 | 33 | 1, | 742 | 1, | 265 | 8 | 98 | 1, | 314 | | Organism | Count | Percent | Diptera | | | | | | | | | | | | | | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | | | 110 | 6 | 120 | 14 | 140 | 8 | 200 | 15 | 160 | 18 | 230 | 18 | | Hexatoma | | | | | | | | | | | | | | | | Tipula | 1 | <1 | | | | | | | | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 3 | 1, 1988 | Oct. 3 | 1, 1989 | Nov. 9 | 9, 1990 | Nov. 1 | 3, 1991 | Nov. 1 | 2, 1992 | Nov. 2 | 4, 1993 | Nov. | 3, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|-------------| | 1 3 | ,440 | 1,4 | 438 | 2,0 | 800 | 2, | 464 | 1,4 | 458 | 8 | 29 | 1, | 912 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Tipulidae | | 80 | 5 | 120 | 9 | 240 | 12 | 220 | 9 | 110 | 7 | 87 | 10 | 240 | 13 | Anto:ha | | 3 | <1 | | | _ | | _ | | _ | | _ | | _ | | Hexatoma | | _ | | _ | | | | | | | | | | _ | | Tipu!a | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01478220 - West Branch White Clay Creek near Chesterville, Pa. (Site 30) | Date | Oct. 2 | 9, 1981 | Oct. 2 | 0, 1982 | Nov. | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 2 | 5, 1985 | Nov. 2 | 5, 1986 | Oct. 2 | 9, 1987 | |--------------------------------------------|--------|---------|--------|---------|-------|---------|--------|---------|--------|----------|--------|---------|--------|---------| | Total count | 1,2 | 216 | 2, | 270 | 7 | '94 | 1, | 232 | 8 | 36 | 1, | 079 | 1, | 665 | | Organism | Count | Percent | Coun | Percent | | Cnidaria (cnidarians) | | | | | | | | | | ******** | | | | | | Hydrozoa | | | | | | | | | | | | | | | | Hydroida | | | | | | | | | | | | | | | | Hydridae | | | | | | | | | | | | | | | | Hydra | 1 | <1 | | | _ | | | | | | _ | | _ | | | Platyhelminthes (flatworms)<br>Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planartidae | 2 | <1 | 2 | <1 | 14 | 2 | 1 | <1 | 2 | <1 | 4 | <1 | 1 | <1 | | Nematoda (nematodes) | | | _ | | | | | | | | | | | | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | _ | | 4 | <1 | 1 | <1 | 5 | <1 | | | 2 | <1 | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | 1 | <1 | _ | | 1 | <1 | 1 | <1 | | | | | | Physidae | | | • | ~, | | | • | •, | • | ~, | | | | | | Physa | | | | | 1 | <1 | | | | | | | | | | Planorbidae | | | _ | | 1 | <1 | | | | | | | | | | Helisoma | 1 | <1 | | | | | | | | | | | | | | | 1 | <1 | | | _ | | | | _ | | | | _ | | | Annelida (segmented worms) | | | | | | | | .1 | | | | | | | | Oligochaeta | _ | | | | 4 | <1 | 1 | <1 | | | _ | | _ | | | Lumbriculida | | | | | | | | | _ | | _ | _ | | | | Lumbriculidae | | | _ | | | | | | 1 | <1 | 1 | <1 | _ | | | Tubificida | | | | | | | | | | | | | _ | _ | | Naididae | 4 | <1 | | | _ | | | | | | | | 8 | <1 | | Arthropoda (arthropods) Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 14 | 1 | 25 | 1 | 48 | 6 | | | 6 | <1 | 1 | <1 | _ | | | Crustacea | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | <b>Baetis</b> | 1 | <1 | | | | | 19 | 2 | | | 1 | <1 | 5 | <1 | | Pseudocloeon | 8 | <1 | 24 | 1 | 2 | <1 | 34 | 3 | 7 | <1 | | | 17 | 1 | | Caenidae | | | | | | | | | | | | | | | | Caenis | | | | | 1 | <1 | _ | | | | | | | | | Ephemerellidae | | | | | - | - | | | | | | | | | | Ephemerella | 2 | <1 | 2 | <1 | _ | | 13 | 1 | 16 | 2 | 27 | 2 | 30 | 2 | | Heptageniidae | - | | - | •• | | | | • | - • | - | | - | -• | _ | | Epeorus | _ | | | | | | | | _ | | | | | | | Stenonema Stenonema | 5 | <1 | 19 | <1 | 21 | 3 | 29 | 2 | 32 | 4 | 21 | 2 | 65 | 4 | | Isonychiidae | • | 7.1 | 1, | | | • | 23 | | 72 | * | | | | - | | Isonychia | 5 | <1 | 7 | <1 | 12 | 2 | 14 | 1 | 19 | 2 | 27 | 2 | 110 | 6 | | Leptophlebiidae | J | ~1 | , | ~1 | 16 | L | 1.4 | 1 | 19 | L | 61 | L | 110 | U | | Leptophieondae<br>Habrophlebia | | | | | | | | | 1 | 1ر | | | | | | глаогоршевіа | | | _ | | | | _ | | 1 | <1 | | | _ | | | Oct. 31 | 1, 1988 | Oct. 3 | 1, 1989 | Nov. 9 | , 1990 | Nov. 1 | 3, 1991 | Nov. 1 | 6, 1992 | Nov. 2 | 3, 1993 | Nov. 3 | 3, 1994 | Date | |-----------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-----------------------------------------------------------------------| | <sup>1</sup> 2, | ,065 | 1, | 114 | 1,7 | 794 | 1, | 438 | 1, | 472 | 1, | 270 | 1,( | 027 | Total count | | ount | Percent | Count | Percen | | | | | | | | | | | | | | - | | | Cnidaria (cnidarians)<br>Hydrozoa<br>Hydroida<br>Hydridee | | | | | | | | _ | | | | | | _ | | Hyc'ra Platyhelminthes (flat:worms) Turbellaria Tricladida | | 8 | <1 | 11 | 1 | 18 | 1 | | | 16 | 1 | 20 | 2 | 5 | <1 | Planariidae | | | | 2 | <1 | 1 | <1 | | | _ | | 5 | <1 | _ | | Nematoda (nematodes) | | _ | | 2 | <1 | _ | | | | _ | | 5 | <1 | _ | | Nemertea (proboscis worms) Enopla Hoplonemertea Tetraste mmatidae | | _ | | 6 | <1 | _ | | _ | | 2 | <1 | 1 | <1 | _ | | Proctoma Mollusca (molluscs) Gastropoda Basommatophora Ancylid 14 | | - | | _ | | _ | | | | 1 | <1 | | | _ | | Ferrissia | | - | | _ | | 1 | <1 | | | _ | | _ | | - | | Physida?<br><i>Physa</i><br>Planorb'dae | | | | | | | | | | _ | | | | | | Heli coma | | _ | | _ | | _ | | | | | | _ | | _ | | Annelida (segmentec' worms)<br>Oligochaeta | | | | 4 | <1 | | | | | 4 | <1 | | | | | Lumbriculida<br>Lumbriculidae | | _ | | 14 | 1 | 8 | <1 | 1 | <1 | 7 | <1 | 6 | <1 | 1 | <1 | Tubificida<br>Naidida<br>Arthropoda (arthropods) | | 8 | <1 | 28 | 3 | 1 | <1 | 2 | <1 | 24 | 2 | 19 | 1 | 11 | 1 | Acariformes<br>Hydrachnid a<br>Crustacea | | | | | | | | | | | | | | | | Isopoda<br>Asellidae | | - | | 1 | <1 | _ | | _ | | _ | | | | _ | | Caeridotea | | | | _ | | | | | | | | | | | | Insecta<br>Ephemeropt ra<br>Baettdac | | 3<br>27 | <1 | 4 | <1 | _ | | _ | . • | 2 | <1 | 3 | <1 | _ | | Baetis | | 1 | 1 | 12 | 1 | 4 | <1 | 3 | <1 | 1 | <1 | 2 | <1 | 2 | <1 | Pseudocloeon<br>Caenida | | - | | | | _ | | | | _ | | _ | | _ | | <i>Caenis</i><br>Ephemerellidae | | 5 | 2 | 30 | 3 | 40 | 2 | 15 | 1 | 160 | 11 | 67 | 5 | 6 | <1 | <i>Eph~merella</i><br>Heptag∈niidae | | | | 1 | <1 | 3 | <1 | 3 | <1 | | | 2 | <1 | 2 | <1 | Eperrus | | 0 | 5 | 77 | 7 | 67 | 4 | 34 | 2 | 87 | 6 | 21 | 2 | 22 | 2 | Steronema | | 10 | 7 | 16 | 1 | 40 | 2 | 28 | 2 | 37 | 2 | 19 | 1 | 15 | 2 | Isonychiidae Isonychia Lantovklahiidaa | | | | | | _ | | | | _ | | _ | | _ | | Leptophlebiidae<br>Hab∽phlebia | Table 5. Benthic-macroinvertebrate data—Continued 01478220 - West Branch White Clay Creek near Chesterville, Pa. (Site 30) | Date | Oct. 2 | 9, 1981 | Oct. 20 | 0, 1982 | Nov. | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 2 | 5, 1985 | Nov. 2 | 25, 1986 | Oct. 2 | ទ 1987 | |-------------------|--------|---------|---------|---------|-------|---------|--------|----------|---------|----------|----------------|-----------|--------|-------------| | Total count | 1, | 216 | 2,2 | 270 | 7 | 794 | 1, | 232 | 8 | 36 | 1, | 079 | 1, | <b>የ</b> ዓ5 | | Organism | Count | Percent | Odonata | | | | | | | | | | | | | | | | Aeshnidae | | | | | | | | | | | | | | | | Boyeria | _ | | - | | 1 | <1 | _ | | 1 | <1 | _ | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | | | _ | | _ | | 2 | <1 | 2 | <1 | 4 | <1 | | Chloroperlidae | _ | | _ | | - | | _ | | _ | | _ | | | | | Nemouridae | _ | | _ | | _ | | _ | | | | _ | | _ | | | Peltoperlidae | | | | | | | | | | | | | | | | Peltoperla | | | 1 | <1 | _ | | | | _ | | | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taenlopteryx | | | 1 | <1 | _ | | _ | | 1 | <1 | 3 | <1 | 6 | <1 | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | _ | | _ | | | | | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | | 1 | <1 | - | | _ | | _ | | _ | | - | | | Nigronia | 1 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | | | | | - | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | - | | _ | | | | _ | | _ | | _ | | _ | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | _ | | | | _ | | _ | | _ | | | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | _ | | 3 | <1 | 2 | <1 | 6 | <1 | 2 | <1 | 5 | <1 | 1 | <1 | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 340 | 28 | 110 | 5 | 58 | 7 | 130 | 11 | 140 | 17 | 190 | 17 | 210 | 12 | | Cheumatopsyche | 200 | 17 | 140 | 6 | 4 | <1 | 100 | 8 | 47 | 6 | 110 | 10 | 130 | 8 | | Hydropsyche | 72 | 6 | 110 | 5 | 32 | 4 | 110 | 9 | 56 | 7 | 210 | 19 | 250 | 15 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 2 | <1 | 1 | <1 | 1 | <1 | | | 6 | <1 | 1 | <1 | 19 | 1 | | Leucotrichia | 10 | <1 | 1,400 | 61 | 110 | 14 | 450 | 38 | | | 160 | 15 | 220 | 13 | | Leptoceridae | | | | | | | | | | | | | | | | Oecetis | _ | | | | _ | | | | _ | | | | _ | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | _ | | 1 | <1 | | | 4 | <1 | 8 | 1 | 12 | 1 | 9 | <1 | | Dolophilodes | _ | | | | | | _ | | 1 | <1 | _ | | _ | | | Wormaldia | _ | | | | _ | | _ | | _ | | - | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | _ | | | | | | | | | | | | _ | | | Polycentropus | _ | | _ | | | | _ | | 1 | <1 | _ | | | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyla | | | _ | | | | | | _ | | _ | | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | _ | | | | _ | | | | | | _ | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | | | 1 | <1 | _ | | | | 2 | <1 | _ | | | Dubiraphia | _ | | | | | ~1 | | | - | | _ | 74 | _ | | | Microcylloepus | _ | | _ | | | | _ | | _ | | | | _ | | | Optioservus | 13 | 1 | 17 | <1 | 18 | 2 | 27 | 2 | 26 | 3 | 29 | 3 | 9 | <1 | | Oulimnius | 13 | 1 | 17 | ~1 | 10 | L | 1 | <1 | 26<br>7 | <1 | 2 <del>9</del> | -3<br>-<1 | _ | ~1 | | Stenelmis | 1 | <1 | 2 | <1 | 1 | <1 | 5 | <1<br><1 | 3 | <1<br><1 | 1 | <1<br><1 | 4 | <1 | | Psephenidae | 1 | <1 | 2 | <1 | 1 | <1 | J | <1 | J | <1 | 1 | <1 | 4 | <1 | | Psephenus | | | | | | | | | 1 | <1 | | | 1 | <1 | | rsepnenus | _ | | _ | | | | _ | | 1 | <1 | _ | | 1 | <1 | | Oct. 3 | 1, 1988 | Oct. 3 | 1, 1989 | Nov. 9 | 9, 1990 | Nov. 1 | 3, 1991 | Nov. 1 | 6, 1992 | Nov. 2 | 3, 1993 | Nov. | 3, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|------------------------| | 1 2 | ,065 | 1, | 114 | 1, | 794 | 1, | 438 | 1, | 472 | 1, | 270 | 1, | 027 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Aeshnidae | | - | | _ | | _ | | _ | | _ | | _ | | _ | | Boyeri? | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 3 | <1 | 15 | 1 | 6 | <1 | 9 | <1 | 8 | <1 | 2 | <1 | - | | Allocannia | | - | | | | | | 2 | <1 | 1 | <1 | _ | | 1 | <1 | Chloroperlidae | | _ | | 7 | <1 | - | | _ | | _ | | _ | | - | | Nemouridae | | | | | | | | | | | | | | | | Peltoperlidae | | _ | | - | | _ | | _ | | _ | | _ | | | | Peltoperla | | | | | | | | | | | | | | | | Taeniopterygidae | | 3 | <1 | _ | | 3 | <1 | 12 | <1 | 7 | <1 | 18 | 1 | 3 | <1 | Taeniooteryx | | | | | | | | | | | | | | | | Hemiptera | | _ | | _ | | | | | | 1 | <1 | _ | | | | Corixidae | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalid • | | - | | | | _ | | _ | | _ | | | | _ | | Corydalus | | | | 1 | <1 | _ | | 2 | <1 | 2 | <1 | | | _ | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniid 🙅 | | _ | | 5 | <1 | - | | _ | | _ | | _ | | _ | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | 5 | <1 | - | | | | _ | | _ | | _ | | _ | | Micra~ma | | | | | | | | | | | | | | | | Glossosomatidae | | _ | | 7 | <1 | 8 | <1 | 1 | <1 | 8 | <1 | 2 | <1 | 2 | <1 | Glossc soma | | | | | | | | | | | | | | | | Hydropsychidae | | 360 | 17 | 210 | 19 | 290 | 16 | 150 | 11 | 160 | 11 | 160 | 12 | 270 | 27 | Ceratcpsyche | | 100 | 5 | 64 | 6 | 140 | 8 | 31 | 2 | 45 | 3 | 15 | 1 | 78 | 8 | Cheumatopsyche | | 270 | 13 | 83 | 8 | 130 | 7 | 270 | 19 | 160 | 11 | 97 | 7 | 92 | 9 | Hydroosyche | | | | | | | | | | | | | | | | Hydroptil dae | | 5 | <1 | 1 | <1 | 52 | 3 | 4 | <1 | 3 | <1 | _ | | 5 | <1 | Hydrootila | | 580 | 28 | 75 | 7 | 350 | 19 | 280 | 20 | 150 | 10 | 16 | 1 | 6 | <1 | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | _ | | _ | | _ | | 1 | <1 | - | | 2 | <1 | _ | | Oeceti <sup>&lt;</sup> | | | | | | | | | | | | | | | | Philopotamidae | | 21 | 1 | 23 | 2 | 14 | <1 | 6 | <1 | 25 | 2 | 50 | 4 | 10 | 1 | Chimerra | | | | _ | | _ | | _ | | _ | | _ | | _ | | Dolop rilodes | | _ | | 1 | <1 | - | | _ | | _ | | _ | | _ | | Worm <sup>-</sup> ≀dia | | | | | | | | | | | | | | | | Polycentropodidae | | | | _ | | 1 | <1 | 5 | <1 | 2 | <1 | 1 | <1 | _ | | Neure:lipsis | | | | _ | | - | | _ | | - | | _ | | 1 | <1 | Polycentropus | | | | | | | | | | | | | | | | Psychomyiidae | | | | _ | | _ | | | | | | 1 | <1 | 1 | <1 | Psychomyia | | | | | | | | | | | | | | | | Uenoldae | | | | _ | | 2 | <1 | | | 10 | <1 | 1 | <1 | _ | | Neophylax | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | _ | | - | | _ | | | | - | | _ | | Ancyr~nyx | | _ | | _ | | | | _ | | 1 | <1 | - | | _ | | Dubiraphia | | 3 | <1 | | | - | | | | - | | _ | | _ | | Micro :ylloepus | | 13 | <1 | 27 | 2 | 10 | <1 | 6 | <1 | 47 | 3 | 10 | <1 | 3 | <1 | <b>Optior</b> ervus | | | | 7 | <1 | 1 | <1 | 1 | <1 | 4 | <1 | 2 | <1 | _ | | Oulimnius | | 3 | <1 | 5 | <1 | 1 | <1 | | | 3 | <1 | 2 | <1 | 2 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psephenicae | | | | 7 | <1 | 2 | <1 | _ | | 1 | <1 | 2 | <1 | 1 | <1 | Psephanus | | | | | | | | | | | | | | | | = | Table 5. Benthic-macroinvertebrate data—Continued 01478220 - West Branch White Clay Creek near Chesterville, Pa. (Site 30) | Date | Oct. 2 | 9, 1981 | Oct. 2 | 0, 1982 | Nov. 2 | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 2 | 5, 1985 | Nov. 2 | 5, 1986 | Oct. 2 | 9, 1987 | |--------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 216 | 2, | 270 | 7 | 94 | 1, | 232 | 8 | 36 | 1, | 079 | 1,6 | 665 | | Organism | Count | Percent | Court | Percent | | Diptera | ··· | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | | | | | | | | | | | | | Chironomidae | 340 | 28 | 260 | 11 | 240 | 30 | 170 | 14 | 410 | 49 | 94 | 9 | 290 | 17 | | Empididae | | | | | | | | | | | | | | | | Clinocera | | | | | | | | | | | | | | | | Hemerodromia | 27 | 2 | 11 | <1 | 8 | 1 | 3 | <1 | 3 | <1 | 11 | 1 | 11 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 130 | 11 | | | _ | | 2 | <1 | 3 | <1 | 8 | <1 | 3 | <1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 37 | 3 | 130 | 6 | 210 | 26 | 110 | 9 | 28 | 3 | 150 | 14 | 260 | 15 | | Tipula | | | | | | | | | | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 3 | 1, 1988 | Oct. 3 | 1, 1989 | Nov. 9 | 9, 1990 | Nov. 1 | 3, 1991 | Nov. 1 | 6, 1992 | Nov. 2 | 3, 1993 | Nov. | 3, 1994 | Dato | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|------------|---------------| | 1 2 | ,065 | 1, | 114 | 1, | 794 | 1, | 438 | 1, | 472 | 1, | 270 | 1, | 027 | Total count | | Count | Percent Organ'sm | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | _ | | _ | | _ | | | | | | 1 | <1 | _ | | Athrix | | 240 | 11 | 240 | 22 | 450 | 25 | 470 | 34 | 350 | 23 | 580 | 45 | 190 | 1 <b>9</b> | Chironc midae | | | | | | | | | | | | | | | | Empididae | | | | | | | | | | | | 3 | <1 | | | Clirocera | | 5 | <1 | 48 | 4 | 10 | <1 | 11 | <1 | 17 | 1 | 9 | <1 | 8 | <1 | Hemerodromia | | | | | | | | | | | | | | | | Simuliidae | | 3 | <1 | 14 | 1 | 1 | <1 | 6 | <1 | 6 | <1 | 33 | 3 | | | Simulium | | | | | | | | | | | | | | | | Tipulidae | | 120 | 6 | 67 | 6 | 140 | 8 | 84 | 6 | 120 | 8 | 98 | 8 | 290 | 29 | Ant~cha | | | | 1 | <1 | _ | | 1 | <1 | | | _ | | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27) | Date | Oct. 3 | 0, 1981 | Nov. | 1, 1982 | Nov. | 1, 1983 | Oct. 1 | 9, 1984 | Oct. 1 | 8, 1985 | Nov. 1 | 8, 1986 | Oct. 3 | 0, 1987 | |-----------------------------|--------|---------|-------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2 | 11 | 7 | 777 | | 84 | 4 | 68 | 3 | 26 | 1 | 07 | 2 | 67 | | Organism | Count | Percent | Court | Percent | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 16 | 7 | 110 | 14 | 8 | 10 | _ | | 6 | 2 | 8 | 8 | 17 | 6 | | Nematoda (nematodes) | _ | | _ | | _ | | 4 | 1 | | | _ | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 1 | <1 | 25 | 3 | 9 | 11 | 1 | <1 | 12 | 4 | 3 | 3 | _ | | | Nematomorpha | | | | | _ | | | | | | _ | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | _ | | 1 | <1 | 8 | 10 | 37 | 8 | 110 | 33 | 6 | 6 | 35 | 13 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | _ | | _ | | 2 | 3 | _ | | 1 | <1 | _ | | | | | Physidae | | | | | | | | | | | | | | | | Physa | _ | | _ | | 1 | 2 | | | | | _ | | 1 | <1 | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | _ | | | | _ | | | | | | _ | | | | | Helisoma | 1 | <1 | _ | | _ | | | | 1 | <1 | _ | | 3 | 1 | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | | | | | | | | | | | | Pisidium | _ | | | | _ | | | | | | | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | - | | _ | | _ | | 130 | 28 | | | — | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | _ | | | | _ | | | | | | _ | | | Tubificida | | | | | | | | | | | | | | | | Naididae | _ | | _ | | | | | | 6 | 2 | 3 | 3 | 78 | 29 | | Tubificidae | _ | | 3 | <1 | _ | | | | | | | | — | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 1 | <1 | 24 | 3 | | | | | 2 | <1 | 3 | 3 | 15 | 6 | | Crustacea | | | | | | | | | | | | | | | | Cladocera | _ | | _ | | _ | | _ | | _ | | _ | | | | | Cyclopoida | _ | | | | _ | | _ | | | | _ | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | _ | | | | _ | | — | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | _ | | 3 | <1 | | | _ | | _ | | _ | | | | | Podocopa | _ | | 110 | 14 | | | _ | | | | _ | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | _ | | | | | | _ | | | | _ | | _ | | | Pseudocloeon | | | _ | | _ | | | | | | _ | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | | | | | _ | | _ | | | | _ | | _ | | | 27 | | | | | | | | | | | | | | | | Nov. | 8, 1988 | Oct. 3 | 0, 1989 | Oct. 3 | 1, 1990 | Nov. 7 | 7, 1991 | Oct. 2 | 7, 1992 | Nov. 2 | 2, 1993 | Nov. 8 | 3, 1994 | Date | |-------|---------|--------|------------|--------|-----------|--------|---------|--------|---------|------------|----------|--------|---------|--------------------------------------------------------------------------------------------| | 5 | 46 | 7 | 58 | 1,8 | 843 | 4 | 24 | 4 | 10 | 8 | 34 | 9: | 22 | Total count | | Count | Percent | Count | Percen | • | | 25 | 5 | 11 | 1 | 12 | <1 | _ | | 2 | <1 | 3 | <1 | _ | | Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae | | _ | J | 2 | <1 | 1 | <1<br><1 | | | _ | • | 2 | <1<br><1 | 6 | <1 | Nematoda (nematode: Nemertea (proboscis vvorms) Enopla Hoplonemert ∘a Tetrastemmatidae | | | | 8 | 1 | 12 | <1 | _ | | _ | | 11 | 1 | 9 | 1 | Prostoma | | _ | | 1 | <1 | _ | | _ | | _ | | _ | • | _ | • | Nematomorpha Mollusca (molluscs) Gastropoda Basommatophora Ancylidae | | 32 | 6 | 26 | 3 | 83 | 5 | 18 | 4 | 36 | 9 | 13 | 2 | 24 | 3 | Ferri~la | | | | | | | | | | | | | | | | Lymnaeidae | | 11 | 2 | _ | | 3 | <1 | | | _ | | _ | | _ | | Lymnaea | | 0 | • | | | | | | | | | | | | | Physidae | | 8 | 2 | _ | | _ | | _ | | _ | | _ | | _ | | <i>Ph</i> ysa<br>Planorbidae | | | | | | 13 | <1 | | | _ | | | | _ | | Fianoroidae<br>Gyravlus | | 7 | 1 | _ | | _ | ~1 | _ | | | | | | _ | | Helis ma | | • | - | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaertidae | | | | _ | | 2 | <1 | _ | | _ | | _ | | _ | | Pisid*um | | _ | | | | _ | | _ | | 2 | <1 | | | | | Annelida (segmented worms) Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | 2 | <1 | 5 | <1 | | | _ | | - | | _ | | Lumbriculidae<br>Tubificida | | 46 | 8 | 42 | 5 | 9 | <1 | 240 | 56 | _ | | 230 | 27 | 160 | 17 | Naididae | | | | _ | | _ | | 1 | <1 | _ | | 4 | <1 | _ | | Tubificidae<br>Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | 87 | 16 | 68 | 9 | 210 | 12 | 11 | 3 | 4 | 1 | <b>4</b> 7 | 6 | 40 | 4 | Hydrachnidia<br>Crustacea | | _ | | | | _ | | _ | | _ | | _ | | 1 | <1 | Cladocera | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | 1 | <1 | Cyclopoida<br>Amphipoda<br>Gammar`dae | | _ | | _ | | _ | | _ | | 41 | 10 | 3 | <1 | _ | | Gam narus<br>Isopoda | | _ | | 3 | <1 | 4 | <1 | 1 | <1 | 2 | <1 | | | | | Asellidae<br><i>Caec'dotea</i> | | _ | | _ | <b>~</b> 1 | _ | <b>\1</b> | | <1 | _ | <1 | _ | | 2 | <1 | Podocopa | | | | | | | | - | | | | | | 2 | ζ1 | Insecta Ephemeroptera Baetidae | | _ | | 4 | <1 | _ | | _ | | _ | | 5 | <1 | _ | | Baetis | | _ | | 1 | <1 | _ | | _ | | _ | | _ | 71 | 1 | <1 | Pseudocloeon<br>Ephemerellidae | | 2 | <1 | 9 | 1 | 4 | <1 | _ | | _ | | 3 | <1 | 1 | <1 | Ephemer andae<br>Ephemerella | Table 5. Benthic-macroinvertebrate data—Continued 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27)—Continued | Date | Oct. 3 | 0, 1981 | Nov. | 1, 1982 | Nov. 1 | 1, 1983 | Oct. 1 | 9, 1984 | Oct. 1 | 8, 1985 | Nov. 1 | 8, 1986 | Oct. 3 | 0, 1987 | |-------------------|--------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2 | 11 | 7 | 77 | 8 | 34 | 4 | 68 | 3 | 26 | 1 | 07 | 2 | 67 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | Ì | | | Heptageniidae | | | | | | | | | | | | | | | | Stenonema | | | _ | | _ | | _ | | 1 | <1 | | | _ | | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | _ | | _ | | _ | | _ | | - | | 1 | 1 | _ | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | _ | | _ | | _ | | _ | | | | _ | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | _ | | | | 1 | 2 | | | - | | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | _ | | _ | | | | - | | _ | | _ | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | _ | | _ | | — | | | | - | | _ | | _ | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Microvelia | | | _ | | - | | _ | | 2 | <1 | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Nigronia | _ | | _ | | | | _ | | | | _ | | _ | | | Trichoptera | | | | | | | | | | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Brachycentrus | | | _ | | _ | | | | | | | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | | | | | | | | - | | _ | | _ | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | | | 2 | <1 | 4 | 5 | _ | | - | | | | _ | | | Cheumatopsyche | 2 | 1 | _ | | | | | | 7 | 2 | _ | | 1 | <1 | | Hydropsyche | _ | | | | _ | | _ | | _ | | | | _ | | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | | | | | _ | | _ | | | | _ | | | | | Leucotrichia | | | | | _ | | _ | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | _ | | | | | | | | | | _ | | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | _ | | | | | | | | _ | | _ | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | | | | | | | | | | | | | | A.variegata | _ | | | | _ | | | | | | _ | | | | | Dubiraphia | | | _ | | | | | | _ | | 1 | 1 | 1 | <1 | | Macronychus | | | _ | | | | _ | | _ | | _ | - | 1 | <1 | | Optioservus | 4 | 2 | 3 | <1 | 7 | 8 | 8 | 2 | 20 | 6 | 22 | 20 | 8 | 3 | | Oulimnius | _ | - | _ | | | • | _ | - | 2 | <1 | | | 1 | <1 | | Stenelmis | 1 | <1 | 2 | <1 | _ | | 1 | <1 | 3 | 1 | _ | | _ | | | Psephenidae | • | | _ | ~1 | | | • | ~1 | , | • | | | | | | Psephenus | | | | | | | _ | | 1 | <1 | _ | | _ | | | Diptera | | | | | | | | | | ~1 | | | _ | | | Chironomidae | 130 | 59 | 310 | 40 | 36 | 40 | 240 | 51 | 130 | 39 | 59 | 54 | 78 | 29 | | Empididae | 130 | 33 | 210 | 70 | 50 | 70 | 270 | 31 | 130 | 39 | 39 | J-4 | 73 | 47 | | Clinocera | | | _ | | _ | | | | | | _ | | _ | | | Hemerodromia | 1 | <1 | 44 | 6 | 4 | 5 | 5 | 1 | 3 | 1 | _ | | 5 | 2 | | Muscidae | | | 44 | U | 4 | J | 3 | 1 | 3 | 1 | | | J | 2 | | Limnophora | 1 | <1 | _ | | _ | | _ | | _ | | _ | | _ | | | Nov. | 8, 1988 | Oct. 3 | 0, 1989 | Oct. 31 | 1, 1990 | Nov. | 7, 1991 | Oct. 2 | 7, 1992 | Nov. 2 | 2, 1993 | Nov. | 8, 1994 | Date | |-------|-----------|--------|---------|---------|---------|-------|---------|--------|---------|--------|---------|-------|---------|---------------------------| | 5 | 46 | 7 | 58 | 1,8 | 343 | 4 | 24 | 4 | 10 | 8 | 34 | 9 | )22 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | _ | | _ | | | | Heptageniidae | | | | 11 | 1 | 2 | <1 | | | 2 | <1 | 3 | <1 | | | Stenenema | | | | | | | | | | | | | | | | Isonychii-tae | | _ | | 2 | <1 | | | | | _ | | _ | | - | | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | | | 2 | <1 | _ | | _ | | _ | | _ | | Tricorythodes | | | | | | | | | | | | | | | | Odonata | | _ | | _ | | _ | | | | _ | | _ | | | | Coenagrinnidae | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniida• | | _ | | 1 | <1 | _ | | | | _ | | | | _ | | Allocapnia | | | | | | | | | | | | | | | | Taeniopterygidae | | _ | | 1 | <1 | _ | | _ | | _ | | | | _ | | Taen:'opteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | _ | | | | | | Microvelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | _ | | | | 1 | <1 | | | Nignaia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Brachycentridae | | | | _ | | _ | | | | _ | | | | 1 | <1 | Brachycentrus | | | | | | | | | | | | | | • | ~- | Glossosomatidae | | | | 2 | <1 | | | _ | | _ | | _ | | | | Glossosoma | | | | - | ~1 | | | | | | | | | | | Hydropsychidae | | 3 | <1 | 130 | 17 | 28 | 2 | 2 | <1 | | | 18 | 2 | 8 | <1 | Ceratopsyche | | 1 | <1 | 41 | 5 | 11 | <1 | 4 | 1 | _ | | 19 | 2 | 4 | <1 | | | 1 | <b>\1</b> | 100 | 13 | 17 | <1 | 21 | 5 | 170 | 41 | 23 | 3 | 11 | 1 | Cheumatopsyche | | _ | | 100 | 13 | 17 | <1 | 21 | 3 | 170 | 41 | 23 | 3 | 11 | 1 | Hydrosyche | | | | 2 | <1 | | | | | 2 | <1 | 1 | <1 | | <1 | Hydroptilidae | | _ | | 2 | | _ | | _ | | 2 | <1 | 1 | <1 | 1 | <1 | Hydrotila<br>Leventelahia | | _ | | 1 | <1 | | | _ | | _ | | _ | | _ | | Leucrtrichia | | | | | .4 | | | | | | | | | | | Polycentropodidae | | _ | | 1 | <1 | _ | | | | _ | | _ | | _ | | Polycentropus | | | | _ | _ | | | | | | | | | | | Psychomyiidae | | _ | | 1 | <1 | _ | | _ | | | | _ | | _ | | Psychomyta | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | _ | | Ancyronyx | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | 2 | <1 | A.variegata | | 1 | <1 | 1 | <1 | 1 | <1 | _ | | _ | | 2 | <1 | 1 | <1 | Dubiraphia | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | Macronychus | | 15 | 3 | 16 | 2 | 10 | <1 | 2 | <1 | 8 | 2 | 9 | 1 | 10 | 1 | <b>Optioservus</b> | | _ | | 7 | <1 | _ | | | | | | _ | | 1 | <1 | Oultranius | | 3 | <1 | 11 | 1 | 11 | <1 | 2 | <1 | 2 | <1 | 3 | <1 | 2 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psepheni-lae | | | | 4 | <1 | | | | | | | 2 | <1 | — | | Psephenus | | | | | | | | | | | | | | | | Diptera | | 67 | 12 | 98 | 13 | 1,200 | 67 | 100 | 23 | 56 | 14 | 300 | 36 | 530 | 57 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | | | | | _ | | _ | | _ | | 2 | <1 | _ | | Clinocera | | 8 | 2 | 45 | 6 | 6 | <1 | 2 | <1 | _ | | 9 | 1 | 15 | 2 | Hemrodromia | | | | | | | | | | | | | | | | Muscidae | | _ | | | | _ | | | | _ | | _ | | _ | | Limrophora | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01479680 - West Branch Red Clay Creek at Kennett Square, Pa. (Site 27)—Continued | Date | Oct. 3 | 0, 1981 | Nov. | 1, 1982 | Nov. | 1, 1983 | Oct. 1 | 9, 1984 | Oct. 1 | 8, 1985 | Nov. 1 | 8, 1986 | Oct. 3 | 0, 1987 | |---------------|--------|---------|-------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2 | 11 | 7 | 77 | | 34 | 4 | 68 | 3 | 26 | 1 | 07 | 2 | 67 | | Organism | Count | Percent | Diptera | | | | | | | | | | | -11 | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 53 | 24 | 140 | 18 | 4 | 5 | 6 | 1 | 18 | 5 | 1 | 1 | 20 | 7 | | Stratiomyldae | | | | | | | | | | | | | _ | | | Tipulidae | _ | | | | | | | | | | | | | | | Antocha | _ | | | | | | 36 | 8 | 1 | <1 | | | 3 | 1 | | Tipula | _ | | | | | | | | | | | | | | | Nov. 8 | 3, 1988 | Oct. 3 | 0, 1989 | Oct. 3 | 1, 1990 | Nov. 7 | 7, 1991 | Oct. 2 | 7, 1992 | Nov. 2 | 2, 1993 | Nov. 8 | 3, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------| | 5 | 46 | 7 | 58 | 1,8 | 343 | 4 | 24 | 4 | 10 | 8 | 34 | 9 | 22 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | *** | | Diptera | | | | | | | | | | | | | | | | Simuliidae | | 220 | 40 | 6 | <1 | 110 | 6 | 6 | 2 | 8 | 2 | 33 | 4 | 10 | 1 | Simuli~m | | _ | | _ | | _ | | | | _ | | 1 | <1 | _ | | Stratiomyidae | | _ | | _ | | 1 | <1 | _ | | | | | | _ | | Tipulidae | | 10 | 2 | 100 | 13 | 85 | 5 | 14 | 3 | 75 | 18 | 85 | 10 | 81 | 9 | Antocha | | | | _ | | 1 | <1 | | | | | | | _ | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26) | Date | Oct. 3 | 0, 1981 | Nov. | 1, 1982 | Nov. | 1, 1983 | Oct. 19 | 9, 1984 | Oct. 1 | 8, 1985 | Nov. 1 | 8, 1986 | Nov. 1 | 7, 1987 | |-----------------------------|--------|---------|-------|---------|-------|---------|---------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1,0 | 055 | 2 | :85 | 5 | 77 | 2,3 | 375 | 6 | 27 | ; | 34 | Ę | 577 | | Organism | Count | Percent | Court | Percent | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 6 | <1 | 3 | 1 | 5 | <1 | _ | | 1 | <1 | | | | | | Nematoda (nematodes) | | | | | | | | | | | _ | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 16 | 1 | 11 | 4 | 8 | 1 | 2 | <1 | 9 | 2 | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 53 | 5 | 28 | 10 | 2 | <1 | 6 | <1 | 17 | 3 | 1 | 4 | 5 | <1 | | Physidae | 00 | • | 20 | 10 | - | | • | ~. | •• | Ū | • | • | Ů | •• | | Physa | 59 | 5 | 9 | 3 | 1 | <1 | 1 | <1 | | | | | 1 | <1 | | Planorbidae | 33 | , | 3 | 3 | • | ~1 | | -1 | | | | | • | ~1 | | Helisoma | 2 | <1 | | | | | | | | | | | | | | | 2 | <1 | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | 2 000 | 00 | | | | | | | | Oligochaeta | | | | | | | 2,000 | 83 | | | | | | | | Tubificida | | _ | | _ | _ | _ | | | | _ | _ | | | _ | | Naididae | 30 | 3 | 10 | 3 | 5 | <1 | | | 19 | 3 | 1 | 4 | 38 | 7 | | Tubificidae | | | | | _ | | | | | | | | _ | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | _ | | | | | _ | | | | | | Hydrachnidia | 39 | 4 | 11 | 4 | 3 | <1 | 7 | <1 | 50 | 8 | 1 | 4 | 3 | <1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | - | | _ | | _ | | | | _ | | | Amphipoda | | | | | | | | | | | | | | | | Crangonyctidae | | | | | | | | | | | | | | | | Crangonyx | | | _ | | | | _ | | - | | _ | | _ | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | | | | | | | _ | | _ | | | | 1 | <1 | | Podocopa | 1 | <1 | 1 | <1 | 1 | <1 | | | | | _ | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | <b>Baetis</b> | _ | | | | _ | | | | _ | | _ | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella . | | | | | | | | | | | | | 2 | <1 | | Heptageniidae | | | | | | | | | | | | | | | | Stenonema | | | 1 | <1 | | | | | | | | | _ | | | Odonata | | | - | | | | | | | | | | | | | Calopterygidae | | | | | | | | | | | | | | | | Hetaerina | _ | | | | | | | | | | | | | | | Coenagrionidae | | | _ | | _ | | | | _ | | | | _ | | | | | | | | 1 | <1 | | | | | | | | | | Argia | | | | | 1 | <1 | | | | | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Taeniopterygidae | | | | | | | | | | | | 4 | | | | Taeniopteryx | _ | | _ | | _ | | _ | | _ | | 1 | 4 | _ | | | Nov. 8 | 3, 1988 | Oct. 3 | 0, 1989 | Nov. 1 | 1, 1990 | Nov. 7 | 7, 1991 | Oct. 2 | 7, 1992 | Nov. 2 | 2, 1993 | Nov. 8 | , 1994 | Date - | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------------------| | | 20 | | 45 | | 652 | | 00 | | )54 | | 61 | | 98 | Total count | | ount | Percent | Count | Percent | | | | | | | | | | | | | | | | | Platyhelminthes (flat vorms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | _ | | _ | | - | | 9 | <1 | 4 | <1 | 21 | 2 | Planariidae | | - | | 2 | <1 | 3 | <1 | _ | | 4 | <1 | _ | | _ | | Nematoda (nematod %) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoploneme tea | | | | | | | | | | | | | | | | Tetrastemmatidae | | _ | | 2 | <1 | 9 | <1 | 4 | <1 | 16 | 1 | 11 | 1 | _ | | Pro etoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylic <sup>1</sup> ae | | 3 | <1 | 5 | 1 | 32 | 1 | 35 | 5 | 12 | 1 | 14 | 2 | 29 | 3 | Ferrissia | | | | | | | | | | | | | | | | Physidae | | 1 | <1 | _ | | _ | | | | _ | | | | 1 | <1 | Physa | | • | ~- | | | | | | | | | | | - | 7- | Planort 'dae | | _ | | | | | | | | _ | | | | | | He¹isoma | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | Annelida (segmente worms) | | | | | | | | | | | | | | | | | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | Oligochaeta | | _ | | | _ | | | _ | | | • | 400 | | | | Tubificida | | 1 | 6 | 27 | 5 | 58 | 2 | 5 | <1 | 86 | 8 | 120 | 16 | 3 | <1 | Naidid 19 | | 1 | <1 | _ | | _ | | - | | _ | | _ | | _ | | Tubific'dae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | 3 | 4 | 48 | 9 | 130 | 5 | 10 | 1 | 56 | 5 | 63 | 8 | 6 | <1 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | _ | | 1 | <1 | _ | | | | 5 | <1 | 1 | <1 | 2 | <1 | Cyclopoida Cyclopoida | | | | | | | | | | | | | | | | Amphipod <sup>¬</sup> | | | | | | | | | | | | | | | | Crangonyctidae | | _ | | _ | | _ | | | | _ | | 5 | <1 | _ | | Crangonyx | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellic'ae | | _ | | _ | | 12 | <1 | _ | | | | | | _ | | Ca~cidotea | | _ | | _ | | 2 | <1 | _ | | | | _ | | _ | | Podocopa | | | | - | | - | 74 | | | - | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | | | | | _ | | _ | | | | 1 | <1 | | | | | Baetid₁e<br><i>B</i> aetis | | | | _ | | | | _ | | 1 | <1 | _ | | | | | | | | • | .1 | | | | | | .1 | • | .1 | 2 | .1 | Ephemerellidae | | - | | 2 | <1 | | | _ | | 2 | <1 | 3 | <1 | 2 | <1 | Ephemerella | | | | | | | | | | | | | _ | | | Heptageniidae | | - | | _ | | 3 | <1 | _ | | 1 | <1 | 4 | <1 | 3 | <1 | Stenonema | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Calopterygidae | | - | | - | | _ | | _ | | _ | | 1 | <1 | _ | | H + taerina | | | | | | | | | | | | | | | | Coenagrionidae | | _ | | - | | _ | | _ | | - | | _ | | | | Angia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Taenicoterygidae | | | | | | | | | | | | | | | | Taeniopteryx | **Table 5.** Benthic-macroinvertebrate data—Continued 01479800 - East Branch Red Clay Creek near Five Point, Pa. (Site 26)—Continued | | | 0, 1981 | | 1, 1982 | | 1, 1983 | | 9, 1984 | | 8, 1985 | 1101. 1 | 8, 1986 | | 7, 1987 | |--------------------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|---------|---------|-------------|---------| | Total count | 1, | 055 | 2 | 85 | 5 | 77 | 2, | 375 | 6 | 27 | 3 | 34 | 5 | 77 | | Organism | Count | Percent | Count | Percen | | Hemiptera | | | | | | | | | | | | | , , , , , , | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | _ | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Nigronia | | | | | | | _ | | 1 | <1 | 1 | 4 | 3 | <1 | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | | | | | | | | | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | | | 31 | 11 | 400 | 68 | 1 | <1 | | | | | _ | | | Cheumatopsyche | | | 6 | 2 | 25 | 4 | | | | | | | 1 | <1 | | Hydropsyche | | | 3 | 1 | _ | | _ | | 2 | <1 | | | 14 | 2 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | _ | | | | _ | | - | | | | | | | | | Leucotrichia | _ | | | | | | | | 1 | <1 | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | | | | | | | | | | | _ | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | 1 | <1 | | | | | | | | | | | _ | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | - | | | | _ | | | | | | | | | | | A.variegata | | | | | | | | | | | | | | | | Dubiraphia | | | | | | | | | | | | | | | | Optioservus | 3 | <1 | 6 | 2 | 12 | 2 | 17 | <1 | 23 | 4 | 13 | 34 | 5 | <1 | | Oulimnius | | | | | | | | | 1 | <1 | | | 1 | <1 | | Stenelmis | | | | | | | 1 | <1 | | | | | 1 | <1 | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | | | | | | | | | | | | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | | | | | | | | | 1 | <1 | | | | | | Psephenus | | | | | | | | | | | | | 2 | <1 | | Hymenoptera | | | | | | | | | 2 | <1 | 1 | 4 | | - | | Diptera | 2 | <1 | | | | | | | _ | - | | - | _ | | | Athericidae | _ | | | | | | | | | | | | | | | Atherix | | | | | 2 | <1 | | | | | _ | | | | | Chironomidae | 280 | 25 | 110 | 38 | 68 | 12 | 250 | 10 | 390 | 62 | 12 | 32 | 210 | 36 | | Empididae | | | | | | | | | | | | | | | | Chelifera | _ | | | | | | | | | | | | | | | Clinocera | _ | | | | | | | | | | | | | | | Hemerodromia | 63 | 6 | 15 | 5 | 8 | 1 | 1 | <1 | 24 | 4 | | | 2 | <1 | | Simuliidae | 00 | 3 | 15 | 3 | U | 1 | • | ~1 | LT | -7 | | | - | ~1 | | Simulium | 500 | 45 | 35 | 12 | 25 | 4 | 6 | <1 | 24 | 4 | 1 | 4 | 230 | 40 | | Tipulidae | 550 | -10 | 00 | 15 | 20 | 7 | U | ~1 | -T | -7 | • | 7 | 200 | -10 | | Antocha | _ | | 5 | 2 | 10 | 2 | 83 | 3 | 62 | 10 | 2 | 7 | 58 | 10 | | ALILUCI <b>I</b> A | | | J | L | 10 | <1 | 00 | J | UL | 10 | L | , | 30 | 10 | | Nov. | 3, 1988 | Oct. 3 | 0, 1989 | Nov. 1 | , 1990 | Nov. 7 | 7, 1991 | Oct. 2 | 7, 1992 | Nov. 2 | 2, 1993 | Nov. 8 | 3, 1994 | Date | |-------|---------|--------|---------|------------|---------|--------|-----------|--------|-----------|--------|---------|--------|---------|--------------------------------------------------------| | 9 | 20 | 5 | 45 | 2,0 | 552 | 7 | 00 | 1,0 | 054 | 7 | 61 | 9 | 98 | Total count | | Count | Percent Organis <sup>m</sup> | | | | | | | | | | ***** | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | _ | | | | _ | | | | 2 | <1 | _ | | | | Rhagavelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | 1 | <1 | | | 3 | <1 | 3 | <1 | _ | | _ | | Nigrenia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | 1 | <1 | _ | | _ | | | | 3 | <1 | Gloss ~soma | | | | | | | | | | | | | | | | Hydropsychidae | | | | 2 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | 23 | 3 | 24 | 2 | Ceratrosyche | | | | 1 | <1 | 1 | <1 | _ | ~* | _ | ~1 | 4 | <1 | 9 | <1 | Cheumatopsyche | | | | • | ~1 | | ~1 | 2 | <1 | 6 | <1 | 43 | 6 | 4 | <1 | Hydransyche | | | | | | | | L | <1 | U | <1 | 43 | O | * | <1 | | | | | | | | | | | 1 | -1 | | | | | Hydropti <sup>14</sup> dae | | | | | | | | | | 1 | <1 | _ | | | | Hydroptila | | _ | | | | _ | | _ | | | | | | | | Leucetrichia | | | | | | | | | | | | | | | | Philopota midae | | _ | | | | _ | | | | 1 | <1 | | | _ | | Chimarra | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopida∘ | | | | | | | | _ | | | | | | _ | | Helichus | | | | | | | | | | | | | | | | Elmidae | | _ | | | | _ | | | | | | | | 2 | <1 | Ancyronyx | | 1 | <1 | | | | | _ | | _ | | _ | | | | A.varlegata | | _ | | _ | | | | | | 2 | <1 | | | 1 | <1 | Dubiraphia Dubiraphia Dubiraphia Dubiraphia Dubiraphia | | 27 | 3 | 21 | 4 | 22 | <1 | 26 | 4 | 73 | 7 | 46 | 6 | 13 | 1 | Opticservus | | _ | - | _ | - | 3 | <1 | | - | 2 | <1 | 1 | <1 | | _ | Oulimnius | | | | 1 | <1 | 6 | <1 | 1 | <1 | 9 | <1 | 14 | 2 | 2 | <1 | Stene <sup>1</sup> mis | | | | • | -1 | ŭ | ~1 | • | <b>\1</b> | 3 | <b>\1</b> | 17 | | L | ~1 | Hydroph'lidae | | | | | | | | | | | .4 | | | | | | | | | | | _ | | | | 1 | <1 | _ | | _ | | Berosus | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria<br> | | | | | | | | | | _ | | | | | | Γ. nervosa | | _ | | | | _ | | 1 | <1 | 2 | <1 | _ | | 2 | <1 | Pseph enus | | | | | | _ | | _ | | | | _ | | _ | | Hymenoptera | | | | _ | | _ | | | | _ | | | | | | Diptera | | | | | | | | | | | | | | | | Athericid ** | | | | | | | | _ | | _ | | | | _ | | Atherix | | 90 | 21 | 89 | 16 | 1,600 | 59 | 440 | 63 | 530 | 48 | 280 | 36 | 510 | 51 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | _ | | | | 8 | <1 | | | _ | | 2 | <1 | | | Cheli ^ra | | _ | | | | | - | | | _ | | 2 | <1 | | | Clino~ra | | 8 | <1 | 38 | 7 | 130 | 5 | 3 | <1 | 46 | 4 | 32 | 4 | 11 | 1 | Hemerodromia | | Ü | ~1 | 50 | ' | 130 | J | J | ~1 | 10 | -7 | 32 | -1 | 11 | • | Simuliida | | 60 | 61 | 270 | 49 | 570 | 21 | 70 | 10 | 52 | 5 | 42 | 5 | 200 | 20 | Simulida 4<br>Simulium | | UU | 01 | 210 | 49 | 3/0 | 21 | 70 | 10 | 32 | ð | 42 | ð | 200 | 20 | | | 45 | - | | • | <b>C</b> 1 | • | 00 | | 100 | 10 | 45 | c | 150 | 15 | Tipulidae | | 45 | 5 | 34 | 6 | 61 | 2 | 98 | 14 | 130 | 12 | 45 | 6 | 150 | 15 | Antocha | | _ | | 1 | <1 | | | 1 | <1 | _ | | 1 | <1 | | | Tipula | **Table 5.** Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37) | Date | Nov. 2 | 2, 1981 | Oct. 2 | 7, 1982 | Nov. 4 | , 1983 | Oct. 3 | 0, 1984 | Oct. 2 | 1, 1985 | Nov. 1 | 7, 1986 | Oct. 2 | 2, 1987 | |-----------------------------|--------|---------|--------|------------|--------|---------|--------|---------|--------|-----------|--------|---------|--------|---------------| | Total count | 5 | 51 | 1, | 086 | 1,2 | 241 | 1,0 | 052 | 1,7 | 711 | 6 | 46 | 1, | 278 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | - | | 8 | <1 | _ | | | | 4 | <1 | 6 | <1 | 3 | <1 | | Nematoda (nematodes) | _ | | - | | | | | | _ | | _ | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | - | | 1 | <1 | - | | | | - | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 8 | 2 | 37 | 3 | 28 | 2 | 4 | <1 | 5 | <1 | 9 | 1 | 1 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | _ | | | | - | | | | _ | | 1 | <1 | _ | | | Physidae | | | | | | | | | | | | | | | | Physa | - | | | | _ | | | | 2 | <1 | 2 | <1 | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaerlidae | | | _ | | | | | | | | _ | | 1 | <1 | | Pisidium | | | _ | | | | | | _ | | | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | | | 1 | <1 | | | | | 2 | <1 | | | 3 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | _ | | 1 | <1 | 2 | <1 | 4 | <1 | 2 | <1 | 25 | 2 | | Crustacea | | | | | _ | | _ | | | | _ | | | _ | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | | | | | | | | | | | | | | | | Cambarus | _ | | _ | | 1 | <1 | | | | | | | | | | Podocopa | _ | | _ | | | ~2 | | | | | _ | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | 1 | <1 | 1 | <1 | 3 | <1 | 14 | <1 | 1 | <1 | 2 | <1 | | Pseudocloeon | | | 2 | <1 | _ | _1 | 3 | <1 | 9 | <1 | | -1 | 11 | <1 | | Caenidae | | | 2 | <b>~</b> 1 | | | J | ~1 | 9 | <b>\1</b> | | | 11 | <b>\1</b> | | Caenis | | | | | | | | | | | | | 1 | <1 | | Ephemerellidae | _ | | | | _ | | | | | | _ | | 1 | <b>&lt;</b> 1 | | Ephemerella | 15 | 9 | 20 | • | 20 | 2 | 24 | 2 | 51 | 3 | 25 | 4 | 81 | 6 | | | 15 | 3 | 28 | 3 | 28 | 2 | 24 | 2 | 31 | 3 | 23 | 4 | 01 | 0 | | Heptageniidae | • | | 14 | | • | | 07 | • | | | | | | | | Epeorus | 3 | <1 | 14 | 1 | 9 | <1 | 27 | 2 | _ | | _ | . 1 | _ | | | Stenacron | | 1.4 | | 10 | | | | • | | | 1 | <1 | | 7 | | Stenonema | 80 | 14 | 110 | 10 | 50 | 4 | 62 | 6 | 63 | 4 | 54 | 8 | 92 | 7 | | Isonychiidae | | _ | | _ | | _ | | _ | | _ | ٠. | | | _ | | Isonychia | 44 | 8 | 87 | 8 | 27 | 2 | 26 | 2 | 92 | 5 | 64 | 10 | 86 | 7 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | _ | | | | _ | | _ | | | | 4 | <1 | | Leptophlebiidae | _ | | | | | | | | | | - | | | | | Oct. | 5, 1988 | Oct. 1 | 0, 1989 | Oct. 1 | 6, 1990 | Nov. 1 | 8, 1991 | Oct. 3 | 0, 1992 | Nov. 1 | 5, 1993 | Oct. 1 | 1, 1994 | Date | |-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-----------------------------| | 1, | 182 | 1,3 | 399 | 1, | 020 | 1, | 793 | 1, | 376 | 6 | 65 | 1,4 | 471 | Total count | | Count | Percent | Count | Percen | Organism | | | | | | | *** | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 1 | <1 | 1 | <1 | _ | | 2 | <1 | 3 | <1 | _ | | _ | | Planarlid 10 | | | | 3 | <1 | _ | | _ | | 2 | <1 | _ | | 2 | <1 | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemert a | | | | _ | | | | | | | | | | | | Tetraster matidae | | _ | | 1 | <1 | _ | | _ | | _ | | | | 1 | <1 | Prostama | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | 10 | | | | • | _ | | | Ancylida? | | 1 | <1 | 2 | <1 | 8 | <1 | 10 | <1 | 15 | 1 | 8 | 1 | 16 | 1 | Ferri via | | | | | | | | | | | | | | | | Lymnaeidae | | _ | | - | | _ | | 1 | <1 | | | 1 | <1 | _ | | Lymraea | | | | | | | | | | | | | | | | Physidae | | _ | | _ | | _ | | _ | | _ | | _ | | | | Physa | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | _ | | _ | | _ | | | | | | | | | | Sphaeriidae | | _ | | 3 | <1 | _ | | | | | | _ | | | | Pisid*um | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta<br>Tubificida | | | | 5 | <1 | | | | | 4 | <1 | | | 17 | 1 | Naididae | | _ | | J | _1 | _ | | | | 7 | ~1 | | | 17 | 1 | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | 6 | <1 | | | 9 | <1 | 18 | 1 | 5 | <1 | 19 | 1 | Hydrachnidia | | | | Ū | ~1 | | | J | ~1 | 10 | • | J | ~1 | 15 | • | Crustacea | | | | | | | | | | | | | | | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | | | | | | | | | | | | _ | | _ | | Cambarus | | _ | | | | | | | | 1 | <1 | | | | | Podocopa | | | | | | | | | | - | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 110 | 9 | 57 | 4 | 4 | <1 | _ | | 6 | <1 | | | 29 | 2 | Baeti <sup>©</sup> | | 3 | <1 | 3 | <1 | _ | | 1 | <1 | 3 | <1 | | | 4 | <1 | Pseu-locloeon | | | | | | | | | | | | | | | | Caenidae | | _ | | _ | | _ | | _ | | _ | | | | | | Caenis | | | | | | | | | | | | | | | | Ephemer~llidae | | 12 | 1 | 54 | 4 | 47 | 5 | 43 | 2 | 110 | 8 | 35 | 5 | 18 | 1 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | 5 | <1 | 50 | 4 | 15 | 2 | 1 | <1 | 17 | 1 | 2 | <1 | 5 | <1 | Epearus | | _ | | | | _ | | | | _ | | | | | | Stenacron | | 32 | 3 | 80 | 6 | 38 | 4 | 33 | 2 | 68 | 5 | 3 | <1 | 54 | 4 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | 34 | 3 | 20 | 1 | 19 | 2 | 5 | <1 | 6 | <1 | - | | 8 | <1 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | _ | | | | _ | | | | _ | | _ | | Tricorythodes | | _ | | | | | | _ | | 1 | <1 | _ | | | | Leptophlebiidae | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37)—Continued | Date | Nov. | 2, 1981 | Oct. 2 | 7, 1982 | Nov. | 4, 1983 | Oct. 3 | 0, 1984 | Oct. 2 | 1, 1985 | Nov. 1 | 7, 1986 | Oct. 2 | 2, 1987 | |-------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------|--------|--------------------------------------------------------|--------|------------------------------------|--------|---------| | Total count | 5 | 551 | 1, | 086 | 1, | 241 | 1, | 052 | 1, | 711 | 6 | 46 | 1, | 278 | | Organism | Count | Percent | Coun | Percent | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | 2 | <1 | | | _ | | 1 | <1 | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 2 | <1 | | | | | 1 | <1 | 4 | <1 | | | 7 | <1 | | Chloroperlidae | 3 | <1 | 2 | <1 | 1 | <l< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>&lt;1</td></l<> | | | | | | | 10 | <1 | | Nemouridae | 2 | <1 | | | | | | | _ | | | | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | | | 4 | <1 | 2 | <l< td=""><td>3</td><td><l< td=""><td>3</td><td>&lt;1</td><td></td><td></td><td>3</td><td>&lt;1</td></l<></td></l<> | 3 | <l< td=""><td>3</td><td>&lt;1</td><td></td><td></td><td>3</td><td>&lt;1</td></l<> | 3 | <1 | | | 3 | <1 | | Agnetina | | | | | | | 1 | <1 | | | | | | | | Paragnetina | | | 3 | <1 | 1 | <1 | | | 2 | <1 | 1 | <1 | 2 | <1 | | Taeniopterygidae | | | • | | • | | | | _ | | - | | _ | • | | Strophopteryx | 2 | <1 | | | 2 | <1 | | | | | | | | | | | 45 | 8 | 45 | 4 | 10 | <1<br><1 | 3 | <l< td=""><td>45</td><td>3</td><td>4</td><td>&lt;1</td><td>21</td><td>2</td></l<> | 45 | 3 | 4 | <1 | 21 | 2 | | Taeniopteryx | 40 | 6 | 40 | 4 | 10 | <1 | 3 | <b>~</b> 1 | 40 | 3 | 4 | <1 | 41 | 2 | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | _ | _ | | | | Microvelia | _ | | | | _ | | _ | _ | | | 1 | <1 | | | | Rhagovelia | | | _ | | | | 1 | <1 | | | _ | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 2 | <1 | 2 | <1 | 2 | <1 | 5 | <1 | 1 | <1 | | | 3 | <1 | | [richoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | | | | | | | | | | | | 2 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | 1 | <1 | 1 | <1 | | | 1 | <1 | 1 | <l< td=""><td>10</td><td>2</td><td></td><td></td></l<> | 10 | 2 | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 1 | <1 | 1 | <1 | 4 | <1 | 3 | <1 | 2 | <1 | 13 | 2 | 2 | <1 | | Protoptila | | ~1 | | ~1 | _ | ~1 | | ~1 | _ | ~- | | - | | ~1 | | Helicopsychidae | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | | | _ | 100 | 10 | 100 | | 050 | 15 | 00 | 1.5 | 40 | | | Ceratopsyche | 25 | 4 | 56 | 5 | 120 | 10 | 100 | 9 | 250 | 15 | 99 | 15 | 49 | 4 | | Cheumatopsyche | 100 | 18 | 64 | 6 | 32 | 3 | 90 | 8 | 87 | 5 | 14 | 2 | 12 | <1 | | Hydropsyche | 2 | <l< td=""><td>7</td><td><l< td=""><td>18</td><td>2</td><td>12</td><td>1</td><td>31</td><td>2</td><td>60</td><td>9</td><td>29</td><td>2</td></l<></td></l<> | 7 | <l< td=""><td>18</td><td>2</td><td>12</td><td>1</td><td>31</td><td>2</td><td>60</td><td>9</td><td>29</td><td>2</td></l<> | 18 | 2 | 12 | 1 | 31 | 2 | 60 | 9 | 29 | 2 | | Macrostemum | | | _ | | _ | | | | | | | | | | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 5 | <1 | 3 | <1 | 1 | <l< td=""><td>1</td><td>&lt;1</td><td></td><td></td><td>2</td><td>&lt;1</td><td>2</td><td>&lt;1</td></l<> | 1 | <1 | | | 2 | <1 | 2 | <1 | | Leucotrichia | 2 | <1 | 240 | 22 | 750 | 63 | 420 | 38 | 410 | 24 | 100 | 15 | 240 | 18 | | Leptoceridae | | | | | | | | | | | | | | | | Oecetis | | | | | | | | | _ | | _ | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 19 | 3 | 6 | <1 | 18 | 2 | 28 | 3 | 9 | <1 | 21 | 3 | 10 | <1 | | Polycentropodidae | | • | - | | | _ | | _ | _ | · <del>-</del> | | • | | _ | | Neureclipsis | | | | | 1 | <l< td=""><td>1</td><td>&lt;1</td><td></td><td></td><td>1</td><td>&lt;1</td><td></td><td></td></l<> | 1 | <1 | | | 1 | <1 | | | | Nyctiophylax | 1 | <1 | 2 | <1 | 3 | <1 | 1 | <b>\1</b> | 1 | <1 | 1 | <l< td=""><td>_</td><td></td></l<> | _ | | | | 1 | <1 | 1 | | ა | <1 | _ | | 1 | <1<br><1 | 1 | <1 | | | | Polycentropus | _ | | 1 | <1 | | | | | 1 | <1 | | | | | | Psychomylidae | | | | _ | | | | _ | | _ | | | _ | | | Psychomyla | 20 | 4 | 4 | <1 | | | 13 | 1 | 14 | <1 | 1 | <1 | 7 | <1 | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | _ | | | | | | _ | | - | | 1 | <l< td=""><td></td><td></td></l<> | | | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | | | - | | | | | | | | | | 1 | <1 | | Archanara | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Oct. 5 | 5, 1988 | Oct. 1 | 0, 1989 | Oct. 1 | 6, 1990 | Nov. 1 | 8, 1991 | Oct. 3 | 0, 1992 | Nov. 1 | 5, 1993 | Oct. 1 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------------------| | 1, | 182 | 1, | 399 | 1,0 | 020 | 1, | 793 | 1, | 376 | 6 | 65 | 1, | 471 | Total count | | Count | Percent Organism | | | | | | - | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | - | | 1 | <1 | | | Argi≀ | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 1 | <1 | 1 | <1 | | | 2 | <1 | | | 7 | 1 | | | Allocapnia | | | | - | | 2 | <1 | 6 | <1 | 15 | 1 | 3 | <1 | 2 | <1 | Chloroperlidae | | | | | | | | - | | _ | | _ | | | | Nemouridae<br>Perlidae | | 2 | <1 | 5 | <1 | 3 | <1 | | | 5 | <1 | | | | | Acroneuria | | | | _ | | 1 | <1 | 4 | <1 | 5 | <1 | _ | | 2 | <1 | Agnetina | | 3 | <1 | | | | | 2 | <1 | | | | | | | Para <sub>l</sub> :netina | | | | | | | | | | | | | | | | Taeniopterygidae | | | | | | _ | | | | _ | | 18 | 3 | | | Strophopteryx | | 27 | 2 | 4 | <1 | 3 | <1 | 10 | <1 | 2 | <1 | 1 | <1 | 5 | <1 | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | _ | | | | | | | | _ | | | | Microvelia | | 3 | <1 | | | _ | | | | | | _ | | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydali lae | | 2 | <1 | 1 | <1 | _ | | _ | | | | 1 | <1 | | | Cory dalus | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | _ | | 5 | <1 | 17 | <1 | 30 | 2 | 11 | 2 | 3 | <1 | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | | | 5 | <1 | 13 | 1 | 22 | 1 | 26 | 2 | 20 | 3 | 34 | 2 | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | | | 6 | <1 | 1 | <1 | | | 9 | <1 | 2 | <1 | 1 | <1 | Glossosoma | | | | 1 | <1 | | | 2 | <1 | | | 1 | <1 | | | Protentila | | | | | | | | | | | | | | | | Helicops chidae | | _ | | - | | _ | | _ | | 2 | <1 | 1 | <1 | _ | | Helic∼osyche | | | | | | | | | | | | | | | | Hydropsychidae | | 96 | 8 | 170 | 12 | 120 | 12 | 180 | 10 | 75 | 5 | 66 | 10 | 49 | 3 | Ceratopsyche | | 26 | 2 | 36 | 3 | 34 | 3 | 110 | 6 | 51 | 4 | 24 | 4 | 33 | 2 | Cheumatopsyche | | 17 | 1 | 31 | 2 | 4 | <1 | 110 | 6 | 70 | 5 | 13 | 2 | 120 | 8 | Hydr∩osyche | | _ | | 1 | <1 | | | 1 | <1 | - | | _ | | _ | | Macr~stemum | | | | | | | | | | | | | | | | Hydroptilidae | | | | | | 3 | <1 | 2 | <1 | | | | | | | Hydrotila | | 610 | 51 | 260 | 19 | 410 | 41 | 50 | 3 | 260 | 19 | 130 | 19 | 390 | 26 | Leucrtrichia | | | | | | | | | | | | | | | | Leptoceridae | | | | | | | | 1 | <1 | | | | | | | Oecetis | | | | | | | | | | | | | | | | Philopotemidae | | 25 | 2 | 30 | 2 | 14 | 1 | 13 | <1 | 24 | 2 | 6 | <1 | 2 | <1 | Chimarra | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | 1 | <1 | _ | | | | | | | | Neur≅lipsis | | _ | | _ | | | | 1 | <1 | _ | | | | | | Nyct'ophylax | | _ | | | | 1 | <1 | | | 1 | <1 | | | | | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 2 | <1 | 4 | <1 | 11 | 1 | 3 | <1 | 4 | <1 | 6 | <1 | 20 | 1 | Psychomyia | | | | | | | | | | | | | | | | Uenoidas | | | | | | | | | | | | _ | | | | Neophylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | _ | | | | Noctuida <sup>o</sup> | | | | 2 | <1 | | | _ | | | | _ | | - | | Archanara | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01480434 - West Branch Brandywine Creek at Rock Run, Pa. (Site 37)—Continued | Date | Nov. 2 | 2, 1981 | Oct. 2 | 7, 1982 | Nov. | 4, 1983 | Oct. 3 | 0, 1984 | Oct. 2 | 1, 1985 | Nov. 1 | 7, 1986 | Oct. 2 | 2, 1987 | |-----------------|-------------|---------|--------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 5 | 51 | 1,0 | 086 | 1, | 241 | 1, | 052 | 1, | 711 | 6 | 46 | 1, | 278 | | Organism | Count | Percent | Coleoptera | · | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Microcylloepus | _ | | | | _ | | _ | | _ | | | | _ | | | Optioservus | 6 | 1 | 2 | <1 | 21 | 2 | 11 | 1 | 7 | <1 | 10 | 2 | 19 | 1 | | Oulimnius | | | | | | | | | _ | | _ | | | | | Promoresia | 1 | <1 | _ | | | | | | 2 | <1 | 7 | 1 | 2 | <1 | | Stenelmis | 1 | <1 | 4 | <1 | 1 | <1 | | | 4 | <1 | 11 | 2 | 4 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | 1 | <1 | _ | | 11 | <1 | | | | | 1 | <1 | 2 | <1 | | Diptera | | | | | | | | | | | | | | | | Ceratopogonidae | _ | | _ | | _ | | | | _ | | | | | | | Chironomidae | 1 <b>20</b> | 21 | 280 | 25 | 82 | 7 | 180 | 16 | 500 | 29 | 96 | 15 | 530 | 41 | | Empididae | | | | | | | | | | | | | | | | Chelifera | _ | | _ | | _ | | | | _ | | | | _ | | | Hemerodromia | 1 | <1 | 5 | <1 | 2 | <1 | 2 | <1 | 1 | <1 | 2 | <1 | 2 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 4 | <1 | 2 | <1 | 2 | <1 | 9 | <1 | 55 | 3 | 8 | 1 | 5 | <1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 35 | 6 | 64 | 6 | 10 | <1 | 15 | 1 | 35 | 2 | 16 | 2 | 4 | <1 | | Oct. 5 | , 1988 | Oct. 1 | 0, 1989 | Oct. 1 | 6, 1990 | Nov. 1 | 8, 1991 | Oct. 3 | 0, 1992 | Nov. 1 | 5, 1993 | Oct. 1 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-----------------| | 1, | 182 | 1, | 399 | 1,0 | 020 | 1, | 793 | 1,3 | 376 | 6 | 65 | 1, | 471 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | 4 | <1 | | | | | 3 | <1 | | | | | 1 | <1 | Microcylloepus | | 12 | 1 | 9 | <1 | 7 | <1 | 8 | <1 | 30 | 2 | 12 | 2 | 26 | 2 | Optioservus | | _ | | 5 | <1 | | | 1 | <1 | 1 | <1 | 2 | <1 | | | Oulimnius | | _ | | | | | | 25 | 1 | 17 | 1 | 1 | <1 | 3 | <1 | Promoresia | | 5 | <1 | 2 | <1 | 13 | 1 | 40 | 2 | 8 | <1 | | | 9 | <1 | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | 14 | 1 | 23 | 2 | 3 | <1 | 2 | <1 | 7 | <1 | 16 | 2 | 18 | 1 | Psephenus | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | 1 | <1 | | | | | Ceratopogonidae | | 110 | 9 | 470 | 34 | 180 | 18 | 1,000 | 56 | 390 | 28 | 210 | 31 | 490 | 33 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | _ | | | | | | 1 | <1 | | | | | | | Chelifera | | 2 | <1 | 12 | <1 | 1 | <1 | 3 | <1 | 9 | <1 | 4 | <1 | 6 | <1 | Hemerodromia | | | | | | | | | | | | | | | | Simuliidae | | 13 | 1 | 11 | <1 | 1 | <1 | 4 | <1 | 16 | 1 | 2 | <1 | 5 | <1 | Simulium | | | | | | | | | | | | | | | | Tipulidae | | 10 | <1 | 25 | 2 | 58 | 6 | 65 | 4 | 64 | 5 | 53 | 8 | 79 | 5 | Antocha | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480629 - Buck Run at Doe Run, Pa. (Site 46) | Date | NOV. : | 5, 1981 | | 8, 1982 | | 8, 1983 | Oct. 3 | 1, 1984 | Oct. 2 | 9, 1985 | Oct. 30 | 0, 1986 | Nov. 1 | 9, 1987 | |-----------------------------|--------|---------|-------|-----------|-------|-----------|--------|---------|--------|---------|---------|-----------|--------|-----------| | Total count | 1, | 026 | 11 | ,647 | 11 | ,846 | 12 | ,272 | 1,0 | 091 | 1,7 | 769 | 1, | 644 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 23 | 2 | 11 | <1 | 24 | 1 | 13 | <1 | 91 | 8 | 8 | <1 | 88 | 5 | | Nematoda (nematodes) | _ | | - | | _ | | | | _ | | | | 5 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 1 | <1 | | | | | 3 | <1 | 8 | <1 | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 13 | 1 | 53 | 3 | 29 | 2 | 19 | <1 | 89 | 8 | 51 | 3 | 5 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | | | | | | | | _ | | _ | | | | | Physidae | | | | | | | | | | | | | | | | Physa | | | _ | | | | | | _ | | _ | | | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | | | | | _ | | | | | | | | | | | Helisoma | | | | | | | | | | | 8 | <1 | 1 | <1 | | Bivalvia | | | | | | | _ | | | | Ū | ~1 | • | ~1 | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | | | | | | | 7 | <1 | 2 | <1 | | Spriaei IIdae<br>Pisidium | _ | | 5 | <1 | 3 | <1 | _ | | | | • | <b>\1</b> | L | <b>\1</b> | | Sphaerium | | | 3 | <b>~1</b> | 3 | <b>~1</b> | 3 | <1 | _ | | _ | | | | | • | _ | | | | | | 3 | <1 | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | | | | | _ | | _ | | | | | Tubificida | | _ | | | | _ | | | | | | | _ | | | Naididae | 21 | 2 | | | 16 | <1 | | | _ | | | | 2 | <1 | | Tubificidae | _ | | _ | | | | | | _ | | | | 1 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | _ | | _ | | | | _ | | | Hydrachnidia | _ | | _ | | | | 3 | <1 | 2 | <1 | _ | | 8 | <1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | | | _ | | _ | | _ | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | 1 | <1 | 8 | <1 | | | _ | | 2 | <1 | - | | _ | | | Podocopa | _ | | | | _ | | _ | | _ | | _ | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | 3 | <1 | _ | | | | _ | | | | | | | Pseudocloeon | 2 | <1 | _ | | | | 13 | <1 | 44 | 4 | 5 | <1 | | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 7 | <1 | | | 43 | 2 | 37 | 2 | 46 | 4 | 21 | 1 | 39 | 2 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | _ | | | | | | _ | | | | | | | Stenonema | 180 | 18 | 130 | 8 | 88 | 5 | 59 | 3 | 41 | 4 | 19 | 1 | 32 | 2 | | | 4, 1988 | NOV. | 7, 1989 | Oct. 1 | 7, 1990 | Oct. 3 | 1, 1991 | Oct. 1 | 6, 1992 | Nov. | 8, 1993 | Nov. 1 | 4, 1994 | Date - | |-----------------|---------|-------|---------|--------|---------|--------|---------|--------|---------|-------|---------|--------|---------|-----------------------------| | <sup>1</sup> 2, | ,070 | 1, | 353 | 1,8 | 804 | 1, | 756 | 1, | 432 | 1, | 403 | 2, | 602 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 77 | 4 | 6 | <1 | 30 | 2 | 32 | 2 | 44 | 3 | 51 | 4 | 34 | 1 | Planariidae | | _ | | | | 5 | <1 | _ | | | | _ | | | | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | _ | | 1 | <1 | 8 | <1 | | | 3 | <1 | 6 | <1 | _ | | Prostoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | 27 | 1 | 52 | 4 | 130 | 7 | 22 | 1 | 16 | 1 | 4 | <1 | 7 | <1 | Ferrissia | | | | | | | | | | | | | | | | Lymnaeidae | | _ | | 1 | <1 | | | | | | | | | | | Lymnaea | | | | | | | | | | | | | | | | Physidae | | | | | | 6 | <1 | 1 | <1 | | | | | | | Physa | | | | | | | | | | | | | | | | Planorbidae | | 5 | <1 | 1 | <1 | 4 | <1 | | | 2 | <1 | _ | | | | Gyraulus | | | | | | | | _ | | | | | | | | Helisoma | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | _ | | | | | | _ | | | | 12 | <1 | 4 | <1 | Sphaeriidae | | 11 | <1 | 4 | <1 | | | 2 | <1 | | | _ | | | | Pisidium | | | | | | 7 | <1 | | | 16 | 1 | | | | | Sphaerium | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | 1 | <1 | | | | | 1 | <1 | | | _ | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | _ | | | | 20 | 1 | | | | | | | | | Naididae | | | | _ | | | | | | | | _ | | | | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | _ | | 3 | <1 | 38 | 2 | 1 | <1 | 26 | 2 | 9 | <1 | 5 | <1 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | | | _ | | 1 | <1 | | | | | | | | | Cyclopoida | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | _ | | 1 | <1 | | | | | 1 | <1 | _ | | | | Caecidotea | | _ | | _ | | 3 | <1 | _ | | | | | | 1 | <1 | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 13 | <1 | | | 10 | <1 | _ | | 4 | <1 | 1 | <1 | | | Baetis | | _ | | 6 | <1 | 8 | <1 | 1 | <1 | 1 | <1 | _ | | | | Pseudocloeon | | | | | | | | | | | | | | | | Ephemerellidae | | 100 | 5 | 18 | 1 | 38 | 2 | 100 | 6 | 280 | 20 | 90 | 6 | 120 | 5 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | _ | | _ | | | | | | | | 2 | <1 | 4 | <1 | Epeorus | | | 3 | 44 | 3 | 81 | 5 | 27 | 2 | 57 | 4 | 15 | 1 | 36 | 1 | -r | Table 5. Benthic-macroinvertebrate data—Continued 01480629 - Buck Run at Doe Run, Pa. (Site 46)—Continued | Date | Nov. | 5, 1981 | Oct. 2 | 8, 1982 | Oct. 2 | 8, 1983 | Oct. 3 | 1, 1984 | Oct. 2 | 9, 1985 | Oct. 3 | 0, 1986 | Nov. 1 | 9, 1987 | |-------------------|-------|---------|--------|---------|--------|-----------|--------|-----------|--------|---------|--------|---------|--------|---------| | Total count | 1,4 | 026 | 1 1 | ,647 | 1 1 | ,846 | 12 | ,272 | 1, | 091 | 1, | 769 | 1, | 644 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 7 | <1 | 80 | 5 | 69 | 4 | 110 | 5 | 68 | 6 | 170 | 9 | 16 | <1 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | _ | | | | _ | | | | | | | | | Odonata | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Coenagrionidae | | | | | _ | _ | | | | | | | | | | Argia | _ | | | | 3 | <1 | | | _ | | 1 | <1 | 1 | <1 | | Aeshnidae | | | | | | | | | | | | | | | | Boyeria | | | _ | | _ | | _ | | 1 | <1 | - | | _ | | | Gomphidae | - | | _ | | | | _ | | _ | | _ | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | | | | | _ | | _ | | | | 1 | <1 | | Chloroperlidae | - | | _ | | | | | | | | 1 | <1 | _ | | | Perlidae | _ | | _ | | _ | | | | _ | | | ~1 | | | | | | | _ | | _ | | | | _ | | _ | | _ | | | Taeniopterygidae | | | | | | | | | | _ | _ | _ | _ | | | Taeniopteryx | - | | _ | | | | | | 1 | <1 | 4 | <1 | 6 | <1 | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | 1 | <1 | _ | | _ | | _ | | _ | | _ | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | | _ | | | | _ | | _ | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | <del>-</del> | | | | | | | | | | | | | | | | Apatania | | | _ | | _ | | _ | | _ | | | | 1 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | | | | | _ | | | | _ | | | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | _ | | _ | | _ | | 11 | <1 | _ | | 1 | <1 | | | | Protoptila | | | | | _ | | | | _ | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 120 | 12 | 110 | 6 | 110 | 6 | 310 | 13 | 190 | 17 | 220 | 12 | 76 | 4 | | Cheumatopsyche | 21 | 2 | 3 | <1 | 5 | <1 | 3 | <1 | 12 | 1 | 8 | <1 | 6 | <1 | | Hydropsyche | | | _ | ~1 | 8 | <1 | 8 | <1 | 18 | 2 | 91 | 5 | 110 | 6 | | | | | _ | | 0 | <b>~1</b> | 0 | <b>~1</b> | 10 | L | 91 | J | 110 | U | | Hydroptilidae | _ | | | | _ | | | | | | _ | | _ | | | Hydroptila | 5 | <1 | _ | | 3 | <1 | _ | | _ | | 1 | <1 | 2 | <1 | | Leucotrichia | 400 | 40 | 900 | 53 | 1,300 | 72 | 980 | 43 | 87 | 8 | 870 | 48 | 710 | 42 | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | | | _ | | _ | | _ | | _ | | _ | | - | | | Oecetis | | | | | _ | | | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | _ | | _ | | 3 | <1 | 13 | <1 | 1 | <1 | 5 | <1 | | | | Dolophilodes | | | _ | | _ | ~- | | | _ | •• | 1 | <1 | _ | | | Polycentropodidae | | | | | | | | | _ | | 1 | ~1 | | | | | | | | | | | | | | | | | | | | Neureclipsis | _ | | _ | | | | _ | | | | _ | | _ | | | Polycentropus | _ | | - | | | | _ | | _ | | _ | | _ | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyia | _ | | _ | | _ | | - | | - | | _ | | _ | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | _ | | | | | | _ | | | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | | | | | | | | | | | | | | | | Archanara | | | | | _ | | _ | | | | _ | | _ | | | Archanara | | | _ | | _ | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | | Nov. 1 | 4, 1988 | Nov. | 7, 1989 | Oct. 1 | 7, 1990 | Oct. 3 | 1, 1991 | Oct. 1 | 6, 1992 | Nov. 8 | 3, 1993 | Nov. 1 | 4, 1994 | Date | |--------|----------|-------|---------|--------|------------|--------|---------|--------|---------|--------|---------|--------|---------|------------------------------------| | 1 2 | ,070 | 1, | 353 | 1, | 804 | 1, | 756 | 1, | 432 | 1,4 | 403 | 2,0 | 502 | Total count | | Count | Percent Organism | | | , | | | | | | | | | | | | | Ephemeroptera | | 00 | | 60 | | 22 | 2 | 22 | 1 | 24 | 2 | 25 | 2 | 50 | • | Isonychiidae | | 88 | 4 | 60 | 4 | 32 | 2 | 23 | 1 | 34 | 2 | 35 | 3 | 50 | 2 | Isonychia | | | | | | 2 | <1 | 1 | <1 | | | | | | | Leptohyphidae | | _ | | _ | | 2 | <b>~</b> 1 | 1 | <1 | | | _ | | | | Tricorythodes<br>Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | 3 | <1 | | | 4 | <1 | 1 | <1 | 2 | <1 | | | | | Argia | | J | ~1 | | | • | ~1 | • | ~1 | - | ~. | | | | | Aeshnidae | | _ | | _ | | _ | | | | | | | | | | Boyeria | | _ | | | | _ | | | | _ | | 1 | <1 | _ | | Gomphidae | | | | | | | | | | | | - | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | _ | | _ | | _ | | _ | | | | | | | | Allocapnia | | _ | | _ | | _ | | 1 | <1 | | | | | | | Chloroperlidae | | | | | | _ | | _ | | | | _ | | 1 | <1 | Perlidae | | | | | | | | | | | | | | | | Taeniopterygidae | | 11 | <1 | | | 1 | <1 | _ | | 1 | <1 | 1 | <1 | 1 | <1 | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | _ | | | | _ | | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | 1 | <1 | | | _ | | | | 1 | <1 | | | Corydalus | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | _ | | _ | | | | _ | | | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | | | _ | | _ | | 1 | <1 | | | _ | | | | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | 8 | <1 | 3 | <1 | 11 | <1 | - | | 1 | <1 | 3 | <1 | _ | | Glossosoma | | _ | | - | | 1 | <1 | - | | _ | | | | _ | | Protoptila | | | | | | | | | | | | | | | | Hydropsychidae | | 140 | 7 | 120 | 9 | 170 | 9 | 78 | 4 | 110 | 8 | 140 | 10 | 70 | 3 | Ceratopsyche | | 11 | <1 | 6 | <1 | 11 | <1 | 3 | <1 | 1 | <1 | 7 | <1 | 33 | 1 | Cheumatopsyche | | 200 | 10 | 180 | 13 | 220 | 12 | 190 | 11 | 85 | 6 | 82 | 6 | 890 | 34 | Hydropsyche | | _ | | | | _ | | | | • | _ | | | | | Hydroptilidae | | 5 | <1<br>25 | 4 | <1 | 6 | <1<br>22 | 1 | <1 | 3 | <1 | | 20 | | 0.4 | Hydroptila | | 740 | 35 | 670 | 48 | 420 | 23 | 980 | 54 | 480 | 34 | 510 | 36 | 630 | 24 | Leucotrichia | | | | 1 | <1 | | | | | 24 | 2 | | | | | Leptoceridae<br><i>Mystacide</i> s | | 3 | -1 | | <1 | _ | <1 | | | 2 | <1 | _ | -1 | | -1 | Oecetis | | 3 | <1 | | | 1 | <1 | | | 2 | <1 | 1 | <1 | 1 | <1 | Philopotamidae | | 27 | 1 | 2 | <1 | 2 | <1 | 53 | 3 | 24 | 2 | 85 | 6 | 72 | 3 | Chimarra | | 21 | 1 | ۷. | <1 | 2 | <b>~1</b> | 33 | 3 | _ | 2 | | U | 12 | 3 | Dolophilodes | | _ | | | | _ | | _ | | _ | | | | _ | | Polycentropodidae | | 3 | <1 | _ | | 12 | <1 | | | 1 | <1 | 1 | <1 | _ | | Neureclipsis | | 3 | <1 | 1 | <1 | 15 | <1 | | | | ~. | | ~, | _ | | Polycentropus | | • | | • | ~. | | | | | | | | | - | | Psychomylidae | | _ | | _ | | 1 | <1 | | | _ | | 1 | <1 | 1 | <1 | Psychomyia | | | | | | • | •• | | | | | * | | • | | Uenoidae | | | | | | _ | | | | | | 2 | <1 | | | Neophylax | | | | | | | | | | | | - | | | | Lepidoptera | | | | 1 | <1 | | | ***** | | | | | | | | Noctuidae | | _ | | _ | - | | | | | 1 | <1 | | | _ | | Archanara | | | | | | | | | | - | - | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01480629 - Buck Run at Doe Run, Pa. (Site 46)—Continued | Date | Nov. 8 | 5, 1981 | Oct. 2 | 8, 1982 | Oct. 2 | 8, 1983 | Oct. 3 | 1, 1984 | Oct. 2 | 9, 1985 | Oct. 3 | 0, 1986 | Nov. 1 | 9, 1987 | |---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 026 | 11 | ,647 | 11 | ,846 | 1 2 | ,272 | 1, | 091 | 1, | 769 | 1, | 644 | | Organism | Count | Percent | Coleoptera | | - | | | | | | | | | . " | **** | | , | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | _ | | _ | | | | | | | | _ | | | Dubiraphia | _ | | | | - | | - | | _ | | | | _ | | | Optioservus | 3 | <1 | 5 | <1 | | | 8 | <1 | 6 | <1 | 4 | <1 | 1 | <1 | | Oulimnius | | | | | | | | | | | | | _ | | | Stenelmis | _ | | 3 | <1 | _ | | 3 | <1 | | | _ | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | | | | | | _ | | | | _ | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 140 | 14 | 170 | 10 | 88 | 5 | 290 | 13 | 190 | 17 | 55 | 3 | 270 | 16 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 1 | <1 | 5 | <1 | | | 3 | <1 | 3 | <1 | | | 1 | <1 | | Ephydridae | | | | | | | | | _ | | _ | | _ | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 28 | 3 | 51 | 3 | 3 | <1 | 290 | 13 | 41 | 4 | 160 | 9 | 190 | 11 | | Stratiomyldae | - | | _ | | | | | | | | | | | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 52 | 5 | 110 | 6 | 51 | 3 | 93 | 4 | 150 | 14 | 58 | 3 | 70 | 4 | | Tipula | | | | | _ | | | | | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Date | 4, 1994 | Nov. 1 | , 1993 | Nov. 8 | 5, 1992 | Oct. 16 | , 1991 | Oct. 31 | 7, 1990 | Oct. 17 | ', 1989 | Nov. 7 | 4, 1988 | Nov. 1 | |---------------|---------|--------|---------|--------|---------|---------|------------|---------|---------|---------|---------|--------|---------|--------| | Total count | 502 | 2,6 | 103 | 1,4 | 32 | 1,4 | <b>'56</b> | 1,7 | 304 | 1,8 | 353 | 1,3 | 070 | 1 2 | | Organism | Percent | Count | Coleoptera | | | | **** | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | <1 | 5 | | | | | | | | | | | | _ | | Dubiraphia | | | <1 | 1 | | | | _ | <1 | 1 | <1 | 1 | | | | Optioservus | <1 | 16 | 2 | 21 | 3 | 48 | 1 | 24 | <1 | 14 | <1 | 12 | <1 | 13 | | Oulimnius | | | | | <1 | 2 | <1 | 2 | <1 | 2 | | _ | | | | Stenelmis | <1 | 3 | <1 | 5 | <1 | 11 | <1 | 2 | | | | _ | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | _ | <1 | 1 | | | | _ | | | <1 | 1 | | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 15 | 390 | 14 | 190 | 7 | 95 | 5 | 84 | 19 | 350 | 4 | 62 | 10 | 210 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | | | <1 | 3 | <1 | 3 | <1 | 1 | <1 | 5 | 1 | 14 | | | | Ephydridae | | | | | | | | | | | <1 | 1 | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 6 | 150 | 3 | 41 | 1 | 14 | 5 | 85 | 4 | 64 | 3 | 45 | 10 | 220 | | Stratiomyidae | | | | | <1 | 1 | | | | | | | | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 3 | 78 | 6 | 81 | 3 | 38 | 2 | 40 | 4 | 68 | 2 | 30 | 4 | 85 | | Tipula | | | - | | _ | | | | <1 | 2 | | | | | **Table 5.** Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480632 - Doe Run at Springdell, Pa. (Site 45) | Date | Nov. | 5, 1981 | Oct. 2 | 8, 1982 | Oct. 2 | 8, 1983 | Oct. 3 | 1, 1984 | Oct. 2 | 9, 1985 | Oct. 3 | 0, 1986 | Nov. 1 | 9, 1987 | |-----------------------------|-----------------|---------|-----------------|---------|-----------------|---------|----------------|---------|--------|---------|--------|---------|--------|---------| | Total count | <sup>1</sup> 1, | 133 | <sup>1</sup> 1, | ,620 | <sup>1</sup> 1, | ,405 | <sup>1</sup> 1 | ,608 | 9 | 74 | 7 | 74 | 1, | 617 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 43 | 4 | 16 | 1 | 8 | <1 | 16 | 1 | 11 | 1 | 13 | 2 | 27 | 2 | | Nematoda (nematodes) | | | | | 5 | <1 | | | | | - | | 1 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | _ | | | | _ | | 1 | <1 | | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 29 | 3 | 11 | <1 | 93 | 7 | _ | | _ | | 31 | 4 | 7 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | | | _ | | _ | | _ | | | | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | _ | | 3 | <1 | _ | | | | _ | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 5 | <1 | 11 | <1 | 5 | <1 | 8 | <1 | _ | | _ | | 10 | <1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | 5 | <1 | 3 | <1 | _ | | 5 | <1 | _ | | 15 | <1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | _ | | _ | | _ | | | | | | | | | | | Podocopa | | | | | _ | | | | | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 5 | <1 | 3 | <1 | _ | | 3 | <1 | | | 1 | <1 | _ | | | Pseudocloeon | 11 | 1 | 16 | 1 | 13 | <1 | 8 | <1 | 24 | 2 | 7 | <1 | 6 | <1 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 37 | 3 | 40 | 3 | 100 | 7 | 56 | 3 | 7 | <1 | 7 | <1 | 31 | 2 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | _ | | | | _ | | | | _ | | _ | | | Stenonema | 120 | 11 | 59 | 4 | 40 | 3 | 120 | 8 | 21 | 2 | 24 | 3 | 75 | 5 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 72 | 7 | 120 | 8 | 24 | 2 | 40 | 3 | 46 | 5 | 17 | 2 | 42 | 3 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | | | _ | | | | | | _ | | 2 | <1 | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 3 | <1 | 3 | <1 | | | | | _ | | _ | | | | | Plecoptera | - | _ | - | - | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | _ | | | | _ | | | | _ | | _ | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | | | | | _ | | 3 | <1 | _ | | 8 | 1 | 6 | <1 | | засторы ух | | | | | _ | | • | ~1 | _ | | J | • | U | ~1 | | Nov. 1 | 4, 1988 | Nov. | 7, 1989 | Oct. 1 | 7, 1990 | Oct. 3 | 1, 1991 | Oct. 1 | 6, 1992 | Nov. 8 | 3, 1993 | Nov. 9 | 9, 1994 | Date | |--------|---------|----------------|---------|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------| | 1 1 | ,818 | 1, | 430 | 1, | 752 | 1, | 392 | 1, | 195 | 1, | 229 | 1,0 | 300 | Total count | | Count | Percent Organism | | 19 | 1 | <b>22</b><br>1 | 2<br><1 | 55 | 3 | 11 | <l< td=""><td>4</td><td><l< td=""><td>3</td><td><l< td=""><td>5</td><td><l< td=""><td>Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae Nematoda (nematodes) Nemertea (proboscis worms) Enopla</td></l<></td></l<></td></l<></td></l<> | 4 | <l< td=""><td>3</td><td><l< td=""><td>5</td><td><l< td=""><td>Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae Nematoda (nematodes) Nemertea (proboscis worms) Enopla</td></l<></td></l<></td></l<> | 3 | <l< td=""><td>5</td><td><l< td=""><td>Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae Nematoda (nematodes) Nemertea (proboscis worms) Enopla</td></l<></td></l<> | 5 | <l< td=""><td>Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae Nematoda (nematodes) Nemertea (proboscis worms) Enopla</td></l<> | Platyhelminthes (flatworms) Turbellaria Tricladida Planariidae Nematoda (nematodes) Nemertea (proboscis worms) Enopla | | _ | | 1 | <1 | _ | | 2 | <1 | _ | | 4 | <l< td=""><td>-</td><td></td><td>Hoplonemertea Tetrastemmatidae Prostoma Mollusca (molluscs) Gastropoda Basommatophora</td></l<> | - | | Hoplonemertea Tetrastemmatidae Prostoma Mollusca (molluscs) Gastropoda Basommatophora | | 50 | • | 20 | • | 200 | 17 | co | - | 200 | 1.77 | co | - | 15 | | Ancylidae | | 56 | 3 | 28 | 2 | 300 | 17 | 63 | 5 | 200 | 17 | 63 | 5 | 15 | 1 | <i>Ferrissia</i><br>Physidae | | | | | | | | | | _ | | _ | | 1 | <1 | Physa | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | - | | _ | | _ | | 1 | <1 | 2 | <1 | _ | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | | | _ | | _ | | _ | | _ | | _ | | Lumbriculidae | | | | | | | | 1 | <l< td=""><td></td><td></td><td>,</td><td>-1</td><td></td><td></td><td>Tubificida<br/>Naididae</td></l<> | | | , | -1 | | | Tubificida<br>Naididae | | | | _ | | _ | | 1 | <1 | | | 1 | <1 | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | 16 | 1 | 34 | 2 | 20 | 1 | 7 | <1 | 16 | 1 | 2 | <1 | Hydrachnidia | | | | | • | | _ | | - | • | • | | - | _ | •• | Crustacea | | _ | | _ | | | | | | | | 1 | <1 | | | Cyclopoida | | | | 1 | <1 | _ | | _ | | | | | | | | Podocopa | | | | | | | | | | | | | | | | Insecta<br>Ephemeroptera<br>Baetidae | | 16 | <1 | 2 | <1 | 4 | <1 | 1 | <1 | 2 | <1 | 4 | <1 | 4 | <1 | Baetis | | 8 | <1 | 32 | 2 | 14 | <1 | 13 | <1 | 23 | 2 | 6 | <1 | _ | | Pseudocloeon | | | _ | | _ | | | | _ | | _ | | _ | _ | _ | Ephemerellidae | | 61 | 3 | 100 | 7 | 74 | 4 | 41 | 3 | 4 | <1 | 11 | <l< td=""><td>8</td><td>&lt;1</td><td>Ephemerella</td></l<> | 8 | <1 | Ephemerella | | | | 4 | <1 | 2 | <1 | | | 7 | <1 | 36 | 3 | | | Heptageniidae<br><i>Epeoru</i> s | | 270 | 15 | 180 | 13 | 85 | 5 | 58 | 4 | 66 | 6 | 59 | 5 | 120 | 9 | Stenonema | | | | | | 00 | • | | • | ••• | ŭ | • | ŭ | 120 | Ū | Isonychiidae | | 32 | 2 | 58 | 4 | 21 | 1 | 7 | <1 | 19 | 2 | 7 | <1 | 50 | 4 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | 3 | <1 | - | | | | _ | | _ | | | | | | Tricorythodes | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | _ | | _ | | _ | | _ | | _ | | _ | | Argia | | | | | | | | | | | | | | | | Plecoptera<br>Capniidae | | | | | | | | | | _ | | 1 | <l< td=""><td></td><td></td><td>Capinidae<br/>Allocapnia</td></l<> | | | Capinidae<br>Allocapnia | | | | | | | | | | - | | • | ~1 | _ <del>-</del> | | Taeniopterygidae | | 24 | 1 | 5 | <1 | 11 | <1 | 1 | <1 | _ | | _ | | _ | | Taeniopteryx | **Table 5.** Benthic-macroinvertebrate data—Continued 01480632 - Doe Run at Springdell, Pa. (Site 45) | Date | | 5, 1981 | | 8, 1982 | | 8, 1983 | | 1, 1984 | | 9, 1985 | | 0, 1986 | Nov. 1 | | |-------------------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------|---------|-------|---------|-------|---------|--------|-------| | Total count | <sup>1</sup> 1, | 133 | <sup>1</sup> 1, | 620 | <sup>1</sup> 1, | 405 | <sup>1</sup> 1, | 608 | 9 | 74 | 7 | 74 | 1, | 617 | | Organism | Count | Percent | Count | Perce | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | _ | | | | _ | | _ | | _ | | _ | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | _ | | _ | | | | | | 1 | <1 | | | 7 | <1 | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 3 | <1 | 5 | <1 | 8 | <1 | 16 | 1 | _ | | | | 2 | <1 | | Protoptila | 3 | <1 | _ | | | | | | _ | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 230 | 21 | 120 | 8 | 360 | 26 | 400 | 25 | 430 | 44 | 130 | 17 | 160 | 10 | | Cheumatopsyche | 140 | 13 | 37 | 2 | 8 | <1 | 27 | 2 | 34 | 3 | 1 | <1 | 35 | 2 | | Hydropsyche | 13 | 1 | 13 | <1 | 16 | 1 | 5 | <1 | 26 | 3 | 44 | 6 | 24 | 2 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 8 | <1 | 11 | <1 | 3 | <1 | _ | | _ | | _ | | 22 | 1 | | Leucotrichia | 11 | 1 | 140 | 9 | 390 | 28 | 290 | 18 | 100 | 10 | 270 | 35 | 560 | 35 | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | _ | | 21 | 1 | 5 | <1 | 21 | 1 | _ | | 3 | <1 | 22 | 1 | | Dolophilodes | _ | | | | _ | | _ | | | | _ | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | | | _ | | _ | | _ | | _ | | 2 | <1 | _ | | | Polycentropus | _ | | 3 | <1 | _ | | _ | | _ | | | | _ | | | Psychomyiidae | | | | | | | | | | | | | | | | Psychomyia | _ | | 3 | <1 | | | _ | | _ | | _ | | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | 3 | <1 | _ | | _ | | 5 | <1 | _ | | | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | _ | | _ | | | | _ | | | | _ | | | | | Archanara | _ | | | | | | _ | | _ | | | | _ | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 13 | 1 | 61 | 4 | 21 | 2 | 3 | <1 | 2 | <1 | 2 | <1 | 13 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | _ | | | | | | | | _ | | _ | | | Dubiraphia | _ | | _ | | | | _ | | _ | | | | 1 | <1 | | Optioservus - | 8 | <1 | _ | | _ | | 24 | 2 | 3 | <1 | 2 | <1 | 6 | <1 | | Oulimnius | | | 3 | <1 | _ | | _ | | 1 | <1 | | | _ | | | Stenelmis | 3 | <1 | | | 3 | <1 | 3 | <1 | | | _ | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | | _ | | _ | | | | _ | | _ | | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 250 | 23 | 720 | 45 | 230 | 16 | 180 | 11 | 160 | 16 | 110 | 14 | 370 | 23 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 5 | <1 | 11 | <1 | 3 | <1 | 3 | <1 | 4 | <1 | | | 1 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 8 | <1 | 8 | <1 | 3 | <1 | 300 | 19 | 15 | 2 | 37 | 5 | 22 | 1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 110 | 10 | 180 | 11 | 61 | 4 | 77 | 5 | 82 | 8 | 65 | 8 | 150 | 9 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Date | , 1994 | Nov. 9 | , 1993 | Nov. 8 | 5, 1992 | Oct. 10 | 1, 1991 | Oct. 31 | 7, 1990 | Oct. 17 | , 1989 | Nov. 7 | 4, 1988 | | |-------------------|---------|-----------|----------------|--------|---------|------------|---------|---------|---------|---------|-------------|--------|---------|-------| | Total count | 300 | 1,3 | 29 | 1,2 | 95 | 1,1 | 392 | 1,3 | 752 | 1,7 | <b>1</b> 30 | 1,4 | 818 | 11 | | Organism | Percent | Count | Megaloptera | | | | | | | | | | | | | * | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | _ | | _ | | _ | | _ | | _ | <1 | 1 | | _ | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | _ | | — | | _ | | _ | | _ | | | | - | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | _ | 2 | 20 | <1 | 1 | <1 | 1 | 1 | 23 | <1 | 9 | <1 | 3 | | Protoptila | | _ | | _ | | _ | | _ | | | | _ | | _ | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 11 | 140 | 23 | 280 | 6 | 74 | 18 | 250 | 12 | 220 | 25 | 350 | 18 | 20 | | Cheumatopsyche | 1 | 19 | 6 | 75 | <1 | 3 | <1 | 10 | <1 | 6 | 3 | 46 | 1 | 21 | | Hydropsyche | 21 | 270 | 7 | 84 | 21 | 250 | 8 | 110 | 4 | 74 | 3 | 48 | 4 | 67 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | <1 | 1 | <1 | 1 | <1 | 4 | <1 | 1 | <1 | 1 | <1 | 8 | <1 | 8 | | Leucotrichia | 18 | 230 | 25 | 300 | 15 | 180 | 10 | 140 | 29 | 520 | 19 | 260 | 25 | 50 | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | <1 | 11 | 1 | 17 | <1 | 1 | 2 | 21 | 1 | 18 | 2 | 26 | 1 | 19 | | Dolophilodes | | _ | | _ | | _ | | _ | | _ | <1 | 1 | | _ | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | | _ | | _ | | _ | <1 | 7 | | _ | | | | | | Polycentropus - | | _ | | | | _ | | _ | | | <1 | 3 | | _ | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyla | 2 | 20 | 3 | 33 | 1 | 17 | 2 | 24 | <1 | 17 | <1 | 2 | | _ | | Uenoidae | | | _ | | | | | | | | | | | | | Neophylax | | | <1 | 1 | | | | _ | | _ | <1 | 1 | <1 | 3 | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | <1 | 1 | | _ | | | | | | _ | | _ | | _ | | Archanara | | | | _ | | _ | | | | _ | <1 | 1 | | _ | | Pyralidae | | | | | | | | | | | | _ | | | | Petrophila | <1 | 11 | <1 | 4 | 1 | 12 | <1 | 3 | <1 | 4 | <1 | 1 | 1 | 24 | | Coleoptera | | | •• | - | - | | | | | - | | - | - | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | _ | <1 | 2 | | | | | | _ | | | | _ | | Dubiraphia | | _ | •• | _ | | | | | | | | | | | | Optioservus | <1 | 1 | 2 <sup>'</sup> | 22 | <1 | 5 | 2 | 21 | 1 | 19 | <1 | 6 | <1 | 11 | | Oulimnius | •• | _ | - | | | _ | <1 | 1 | • | _ | <1 | 1 | | _ | | Stenelmis | <1 | 5 | <1 | 1 | | | <1 | 1 | | _ | | _ | | _ | | Psephenidae | | J | | - | | | | - | | | | | | | | Psephenus | | _ | <1 | 2 | | | <1 | 2 | <1 | 5 | <1 | 1 | | | | Diptera | | - | ~4 | _ | | | | - | ~• | J | 7.2 | • | | | | Chironomidae | 18 | 240 | 8 | 98 | 8 | 97 | 21 | 300 | 8 | 140 | 8 | 110 | 11 | 90 | | Empididae | 10 | 270 | 3 | 00 | • | ٠. | L.1 | 300 | • | 1 10 | 3 | 110 | | . 30 | | Hemerodromia | <1 | 2 | <1 | 2 | | | <1 | 5 | <1 | 3 | <1 | 3 | | _ | | Simuliidae | ~1 | - | ~1 | - | | | ~1 | J | ~1 | J | ~1 | 3 | | - | | Simulium | 2 | 24 | 1 | 14 | 8 | 98 | 2 | 27 | <1 | 2 | <1 | 9 | 9 | 60 | | Tipulidae | L | <b>74</b> | 1 | 17 | U | <i>3</i> 0 | - | LI | ~1 | L | ~1 | 3 | 3 | | | Antocha | 9 | 120 | 5 | 59 | 10 | 120 | 18 | 250 | 6 | 100 | 7 | 93 | 3 | 53 | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38) | Date | NOV. 4 | 1, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 2 | 2, 1985 | Nov. | 3, 1986 | Nov. 3 | 3, 1987 | |--------------------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|--------|---------| | Total count | 5 | 98 | 1,0 | 655 | 1, | 110 | 1, | 402 | 1,0 | 085 | 7 | 69 | 4 | 02 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | _ | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planarlidae | 17 | 3 | | | 19 | 2 | 1 | <1 | 19 | 2 | 2 | <1 | 16 | 4 | | Nematoda | | | _ | | _ | | 1 | <1 | _ | | | | _ | | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 1 | <1 | _ | | | | 1 | <1 | 1 | <1 | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | | | | | | | | | | | | | | | Amnicola | | | | | | | | | _ | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 7 | 1 | 45 | 3 | 26 | 2 | 6 | <1 | 15 | 1 | 6 | <1 | 1 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | | | | _ | | | | | | | | 1 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | _ | | | | _ | | | | _ | | 3 | <1 | 3 | <1 | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | | | _ | | _ | | | | _ | | | | | | | Helisoma | _ | | | | | | | | _ | | | | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | _ | | | | | | 3 | <1 | _ | | | Annelida (segmented worms) | | | | | | | | | | | | - | | | | Oligochaeta Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | _ | | | | | | _ | | | | | | _ | | | Naididae | | | | | | | 2 | <1 | | | | | | | | Hirudinea | _ | | _ | | | | 2 | <1 | | | | | _ | | | | | | | | | | | | | | | | | | | Pharyngobdellida | • | -1 | | | | | | | | | | | | | | Glossiphoniidae | 2 | <1 | | | _ | | | | _ | | _ | | | | | Arthropoda (arthropods) Acariformes | | | | | | | | | | | | | | | | | | -1 | | | 2 | -1 | 2 | -1 | 2 | -1 | | | 0 | 2 | | Hydrachnidia<br>Crustacea | 1 | <1 | | | 2 | <1 | 2 | <1 | 2 | <1 | _ | | 8 | 2 | | | | | | | | | | | | | | | | | | Amphipoda<br>Gammaridae | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Gammarus | | | | | | | | | 1 | | | | | | | Podocopa | _ | | | | | | | | 1 | <1 | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | _ | | _ | | | .4 | 1.4 | | | | | .1 | | | | Baetis | 6 | 1 | 6 | <1 | 1 | <1 | 14 | 1 | 11 | 1 | 1 | <1 | | • | | Pseudocloeon | 2 | <1 | _ | | _ | | | | | | _ | | 10 | 2 | | Caenidae | | | | | _ | | | | | | | | | ,. | | Caenis | - | | _ | | 2 | <1 | | | | | _ | | 1 | <1 | | Ephemerellidae | | | | | | | | | | | | | | | | <i>Ephemerella</i> | 6 | 1 | 14 | <1 | 40 | 4 | 3 | <1 | 5 | <1 | 5 | <1 | 10 | 2 | | Oct. 1 | 1, 1988 | Oct. 1 | 3, 1989 | Oct. 1 | 5, 1990 | Oct. 3 | 0, 1991 | Oct. 2 | 9, 1992 | Nov. 1 | 5, 1993 | Oct. 1 | 1, 1994 | Date | |--------|---------|--------|---------|---------|---------|--------|---------|-------------|---------|--------|---------|-------------|---------|---------------------------------------------------------------------------| | 11, | 939 | 1,6 | 631 | 1, | 532 | 1, | 418 | 1, | 041 | 7 | 64 | 1,0 | 005 | -<br>Total count | | Count | Percent Organism | | | | | | | | | _ | | | | _ | | | Platyhelminthes (flatworms) Turbellaria Tricladida | | 5 | <1 | 37 | 2 | 34<br>2 | 2<br><1 | 45 | 3 | 60 | 6 | 57 | 7 | 33 | 3 | Planariidae | | _ | | _ | | 2 | ζ1 | _ | | <del></del> | | | | | | Nematoda Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | _ | | 3 | <1 | 1 | <1 | _ | | 6 | <1 | 1 | <1 | _ | | Prostoma Mollusca (molluscs) Gastropoda Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | _ | | <i>Amnicola</i><br>Basommatophora<br>Ancylidae | | 5 | <1 | 25 | 2 | 53 | 4 | 20 | 1 | 18 | 2 | 27 | 3 | 11 | 1 | Ferrissia | | | | | | | | | | | | | | | | Lymnaeidae | | | | | | | | _ | | | | _ | | | | <i>Lymnaea</i><br>Physidae | | _ | | _ | | 3 | <1 | _ | | _ | | 1 | <1 | _ | | Physia<br>Planorbidae | | | | | | | | _ | | 1 | <1 | 1 | <1 | 1 | <1 | Gyraulus | | | | _ | | | | 1 | <1 | | | | | | | Helisoma | | | | | | | | | | | | | | | | Bivalvia | | | | | | • | .4 | | | | | | | | .1 | Veneroida | | _ | | _ | | 3 | <1 | | | | | 1 | <1 | 1 | <1 | Sphaeriidae Annelida (segmented worms) Oligochaeta Lumbriculida | | | | 2 | <1 | | | | | | | | | _ | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | _ | | 3 | <1 | _ | | 1 | <1 | 3 | <1 | 1 | <1 | _ | | Naididae | | | | | | | | | | | | | | | | Hirudinea<br>Pharyngobdellida | | _ | | | | _ | | _ | | _ | | _ | | _ | | Glossiphoniidae Arthropoda (arthropods) Acariformes | | 3 | <1 | 20 | 1 | 12 | <1 | 6 | <1 | 26 | 3 | 32 | 4 | 12 | 1 | Hydrachnidia<br>Crustacea | | | | | | _ | | | | | | | | | | Amphipoda<br>Gammaridae | | | | _ | | 6 | <1 | _ | | _ | | | | 1 | <1 | Gammarus<br>Podocopa | | _ | | _ | | | | _ | | | | | | <del></del> | | Insecta Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 120 | 6 | 7 | <1 | 3 | <1 | _ | | 5 | <1 | _ | | 38 | 4 | Baetis | | _ | | 2 | <1 | 4 | <1 | | | 2 | <1 | _ | | 5 | <1 | Pseudocloeon | | | | | | _ | _ | | | | | _ | . • | _ | | Caenidae | | | | | | 1 | <1 | _ | | | | 6 | <1 | 3 | <1 | <i>Caenis</i><br>Ephemerellidae | | 5 | <1 | 23 | 1 | 35 | 2 | 21 | 2 | 65 | 7 | 37 | 5 | 21 | 2 | Ephemerella | Table 5. Benthic-macroinvertebrate data—Continued 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38)—Continued | Date | Nov. 4 | 4, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 2 | 2, 1985 | Nov. 3 | 3, 1986 | Nov. 3 | 3, 1987 | |-------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 5 | 98 | 1, | 655 | 1, | 110 | 1,4 | 402 | 1,0 | 085 | 7 | 69 | 4 | 02 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | | | _ | | | | _ | | _ | | _ | | | Stenonema | 130 | 21 | 170 | 10 | 68 | 6 | 41 | 3 | 33 | 3 | 110 | 14 | 52 | 13 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 1 | <1 | 2 | <1 | 7 | <1 | 6 | <1 | 3 | <1 | 13 | 2 | 2 | <1 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | 10 | 2 | 6 | <1 | 34 | 3 | 1 | <1 | 5 | <1 | _ | | 7 | 2 | | Leptophlebiidae | 1 | <1 | _ | | _ | _ | | | _ | | | | _ | | | Potamanthidae | • | ~- | | | | | | | | | | | | | | Anthopotamus | | | | | | | | | | | | | | | | Odonata | | | | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | | | | Coenagrionidae | _ | _ | | | | | | | | | | _ | | | | Argia | 2 | <1 | | | 10 | <1 | | | _ | | 4 | <1 | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | | | 1 | <1 | | | _ | | 1 | <1 | 1 | <1 | | Chloroperlidae | _ | | _ | | | | _ | | _ | | _ | | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | | | | | _ | | | | | | | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 1 | <1 | 1 | <1 | 1 | <1 | _ | | _ | | _ | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 1 | <1 | | | | | 1 | <1 | | | _ | | | | | Neuroptera | • | ~~ | | | | | • | ~~ | | | | | | | | Sisyridae | | | | | | | | | | | | | | | | Climacia | | | | | | | | | | | | | | | | Cumacia<br>C. areolaris | | | | | | | | | | | 1 | <1 | | | | | | | _ | | _ | | _ | | | | 1 | <1 | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | | _ | | _ | | | | _ | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | _ | | _ | | _ | | _ | | _ | | - | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | | 3 | <1 | 13 | 1 | 2 | <1 | _ | | 3 | <1 | 1 | <1 | | Protoptila | _ | | _ | | _ | | | | _ | | | | _ | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | _ | | _ | | | | | | _ | | _ | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 150 | 25 | 480 | 28 | 220 | 20 | 240 | 17 | 190 | 17 | 240 | 31 | 95 | 23 | | Cheumatopsyche | 120 | 20 | 190 | 11 | 150 | 14 | 200 | 14 | 33 | 3 | 11 | 1 | 11 | 3 | | Hydropsyche | 4 | <1 | 24 | 1 | 6 | <1 | 20 | 1 | 13 | 1 | 19 | 2 | 12 | 3 | | Hydroptilidae | • | ~- | | • | Ū | ~2 | 20 | • | 15 | • | 1, | - | | - | | Hydroptila | 1 | <1 | | | 2 | <1 | | | 1 | <1 | | | | | | · - | | | - | 20 | | | | | | | 100 | 10 | | | | Leucotrichia | 54 | 9 | 340 | 20 | 320 | 29 | | | 3 | <1 | 100 | 13 | 17 | 4 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | _ | | _ | | _ | | _ | | | | _ | | _ | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | _ | | _ | | _ | | _ | | _ | | | | | Oecetis | _ | | | | _ | | | | | | _ | | | | | Philopotamidae | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1, 1988 | Oct. 1 | 3, 1989 | Oct. 1 | 5, 1990 | | 0, 1991 | - CCI. 2 | 9, 1992 | 1404. | 15, 1993 | | 1, 1994 | Date | |-----------------|---------|--------|---------|--------|----------|-------|---------|------------|----------|---------|----------|-------------|---------|---------------------------| | <sup>1</sup> 1, | 939 | 1, | 631 | 1, | 532 | 1, | 418 | 1, | 041 | 7 | 764 | 1, | 005 | Total count | | Count | Percent Organism | | | | | | | | | | | | | • | | ' | Ephemeroptera | | | | | | | | | | | | | | | | Heptageniidae | | _ | | 1 | <1 | 2 | <1 | _ | | - | | 1 | <1 | _ | | Epeorus | | 70 | 14 | 49 | 3 | 270 | 18 | 83 | 6 | <b>7</b> 9 | 8 | 62 | 8 | 86 | 9 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | 8 | <1 | | | 7 | <1 | 1 | <1 | 4 | <1 | 1 | <1 | 25 | 3 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | | | _ | | 2 | <1 | 1 | <1 | 4 | <1 | 7 | <1 | 2 | <1 | Tricorythodes | | _ | | _ | | _ | 7- | | 7- | | | | | 1 | <1 | Leptophlebiidae | | | | | | | | | | | | | | • | ~1 | Potamanthidae | | | | | | _ | | | | | | 1 | <1 | | | Anthopotamus | | | | _ | | | | | | _ | | 1 | ~1 | | | Odonata | | | | | | | | | | | | | | | | | | | | | .1 | | | | .1 | | | • | .1 | | -1 | Coenagrionidae | | | | 1 | <1 | | | 4 | <1 | | | 3 | <1 | 1 | <1 | Argia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | _ | | | | | | | | | | Allocapnia | | _ | | 1 | <1 | 2 | <1 | | | _ | | _ | | 2 | <1 | Chloroperlidae | | | | | | | | | | | | | | | | Perlidae | | | | | | | | _ | | _ | | | | 1 | <1 | Acroneuria | | | | | | | | | | | | | | | | Taeniopterygidae | | _ | | 2 | <1 | 1 | <1 | | | | | | | | | Taeniopteryx | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | _ | | | | | | | | 1 | <1 | | | Corydalus | | | | | | | | | | | | - | | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae | | | | | | | | | | | | | | | | Climacia | | | | | | | | | | | | | | | | Cumacia<br>C. areolaris | | | | _ | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | _ | | | | Apataniidae | | _ | | | | _ | | _ | | | | 1 | <1 | | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | | | | | _ | | | | 1 | <1 | _ | | | | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | 3 | <1 | 5 | <1 | _ | | _ | | _ | | | | 2 | <1 | Glossosoma | | 3 | <1 | 44 | 3 | 4 | <1 | 75 | 5 | 10 | 1 | 27 | 3 | 5 | <1 | Protoptila | | | | | | | | | | | | | | | | Helicopsychidae | | | | _ | | 10 | <1 | 470 | 34 | 14 | 1 | 120 | 15 | 140 | 14 | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | 30 | 38 | 400 | 25 | 480 | 32 | 220 | 16 | 150 | 15 | 54 | 7 | 120 | 12 | Ceratopsyche | | 80 | 15 | 69 | 4 | 69 | 5 | 52 | 4 | 27 | 3 | 8 | 1 | 110 | 11 | Cheumatopsyche | | 50 | 8 | 110 | 7 | 76 | 5 | 19 | 1 | 25 | 3 | 4 | <1 | 130 | 13 | Hydropsyche | | | J | 110 | , | ,,, | , | | • | | 3 | ~ | ~1 | 150 | | Hydroptilidae | | | | | | 1 | <1 | 3 | <1 | 2 | <1 | 5 | <1 | | | Hydroptila | | —<br>43 | 2 | 6 | <1 | 4 | <1<br><1 | 18 | | 5 | <1<br><1 | 3<br>17 | | <del></del> | 7 | Hyaroptia<br>Leucotrichia | | +3 | 2 | O | <1 | 4 | <1 | 16 | 1 | 3 | <1 | 1/ | 2 | 08 | 7 | | | | | | | | | _ | | | | _ | | _ | | Lepidostomatidae | | _ | | | | 1 | <1 | 3 | <1 | 4 | <1 | 5 | <1 | 3 | <1 | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | | | _ | | _ | | 1 | <1 | 3 | <1 | | | 1 | <1 | Mystacides | | _ | | | | 5 | <1 | 1 | <1 | | | 2 | <1 | 6 | <1 | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 5 | <1 | 8 | <1 | _ | | 18 | 1 | 16 | 2 | 29 | 4 | 43 | 4 | Chimarra | Table 5. Benthic-macroinvertebrate data—Continued 01480640 - West Branch Brandywine Creek at Wawaset, Pa. (Site 38)—Continued | Date | Nov. 4 | 4, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 2 | 2, 1985 | Nov. 3 | 3, 1986 | Nov. 3 | 3, 1987 | |-------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 5 | 98 | 1,0 | 655 | 1, | 110 | 1,4 | 402 | 1,0 | 085 | 7 | 69 | 4 | 02 | | Organism | Count | Percent | Trichoptera | - | *** | | | | | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | 1 | <1 | 6 | <1 | _ | | | | | | 5 | <1 | _ | | | Polycentropus | _ | | _ | | | | | | _ | | | | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | _ | | | | _ | | | | | | _ | | 1 | <1 | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 5 | <1 | 9 | <1 | 19 | 2 | 9 | <1 | 19 | 2 | 26 | 3 | 3 | <1 | | Synclita | | | 1 | <1 | _ | | | | | | _ | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Curculionidae | | | | | | | | | _ | | | | _ | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | 1 | <1 | | | 1 | <1 | _ | | | | | | | | | Optioservus | | | | | 19 | 2 | 1 | <1 | 27 | 2 | 17 | 2 | 9 | 2 | | Oulimnius | 1 | <1 | _ | | 1 | <1 | | | 4 | <1 | _ | | | | | Stenelmis | 1 | <1 | 3 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | 1 | <1 | _ | | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | _ | | _ | | _ | | _ | | _ | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | 2 | <1 | _ | | _ | | _ | | | | | | _ | | | Hymenoptera | | | _ | | | | | | 1 | <1 | 1 | <1 | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | _ | | _ | | | | | | | | | | | Chironomidae | 58 | 10 | 240 | 14 | 74 | 7 | 410 | 29 | 630 | 57 | 86 | 11 | 94 | 23 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 1 | <1 | 1 | <1 | 1 | <1 | | | 1 | <1 | | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 5 | <1 | 71 | 4 | 16 | 1 | 340 | 24 | 26 | 2 | 45 | 6 | 40 | 10 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 4 | <1 | 42 | 2 | 56 | 5 | 100 | 7 | 40 | 4 | 66 | 8 | 7 | 2 | | Tipula | - | | | | | | | | | | | | | | | Oct. 11 | 1, 19 <b>8</b> 8 | Oct. 1 | 3, 1989 | Oct. 1 | 5, 1990 | Oct. 3 | 0, 1991 | Oct. 2 | 9, 1992 | Nov. 1 | 5, 1993 | Oct. 1 | 1, 1994 | Date | |---------|------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------------------| | 11,5 | 939 | 1,6 | 531 | 1, | 532 | 1, | 418 | 1, | 041 | 7 | 64 | 1,0 | 005 | Total count | | ount | Percent | Count | Percent | Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Polycentropodidae | | 3 | <1 | | | 9 | <1 | 2 | <1 | | | 1 | <1 | 3 | <1 | Neureclipsis | | _ | | | | 4 | <1 | _ | | | | | | | | Polycentropus | | | | | | | | | | | | | | | | Psychomyiidae | | 5 | <1 | 28 | 2 | 66 | 4 | 5 | <1 | 6 | <1 | 13 | 2 | 9 | <1 | Psychomyia | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | 19 | 1 | 9 | <1 | 16 | 1 | 11 | <1 | 10 | 1 | 5 | <1 | 18 | 2 | Petrophila | | _ | | | | | | | | _ | | _ | | _ | | Synclita | | | | | | | | | | | | | | | | Coleoptera | | _ | | | | _ | | | | _ | | | | 1 | <1 | Curculionidae | | | | | | | | | | | | | | | | Elmidae | | _ | | | | 2 | <1 | | | — | | 1 | <1 | | | Dubiraphia | | 16 | <1 | 41 | 3 | 19 | 1 | 51 | 4 | 42 | 4 | 22 | 3 | 16 | 2 | Optioservus | | _ | | | | _ | | | | | | _ | | | | Oulimnius | | 11 | <1 | 31 | 2 | 9 | <1 | 13 | <1 | 4 | <1 | 6 | <1 | 7 | <1 | Stenelmis | | | | | | | | | | | | | | | | Hydrophilidae | | | | | | _ | | _ | | 1 | <1 | _ | | | | Berosus | | | | | | | | | | | | | | | | Psephenidae | | _ | | _ | | 1 | <1 | _ | | 1 | <1 | 5 | <1 | | | Psephenus | | _ | | _ | | | | | | _ | | | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | _ | | 1 | <1 | _ | | _ | | | | _ | | | | Atherix | | 80 | 9 | 610 | 38 | 220 | 15 | 220 | 16 | 340 | 34 | 170 | 22 | 64 | 6 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | | | 14 | <1 | 1 | <1 | _ | | 2 | <1 | 4 | <1 | _ | | Hemerodromia | | | | | | - | | | | _ | | | | | | Simuliidae | | 57 | 4 | 18 | 1 | 18 | 1 | 4 | <1 | 59 | 6 | 2 | <1 | 3 | <1 | Simulium | | | • | | = | | = | - | | | = | - | | - | | Tipulidae | | 8 | <1 | 60 | 4 | 76 | 5 | 47 | 3 | 45 | 5 | 23 | 3 | 12 | 1 | Antocha | | _ | | 1 | <1 | _ | - | 1 | <1 | 1 | <1 | _ | - | | | Tipula | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480647 - E Br Brandywine Creek near Struble Dam, Pa. (Site 43) | Date | Oct. 2 | 2, 1981 | Nov. 3 | 3, 1982 | |-----------------------------|--------|---------|--------|---------| | Total count | 3 | 03 | 5 | 66 | | Organism | Count | Percent | Count | Percent | | Platyhelminthes (flatworms) | | | | | | Turbellaria | | | | | | Tricladida | | | | | | Planariidae | 150 | 48 | 100 | 18 | | Nemertea (proboscis worms) | | | | | | Enopla | | | | | | Hoplonemertea | | | | | | Tetrastemmatidae | | | | | | Prostoma | 7 | 2 | 9 | 2 | | Mollusca (molluscs) | | | | | | Gastropoda | | | | | | Basommatophora | | | | | | Ancylidae | | | | | | Ferrissia | | | 3 | <1 | | Physidae | | | 3 | <1 | | <u>-</u> | | , | | | | Physa | 4 | 1 | - | | | Bivalvia | | | | | | Veneroida | _ | _ | | _ | | Sphaeriidae | 2 | <1 | 14 | 2 | | Annelida (segmented worms) | | | | | | Oligochaeta | 1 | <1 | _ | | | Lumbriculida | | | | | | Lumbriculidae | | | 1 | <1 | | Tubificida | | | | | | Naididae | 51 | 16 | 13 | 2 | | Arthropoda (arthropods) | | | | | | Acariformes | | | | | | Hydrachnidia | 4 | 1 | 35 | 6 | | Crustacea | | | | | | Amphipoda | | | | | | Gammaridae | | | | | | Gammarus | 5 | 2 | - | | | Podocopa | 35 | 11 | 10 | 2 | | Insecta | | | | _ | | Ephemeroptera | | | | | | Baetidae | | | | | | Baettae<br>Baetis | 1 | <1 | 1 | <1 | | | • | ~1 | • | ~1 | | Ephemerellidae | | | 2 | -1 | | Ephemerella | | | 3 | <1 | | Odonata | | | | | | Calopterygidae | _ | | | | | Calopteryx | 2 | <1 | | | | Coenagrionidae | _ | _ | | | | Enallagma | 6 | 2 | _ | | | Megaloptera | | | | | | Corydalidae | | | | | | Nigronia - | | | 1 | <1 | | Sialidae | | | | | | Sialis | 3 | 1 | _ | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued 01480647 - E Br Brandywine Creek near Struble Dam, Pa. (Site 43)—Continued | Date | Oct. 2 | 2, 1981 | Nov. 3 | 3, 1982 | |----------------|--------|---------|--------|---------| | Total count | 3 | 03 | 5 | 66 | | Organism | Count | Percent | Count | Percent | | Trichoptera | | | | | | Hydropsychidae | | | | | | Cheumatopsyche | | | 54 | 9 | | Hydropsyche | 7 | 2 | 15 | 3 | | Hydroptilidae | | | | | | Hydroptila | 10 | 3 | 43 | 8 | | Orthotrichia | | | 1 | <1 | | Leptoceridae | | | | | | Mystacides | | | 1 | <1 | | Oecetis | 1 | <1 | | | | Triaenodes | | | 6 | 1 | | Psychomylidae | | | | | | Psychomyia | | | 3 | <1 | | Coleoptera | | | | | | Elmidae | | | | | | Dubiraphia | 1 | <1 | 6 | 1 | | Optioservus | | | 3 | <1 | | Stenelmis | 2 | <1 | 4 | <1 | | Diptera | | | | | | Chironomidae | 7 | 2 | 63 | 11 | | Empididae | | | | | | Hemerodromia | | | 6 | 1 | | Psychodidae | | | | | | Telmatoscopus | 1 | <1 | | | | Simuliidae | | | | | | Simulium | 2 | <1 | 160 | 28 | | Tipulidae | | | | | | Antocha | 1 | <1 | 11 | 2 | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 48) | Date | Oct. 2 | 2, 1981 | Nov. | 3, 1982 | Nov. : | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Oct. 2 | 9, 1986 | Oct. 1: | 9. 1987 | |-----------------------------|---------------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------|---------| | Total count | 1, | 310 | 2, | 529 | 7 | '33 | 1,0 | 652 | 6 | 89 | 8 | 95 | 1, | 139 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 10 | <1 | 63 | 3 | 41 | 6 | 76 | 4 | 47 | 7 | 3 | <1 | 41 | 4 | | Nematoda (nematodes) | - | | _ | | - | | | | | | | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 10 | <1 | 13 | <1 | 10 | 1 | 6 | <1 | 7 | 1 | 1 | <1 | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | _ | | 1 | <1 | | | | | _ | | | | | | | Physidae | | | | | | | | | | | | | | | | Physa | | | | | _ | | | | _ | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | 8 | <1 | | | 1 | <1 | _ | | 1 | <1 | _ | | | | | Pisidium | | | | | | | _ | | | - | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | _ | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | | | _ | | 1 | <1 | 2 | <1 | 1 | <1 | | Tubificida | _ | | | | | | | | • | ~1 | L | ~1 | • | ~1 | | Naididae | 30 | 2 | | | 9 | 1 | | | | | | | 31 | 3 | | Tubificidae | 30 | 2 | _ | | 9 | 1 | _ | | | | _ | | 31 | J | | | _ | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | _ | _ | | _ | _ | | | • | | _ | | | | | Hydrachnidia | 31 | 2 | 1 | <1 | 3 | <1 | | | 6 | <1 | 1 | <1 | 8 | <1 | | Crustacea | | | | | | | | | | | | | | | | Cladocera | _ | | | | | | _ | | | | | | | | | Cyclopoida | _ | | | | _ | | | | | | _ | | _ | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | _ | | _ | | - | | | | | | | | 4 | <1 | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | - | | 1 | <1 | 1 | <1 | _ | | 2 | <1 | _ | | | | | Podocopa | 14 | 1 | 1 | <1 | 1 | <1 | 1 | <1 | _ | | _ | | 3 | <1 | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | <b>Baetis</b> | 35 | 3 | 52 | 2 | 5 | <1 | 9 | <1 | 4 | <1 | 6 | <1 | 13 | 1 | | Pseudocloeon | 1 | <1 | 3 | <1 | _ | | | | _ | | _ | | 5 | <1 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 30 | 2 | 24 | <1 | 28 | 4 | 14 | <1 | 1 | <1 | 2 | <1 | 18 | 2 | | Ephemeridae | | _ | ~-* | | | - | | | - | | - | | | _ | | Ephemera | _ | | | | _ | | | | _ | | _ | | | | | Heptageniidae | . <del></del> | | - | | _ | | | | | | | | | | | Epeorus | 7 | <1 | _ | | | | _ | | _ | | _ | | | | | E peor us<br>Stenonema | 40 | 3 | 110 | 4 | 70 | 9 | 120 | 7 | 46 | 7 | 71 | 8 | 69 | 6 | | Stenonema | 40 | 3 | 110 | 4 | 70 | 9 | 120 | 1 | 40 | , | 11 | 0 | US | 0 | | Nov. 1 | 6, 1988 | Oct. 1 | 6, 1989 | Oct, 2 | 6, 1990 | Nov. 1 | , 1991 | Oct, 2 | 6, 1992 | Nov. 3 | 3, 1993 | Oct. 1 | 2, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------|---------|---------------------------------------------------------------------------------------| | 1 1 | ,984 | 3, | 846 | 5 | 38 | 9 | 26 | 6 | 10 | 2,0 | 016 | 9 | 73 | Total count | | Count | Percent <u>-</u> | | | | | | | | | | | | | | | | Platyhelminthes (flatworms)<br>Turbellaria | | | | | | | | | _ | | | | | | _ | Tricladida | | 21 | 1 | 83 | 2 | 110 | 20 | 82 | 9 | 69 | 11 | 71 | 4 | 19 | 2 | Planariidae | | | | 1 | <1 | _ | | 1 | <1 | | | 2 | <1 | <u></u> | | Nematoda (nematodes) Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | 3 | <1 | 20 | <1 | _ | | 4 | <1 | | | 2 | <1 | | | Prostoma | | - | - | | - | | | | | | | _ | - | | | Mollusca (molluscs) Gastropoda Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | _ | | 1 | <1 | _ | | | | | | | | | | Ancyndae<br>Ferrissia | | | | 1 | ~1 | | | | | | | | | | | Physidae | | | | | | 1 | <1 | | | | | 2 | <1 | _ | | Physa | | | | | | • | •• | | | | | _ | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | _ | | | | _ | | | | | | 2 | <1 | _ | | Sphaeriidae | | _ | | 2 | <1 | _ | | | | _ | | | | | | Pisidium | | | | | | | | | | | | | | | | Annelida (segmented worms) | | _ | | _ | | _ | | | | 1 | <1 | _ | | _ | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | _ | | | | _ | | _ | | _ | | | | Lumbriculidae | | | | | | | | | | | | | | | | Tubificida | | 24 | 1 | 21 | <1 | 2 | <1 | 2 | <1 | _ | | 3 | <1 | 17 | 2 | Naididae | | 11 | <1 | - | | | | | | | | 4 | <1 | 4 | <1 | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) Acartformes | | | | 110 | 3 | | | 7 | <1 | 3 | <1 | 68 | 3 | 14 | 1 | Hydrachnidia | | | | | • | | | • | | _ | | | _ | | _ | Crustacea | | _ | | _ | | | | | | | | 120 | 6 | | | Cladocera | | | | 7 | <1 | | | 1 | <1 | | | 590 | 30 | _ | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | _ | | _ | | _ | | | | _ | | _ | | _ | | Gammarus | | | | | | | | | | | | | | | | Isopoda | | | | | | | | | | 1 | <1 | 5 | <1 | 1 | <1 | Asellidae<br><i>Caecidotea</i> | | _ | | 5 | <1 | _ | | 1 | <1 | | <1 | 3 | <1 | 2 | <1 | Podocopa | | | | | ~1 | _ | | • | ~1 | | | 3 | ~1 | L | ~1 | Insecta | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | 16 | <1 | 38 | <1 | | | 19 | 2 | 2 | <1 | 6 | <1 | 68 | 7 | Baetis | | _ | | 2 | <1 | _ | | 1 | <1 | | | _ | | | | Pseudocloeon | | | | | | | | | | | | | | | | Ephemerellidae | | 24 | 1 | 80 | 2 | 7 | 1 | 42 | 4 | 41 | 7 | 72 | 4 | 22 | 2 | Ephemerella | | | | | | | | | | | | | | | | Ephemeridae | | _ | | _ | | _ | | | | | | 3 | <1 | _ | | Ephemera | | | | | | | | | | | | | | | | Heptageniidae | | 3 | <1 | 4 | <1 | _ | _ | _ | _ | _ | _ | 1 | <1 | | _ | Epeorus | | 94 | 5 | 300 | 8 | 7 | 1 | 29 | 3 | 37 | 6 | 24 | 1 | 25 | 3 | Stenonema . | Table 5. Benthic-macroinvertebrate data—Continued 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 48)—Continued | Date | Oct. 2 | 2, 1981 | Nov. 3 | 3, 1982 | Nov. 3 | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Oct. 2 | 9, 1986 | Oct. 1 | 9. 1987 | |----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1,5 | 310 | 2, | 529 | 7 | 33 | 1, | 652 | 6 | 89 | 8 | 95 | 1, | 139 | | Organism | Count | Percent | Ephemeroptera | | | | | | | | | | | | | | | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | | | | | 1 | <1 | | | _ | | 2 | <1 | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | 3 | <1 | 1 | <1 | | | | | _ | | | | | | | Leptophlebiidae | | | 2 | <1 | | | | | _ | | | | | | | Paraleptophlebia | 7 | <1 | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | _ | | | | | | | | | | _ | | _ | | | Aeshnidae | | | | | | | | | | | | | | | | Boyeria | | | | | 1 | <1 | | | _ | | _ | | | | | Gomphidae | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | | | | | | | | | | | 4 | <1 | | Perlidae | | | | | | | | | | | | | - | | | Agnetina | 2 | <1 | 2 | <1 | | | | | | | | | | | | Paragnetina | 1 | <1 | 4 | <1 | 1 | <1 | | | | | | | _ | | | Taeniopterygidae | • | ~~ | • | | • | ~~ | | | | | | | | | | Taeniopteryx | 4 | <1 | 21 | <1 | 7 | 1 | 15 | <1 | 26 | 4 | 30 | 3 | 36 | 3 | | emiptera | • | -1 | ~1 | ~1 | • | • | 13 | ~1 | 20 | • | 50 | 3 | 00 | J | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | 5 | <1 | 1 | <1 | | | | | | | | | | | | • | J | <1 | 1 | ~1 | | | | | _ | | _ | | | | | Megaloptera<br>Comudalidas | | | | | | | | | | | | | | | | Corydalidae | , | . 1 | | | | | | | | | | | | | | Corydalus | 1<br>2 | <1 | | | 3 | .1 | _ | | _ | | | | 1 | . 1 | | Nigronia | ۷ | <1 | | | 3 | <1 | | | _ | | _ | | 1 | <1 | | Sialidae | | | | | | | | | , | | | | | | | Sialis | | | _ | | | | | | 1 | <1 | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | • | | • | | | | | | | | • | | | Apatania | | | 2 | <1 | 2 | <1 | | | | | 1 | <1 | 2 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | 11 | <1 | | | _ | | _ | | _ | | _ | | | | | Glossosomatidae | _ | _ | | | | _ | | _ | _ | | | _ | _ | | | Glossosoma | 9 | <1 | 24 | <1 | 16 | 2 | 44 | 3 | 7 | 1 | 16 | 2 | 1 | <1 | | Goeridae | | | _ | _ | | | | | | | _ | _ | | | | Goera | - | | 1 | <1 | | | _ | | _ | | 3 | <1 | | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | _ | | | | | | | | | | | | | | | Hydropsychidae | | _ | | | | | | | | _ | | | | _ | | Ceratopsyche | 95 | 7 | 320 | 13 | 170 | 23 | 400 | 24 | 58 | 8 | 130 | 14 | 32 | 3 | | Cheumatopsyche | 82 | 6 | 190 | 8 | 84 | 11 | 130 | 8 | 15 | 2 | 38 | 4 | 26 | 2 | | Hydropsyche | 180 | 14 | 89 | 4 | 79 | 11 | 410 | 24 | 150 | 21 | 68 | 8 | 130 | 12 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 57 | 4 | 3 | <1 | 2 | <1 | | | 7 | 1 | 13 | 1 | 2 | <1 | | Leucotrichia | 84 | 6 | 680 | 27 | _ | | 23 | 1 | 12 | 2 | 15 | 2 | 2 | <1 | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | 33 | 3 | 1 | <1 | 2 | <1 | _ | | | | 8 | <1 | | | | Oecetis | 5 | <1 | _ | | 4 | <1 | 1 | <1 | 2 | <1 | | | | | | Limnephilidae | | | | | | | | | | | | | | | | Lindotonbulon | | | _ | | | | | | - | | _ | | | | | Hydatophylax | | | | | | | | | | | | | | | | Odontoceridae | | | | | | | | | | | | | | | | | 6, 1988 | Oct. 1 | 6, 1989 | Oct, 2 | 6, 1990 | Nov. | 1, 1991 | Oct, 2 | 6, 1992 | Nov. 3 | 3, 1993 | Oct. 1 | 2, 1994 | Date | |-------|-----------|--------|-----------|--------|---------|-------|---------|--------|---------|--------|-----------|--------|---------|-------------------| | 1 1 | ,984 | 3, | 846 | 5 | 38 | 9 | 26 | 6 | 310 | 2, | 016 | 9 | 73 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Ephemeroptera | | | | _ | _ | _ | _ | | | | | | | | | Isonychiidae | | - | | 1 | <1 | 1 | <1 | _ | | | | _ | | | | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | | | | | _ | | 1 | <1 | 1 | <1 | 6 | <1 | 5 | <1 | Tricorythodes | | | | 1 | <1 | | | _ | | | | _ | | - | | Leptophlebiidae | | | | | | | | 2 | <1 | | | _ | | 2 | <1 | Paraleptophlebia | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | 2 | <1 | | | _ | | 1 | <1 | _ | | _ | | Argia | | | | | | | | | | | | | | | | Aeshnidae | | | | _ | | | | _ | | 1 | <1 | _ | | _ | | Boyeria | | | | | | | | _ | | | | 2 | <1 | | | Gomphidae | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 3 | <1 | 1 | <1 | | | 4 | <1 | | | 11 | <1 | - | | Allocapnia | | | | | | | | | | | | | | | | Perlidae | | | | 1 | <1 | - | | 1 | <1 | | | 2 | <1 | _ | | Agnetina | | - | | | | | | _ | | | | _ | | | | Paragnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | 16 | <1 | 7 | <1 | | | 1 | <1 | | | 2 | <1 | | | Taeniopteryx | | | | | | | | _ | | | | _ | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | _ | | | | | | _ | | | | _ | | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | | | | | | | 1 | <1 | _ | | | | Corydalus | | 3 | <1 | 1 | <1 | | | | | • | ~. | 1 | <1 | | | Nigronia | | 3 | <b>\1</b> | 1 | <b>\1</b> | _ | | _ | | | | | <b>\1</b> | | | Sialidae | | | | | | | | | | | | 1 | <1 | | | Sianuae<br>Sialis | | | | _ | | | | _ | | | | 1 | <1 | | | | | | | | | | | | | | | | | | | Trichoptera | | | | 14 | -1 | | | 3 | <1 | 7 | 1 | 4 | <1 | | | Apataniidae | | | | 14 | <1 | _ | | 3 | <1 | , | 1 | 4 | <1 | | | Apatania | | | | • | | | | | | | | | | | | Brachycentridae | | | | 3 | <1 | 1 | <1 | _ | | | | | | | | Micrasema | | 10 | | 40 | | | | • | .• | •• | • | | | - | | Glossosomatidae | | 10 | <1 | 48 | 1 | 4 | <1 | 2 | <1 | 10 | 2 | 1 | <1 | 5 | <1 | Glossosoma | | | | _ | _ | | | _ | _ | _ | _ | | _ | _ | _ | Goeridae | | _ | | 1 | <1 | _ | | 3 | <1 | 7 | 1 | 22 | 1 | 1 | <1 | Goera | | | | | | | | | | | | | | | | Helicopsychidae | | _ | | - | | | | _ | | | | 2 | <1 | _ | | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | 86 | 4 | 260 | 7 | 7 | 1 | 4 | <1 | | | 10 | <1 | 31 | 3 | Ceratopsyche | | 48 | 2 | 67 | 2 | 1 | <1 | 7 | <1 | - | | 9 | <1 | 3 | <1 | Cheumatopsyche | | 280 | 14 | 640 | 16 | 83 | 15 | 68 | 7 | 160 | 26 | 40 | 2 | 130 | 13 | Hydropsyche | | | | | | | | | | | | | | | | Hydroptilidae | | 5 | <1 | 67 | 2 | 4 | <1 | 5 | <1 | | | 1 | <1 | 10 | 1 | Hydroptila | | 35 | 2 | 37 | <1 | 2 | <1 | - | | | | | | 2 | <1 | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | 3 | <1 | 6 | <1 | 16 | 3 | 36 | 4 | 16 | 3 | 19 | <1 | _ | | Mystacides | | _ | | 13 | <1 | 6 | 1 | _ | | 3 | <1 | 8 | <1 | 1 | <1 | Oecetis | | | | | | | | | | | | | | | | Limnephilidae | | | | | | | | 5 | <1 | | | | | | | Hydatophylax | | | | | | | | - | - | | | | | | | Odontoceridae | | | | | | | | _ | | | | _ | | | | Psilotreta | | _ | | _ | | - | | - | | - | | - | | _ | | 1 miorica | Table 5. Benthic-macroinvertebrate data—Continued 01480648 - East Branch Brandywine Creek near Cupola, Pa. (Site 48)—Continued | Date | | 2, 1981 | | 3, 1982 | | 3, 1983 | | 7, 1984 | | 3, 1985 | | 9, 1986 | | 9. 1987 | |------------------------------|-------|---------|-------|---------|-------|---------|-------|-----------|-------|---------|---------|---------|-------|---------| | Total count | 1, | 310 | 2, | 529 | 7 | 33 | 1, | 652 | 6 | 89 | 8 | 95 | 1, | 139 | | Organism | Count | Percent | Trichoptera | | | | | | | | - | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 86 | 7 | 18 | <1 | 1 | <1 | 1 | <1 | 5 | <1 | 32 | 4 | 12 | 1 | | Dolophilodes | _ | | _ | | _ | | 1 | <1 | _ | | _ | | _ | | | Polycentropodidae | | | | | | | | | | | | | | | | Cyrnellus | 1 | <1 | _ | | | | | | | | _ | | _ | | | Neureclipsis | 1 | <1 | _ | | 1 | <1 | 1 | <1 | _ | | 1 | <1 | _ | | | Nyctiophylax | - | | _ | | _ | | | | | | | | | | | Polycentropus | 1 | <1 | | | | | 1 | <1 | _ | | _ | | - | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyta | _ | | | | | | | | _ | | 2 | <1 | | | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | 1 | <1 | | | _ | | | | _ | | _ | | _ | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | _ | | | | _ | | | | _ | | _ | | _ | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | _ | | | | _ | | _ | | _ | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | | | | | _ | | | | _ | | 1 | <1 | _ | | | Elmidae | | | | | | | | | | | - | | | | | Ancyronyx | _ | | | | | | | | _ | | 3 | <1 | | | | Dubiraphia | 1 | <1 | _ | | 6 | <1 | | | | | _ | ~~ | 1 | <1 | | Macronychus | • | -1 | | | Ū | ~1 | | | | | | | • | ~1 | | M. glabratus | 1 | <1 | | | | | | | 2 | <1 | | | | | | Optioservus | 41 | 3 | 23 | <1 | 8 | 1 | 2 | <1 | 13 | 2 | 76 | 8 | 59 | 5 | | Oulimnius | | 3 | 23 | ~1 | 0 | 1 | 2 | <b>~1</b> | | L | 3 | <1 | | J | | Stenelmis | 92 | 7 | 20 | <1 | 37 | 5 | 9 | -1 | 18 | 3 | 3<br>14 | 2 | 37 | 3 | | | 32 | ' | 20 | <1 | 31 | 3 | 9 | <1 | 10 | 3 | 1-3 | L | 31 | 3 | | Gyrinidae<br><i>Dineutus</i> | | | | | | | | | | | | | | | | | _ | | | | - | | | | | | _ | | _ | | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | | | | | | | _ | | _ | | _ | | _ | | | Hydrochara | | | _ | | _ | | | | _ | | _ | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | _ | | | | | | _ | | _ | | _ | _ | | | | E. nervosa | _ | | _ | | | | | | | | 1 | <1 | | | | Psephenus | 3 | <1 | 1 | <1 | _ | | 2 | <1 | 7 | 1 | 10 | 1 | 2 | <1 | | Hymenoptera | _ | | _ | | _ | | _ | | 1 | <1 | 1 | <1 | _ | | | Diptera | | | | | | | | | | | | | | | | Ceratopogonidae | 1 | <1 | _ | | | | _ | | | | | | _ | | | Chironomidae | 220 | 17 | 220 | 9 | 71 | 10 | 130 | 8 | 160 | 23 | 160 | 18 | 470 | 43 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 13 | 1 | 10 | <1 | 7 | 1 | 2 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | | Ephydridae | | | _ | | _ | | | | _ | | | | 2 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 1 | <1 | 560 | 22 | 38 | 5 | 220 | 13 | 59 | 8 | 50 | 6 | 100 | 9 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 50 | 4 | 66 | 3 | 23 | 3 | 34 | 2 | 29 | 4 | 130 | 14 | 25 | 2 | | Dicranota | _ | | _ | | _ | | _ | | | | | | | | | Tipula | | | _ | | _ | | _ | | | | _ | | 1 | <1 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 1 | 6, 1988 | Oct. 1 | 6, 1989 | Oct, 2 | 6, 1990_ | Nov. 1 | , 1991 | Oct, 2 | 6, 1992 | Nov. 3 | 3, 1993 | Oct. 1 | 2, 1994 | Date | |----------------|---------|--------|---------|--------|----------|--------|---------|--------|---------|--------|---------|--------|---------|-------------------------------| | <sup>1</sup> 1 | ,984 | 3, | 846 | 5 | 38 | 9 | 26 | 6 | 10 | 2,0 | 016 | 9 | 73 | Total count | | Count | Percent Organism | | | | | | | | | | | , | | | | | Trichoptera | | | | | | | | | | | | | | | | Philopotamidae | | 3 | <1 | 39 | 1 | _ | | 40 | 4 | 27 | 4 | 3 | <1 | 15 | 2 | Chimarra | | | | | | | | | | | | | | | | Dolophilodes | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Cyrnellus | | | | | | | | | | | | | | | | Neureclipsis | | | | _ | | | | _ | | | | 3 | <1 | | | Nyctiophylax | | | | 2 | <1 | 1 | <1 | 2 | <1 | | | 1 | <1 | | | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | | | 1 | <1 | | | 1 | <1 | | | 1 | <1 | | | Psychomyia | | | | | | | | | | | | | | | | Rhyacophilidae | | | | | | | | | | _ | | | | | | Rhyacophila | | | | | | | | | | | | | | | | Uenoidae | | 40 | 2 | _ | | 1 | <1 | | | _ | | 15 | <1 | | | Neophylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | _ | | | | _ | | 1 | <1 | _ | | | | Petrophila | | | | | | | | | | - | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | _ | | _ | | | | _ | | _ | | | | Helichus | | | | | | | | | | | | | | | | Elmidae | | 3 | <1 | | | | | _ | | _ | | _ | | | | Ancyronyx | | 8 | <1 | 1 | <1 | 3 | <1 | 2 | <1 | | | 10 | <1 | | | Dubiraphia | | U | ~1 | • | ~1 | 3 | ~1 | - | ~1 | _ | | 10 | -1 | | | Macronychus | | _ | | | | | | | | _ | | _ | | | | M. glabratus | | 110 | 6 | 100 | 3 | 48 | 9 | 50 | 5 | 7 | 1 | 130 | 7 | 88 | 9 | Optioservus | | 3 | <1 | 3 | <1 | | 3 | 2 | <1 | | 1 | 2 | <1 | 1 | <1 | Oulimnius | | 61 | 3 | 120 | 3 | 56 | 10 | 36 | 4 | <br>37 | 6 | 160 | 8 | 90 | 9 | Stenelmis | | 01 | 3 | 120 | J | 30 | 10 | 30 | 7 | 31 | U | 100 | 0 | 30 | 3 | | | | | | | | | | | | | | | 1 | <1 | Gyrinidae<br><i>Dine</i> utus | | | | | | _ | | _ | | | | | | 1 | <1 | | | 2 | <1 | | | | | | | | | | | | | Hydrophilidae | | 3 | <1 | 1 | -1 | | | | | | | | | | | Berosus | | _ | | 1 | <1 | | | | | _ | | | | _ | | Hydrochara | | • | .1 | | | | | | | | | | | | | Psephenidae | | 3 | <1 | | | _ | | | | | | | | | | Ectopria | | 10 | .1 | | .4 | 20 | - | | • | | 10 | | • | | • | E. nervosa | | 16 | <1 | 11 | <1 | 26 | 5 | 24 | 3 | 60 | 10 | 62 | 3 | 33 | 3 | Psephenus | | | | | | _ | | | | | | | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | 00 | | 0.1 | | 00 | | 0.5 | | 4.0 | 14 | <1 | 4 | <1 | Ceratopogonidae | | <b>590</b> | 30 | 950 | 24 | 110 | 20 | 330 | 35 | 97 | 16 | 430 | 22 | 240 | 24 | Chironomidae | | | | | _ | - | | | _ | | | | | _ | _ | Empididae | | 19 | <1 | 73 | 2 | 2 | <1 | 3 | <1 | _ | | 13 | <1 | 4 | <1 | Hemerodromia | | _ | | _ | | | | | | _ | | | | | | Ephydridae | | | | | | | | | | | | | | | | Simuliidae | | 280 | 14 | 530 | 14 | 2 | <1 | 74 | 8 | 5 | <1 | 8 | <1 | 85 | 9 | Simulium | | | | | | | | | | | | | | | | Tipulidae | | 160 | 8 | 170 | 4 | 37 | 7 | 31 | 3 | 15 | 2 | 45 | 2 | 49 | 5 | Antocha | | | | _ | | | | | | | | | | 1 | <1 | Dicranota | | _ | | 1 | <1 | _ | | _ | | | | _ | | | | Tipula | [<, less than; —, not found] 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42) Table 5. Benthic-macroinvertebrate data—Continued | Date | Nov. 2 | 2, 1981 | Nov. 3 | 3, 1982 | Nov. 3 | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Dec. | 5, 1986 | Oct. 2 | 3, 1987 | |-----------------------------|--------|---------|--------|----------|--------|----------|--------|---------|------------|---------|-------|---------|--------|---------| | Total count | 7 | 52 | 1, | 708 | 1, | 338 | 1, | 008 | 1, | 361 | 7 | 23 | 1,4 | 435 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | · | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 4 | <1 | 1 | <1 | 6 | <1 | 2 | <1 | 23 | 2 | 24 | 3 | 14 | 1 | | Nematoda (nematodes) | _ | | | | _ | | | | | | _ | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 2 | <1 | 5 | <1 | 6 | <1 | 2 | <1 | 1 | <1 | _ | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 34 | 4 | 4 | <1 | 11 | <1 | 14 | 1 | <b>2</b> 1 | 2 | 2 | <1 | 5 | <1 | | Lymnaeidae | | | | | | | | | | | | | | | | Lymnaea | | | 1 | <1 | | | | | 1 | <1 | | | | | | Physidae | | | | | | | | | | | | | | | | Physa | _ | | 6 | <1 | | | | | | | 4 | <1 | | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | | | | | | | | | _ | | | | | | | Helisoma | 4 | <1 | | | 2 | <1 | | | | | 1 | <1 | 1 | <1 | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | _ | | 6 | <1 | _ | | | | | | | | | | | Pisidium | | | _ | | | | | | | | | | | | | Sphaerium | | | | | | | | | _ | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | _ | | | | | | 2 | <1 | _ | | | Tubificida | _ | | | | | | | | | | - | ~1 | | | | Naididae | 3 | <1 | 17 | 1 | 16 | 1 | | | 2 | <1 | 4 | <1 | _ | | | Tubificidae | 1 | <1 | 2 | <1<br><1 | 2 | <1<br><1 | | | L | ~1 | 7 | ~1 | _ | | | Arthropoda (arthropods) | 1 | ~1 | 2 | ~1 | L | ~1 | | | _ | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 14 | 2 | 170 | 10 | 99 | 7 | 3 | <1 | 3 | <1 | 2 | <1 | 35 | 3 | | Crustacea | 14 | L | 170 | 10 | 33 | ' | 3 | <1 | 3 | <1 | 2 | <1 | 33 | 3 | | Cladocera | | | | | | | | | | | | | | | | | | | | | | | _ | | _ | | | | | | | Cyclopoida<br>Amphipoda | _ | | | | | | | | | | _ | | _ | | | Ampriipoda<br>Talitridae | | | | | | | | | | | | | | | | | | | | | | | | | | | | .1 | | | | Hyallela | _ | | _ | | | | | | | | 1 | <1 | _ | | | H. azteca | | | | | | | | | 1 | <1 | | | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | _ | .4 | | | | Lirceus | _ | | _ | _ | _ | _ | _ | | - | _ | 2 | <1 | | | | Podocopa | | | 6 | <1 | 17 | 1 | | | 1 | <1 | | | | | | Nov. 1 | 5, 1988 | Nov. 1 | , 1989 | Oct. 2 | 6, 1990 | Nov. 1 | 1, 1991 | Nov. 1 | 7, 1992 | Nov. 4 | 1, 1993 | Oct. 1 | 2, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-----------|--------|---------|--------------------------------------| | 1 1 | ,671 | 2,6 | 617 | 9 | 73 | 1,8 | 825 | 1, | 330 | 1, | 554 | 1, | 378 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | _ | | 8 | <1 | 13 | 1 | 1 | <1 | 33 | 3 | 7 | <1 | | | Planariidae | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea<br>Tetrastemmatidae | | 3 | <1 | 100 | 4 | 8 | <1 | 2 | <1 | 12 | <1 | 15 | <1 | 18 | 1 | Prostoma | | _ | ~1 | 1 | <1 | _ | ~1 | _ | ~1 | 12 | ~1 | 13 | <b>~1</b> | 10 | , | Nematoda (nematodes) | | | | • | ~, | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | _ | | 17 | <1 | 69 | 7 | 14 | <1 | 7 | <1 | 47 | 3 | 43 | 3 | Ferrissia | | | | | | | | | | | | | | | | Lymnaeidae | | _ | | _ | | 3 | <1 | | | 2 | <1 | 1 | <1 | 1 | <1 | Lymnaea | | | | | | | | | | | | | | | | Physidae | | _ | | | | 1 | <1 | 1 | <1 | | | 1 | <1 | _ | | Physa | | | | | | | | | | | | | | | | Planorbidae | | | | 4 | <1 | 9 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | Gyraulus | | _ | | | | _ | | _ | | _ | | | | | | Helisoma | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | _ | _ | _ | | | | Veneroida | | _ | | _ | | _ | | _ | | 3 | <1 | 3 | <1 | _ | | Sphaeriidae | | _ | | _<br>3 | .1 | 2 | <1 | 1 | <1 | _ | | _ | | _ | | Pisidium | | _ | | 3 | <1 | 2 | <1 | _ | | | | _ | | _ | | Sphaerium Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | 3 | <1 | 2 | <1 | _ | | | | | | | • | _ | | Lumbriculidae | | | | - | •• | | | | | | | | | | | Tubificida | | 3 | <1 | 21 | <1 | _ | | _ | | 3 | <1 | 12 | <1 | 52 | 4 | Naididae | | _ | | _ | | | | | | | | _ | | _ | | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | 3 | <1 | 670 | 26 | 130 | 13 | 72 | 4 | 280 | 22 | 250 | 16 | 100 | 7 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | | | Cladocera | | _ | | 1 | <1 | 1 | <1 | | | _ | | | | | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Talitridae | | _ | | _ | | _ | | | | _ | | _ | | _ | | Hyallela | | | | _ | | _ | | | | | | _ | | _ | | H. azteca | | | | | | | | | | | | | | | | Isopoda<br>Asellidae | | | | | | | | | | | | | | _ | | Asemdae<br>Lirceus | | _ | | _ | | | | _ | | _ | | _ | | _ | | Podocopa | | | | _ | | | | | | | | _ | | | | rodocopa | Table 5. Benthic-macroinvertebrate data—Continued 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42)—Continued | Date | Nov. 2 | 2, 1981 | Nov. 3 | 3, 1982 | Nov. 3 | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Dec. s | 5, 1986 | Oct. 2 | 3, 1987 | |------------------|--------|---------|--------|---------|--------|---------|--------|---------|----------|---------|--------|---------|--------|---------| | Total count | 7 | 52 | 1, | 708 | 1,: | 338 | 1,0 | 800 | 1,: | 361 | 7 | 23 | 1,4 | 435 | | Organism | Count | Percent | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | _ | | 1 | <1 | 1 | <1 | 17 | 2 | 31 | 2 | 2 | <1 | 8 | <1 | | Pseudocloeon | 2 | <1 | 1 | <1 | 2 | <1 | 4 | <1 | 8 | <1 | | | 7 | <1 | | Caenidae | | | | | | | | | | | | | | | | Caenis | | | | | 14 | 1 | _ | | 2 | <1 | 14 | 2 | - | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 6 | <1 | 31 | 2 | 43 | 3 | 44 | 4 | 120 | 9 | 65 | 9 | 79 | 6 | | Heptageniidae | | | | | | | | | | | | | | | | <b>Epeorus</b> | _ | | | | _ | | - | | _ | | _ | | _ | | | Stenonema | 82 | 11 | 120 | 7 | _ | | 34 | 3 | 51 | 4 | 30 | 4 | 65 | 5 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | _ | | 2 | <1 | _ | | - | | | | 1 | <1 | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | 2 | <1 | 1 | <1 | 3 | <1 | | | | | | | _ | | | Leptophlebiidae | _ | | | | | | 4 | <1 | | | _ | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | _ | | | | 1 | <1 | _ | | _ | | | Aeshnidae | | | | | | | | | | | | | | | | Boyeria | | | _ | | | | 1 | <1 | _ | | | | | | | Gomphidae | _ | | | | | | | | | | 1 | <1 | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | 5 | <1 | 1 | <1 | 1 | <1 | 5 | <1 | 1 | <1 | 11 | <1 | | Chloroperlidae | _ | | _ | | 1 | <1 | | _ | | | | _ | 2 | <1 | | Haploperla | _ | | | | | | _ | | _ | | _ | | _ | | | Nemouridae | | | | | | | | | | | _ | | _ | | | Peltoperlidae | | | | | | | | | | | | | | | | Peltoperla | _ | | | | | | | | | | _ | | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | _ | | 4 | <1 | | | _ | | 6 | <1 | 2 | <1 | 1 | <1 | | Agnetina | | | | | | | _ | | | ~- | _ | | _ | | | Paragnetina | 2 | <1 | _ | | | | 4 | <1 | _ | | _ | | | | | Taeniopterygidae | L | ~1 | | | | | • | ~1 | | | | | | | | Strophopteryx | | | | | | | | | | | 2 | <1 | | | | Taeniopteryx | 7 | <1 | 50 | 3 | 44 | 3 | 33 | 3 | <u> </u> | 3 | 17 | 2 | 98 | 7 | | | , | <1 | 30 | 3 | 44 | 3 | 33 | 3 | 42 | 3 | 17 | L | 30 | • | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | | | | | _ | | | | | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Chauliodes | 1 | <1 | _ | | | | | | | .• | _ | | - | | | Corydalus | _ | | _ | - | | | _ | | 1 | <1 | _ | | - | | | Nigronia | | | 2 | <1 | 1 | <1 | - | | _ | | _ | | _ | | | Sialidae | | | | | | | | | | | | | | | | Sialis | _ | | | | _ | | | | _ | | _ | | - | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae | | | _ | | | | | | | | | | | | | Climacia | | | 2 | <1 | | | | | _ | | _ | | _ | | | | 5, 1988 | | 1, 1989 | | 6, 1990 | | 1, 1991 | | 7, 1992 | | 1, 1993 | | 2, 1994 | Date | |-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|----------|--------------------------| | | ,671 | | 617 | | 73 | | 825 | | 330 | | 554 | | 378 | Total count | | Count | Percent Organism | | | | | | | | | | | | - | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | _ | | 6 | <1 | 3 | <1 | | | 2 | <1 | | | 9 | <1 | Baetis | | 3 | <1 | 5 | <1 | | | | | 2 | <1 | 2 | <1 | 4 | <1 | Pseudocloeon | | | | | | | | | | | | | | | | Caenidae | | 13 | <1 | | | | | | | 4 | <1 | 3 | <1 | 6 | <1 | Caenis | | | | | | | | | | | | | | | | Ephemerellidae | | 64 | 4 | 70 | 3 | 27 | 3 | 50 | 3 | 120 | 9 | 63 | 4 | 45 | 3 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | | | 4 | <1 | | | | | 6 | <1 | | | | | Epeorus | | 24 | 1 | 60 | 2 | 29 | 3 | 78 | 4 | 27 | 2 | 22 | 1 | 62 | 4 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | _ | | 5 | <1 | 4 | <1 | 5 | <1 | _ | | 1 | <1 | 7 | <1 | Isonychia | | | | - | - | - | - | - | - | | | - | - | • | | Leptohyphidae | | | | | | | | | | 10 | <1 | | | 2 | <1 | Tricorythodes | | _ | | | | | | | | _ | ~4 | | | | ~~ | Leptophlebiidae | | | | - | | _ | | | | - | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | 4 | <1 | | | 2 | <1 | | | 1 | <1 | | | | | _ | | 4 | <1 | | | 2 | <1 | _ | | 1 | <1 | | | Argia | | | | | | , | .1 | | | | | | | | | Aeshnidae | | _ | | | | 1 | <1 | | | | | | | | | Boyeria | | | | | | | | | | | | | | | | Gomphidae | | | | | | | | | | | | | | | | Plecoptera | | _ | _ | | | | | | | _ | | | | | | Capniidae | | 3 | <1 | | | _ | | | | 5 | <1 | | | _ | | Allocapnia | | | | 4 | <1 | | | | | | | 1 | <1 | _ | | Chloroperlidae | | - | | | | 2 | <1 | | | _ | | | | | | Haploperla | | _ | | | | | | | | 1 | <1 | | | | | Nemouridae | | | | | | | | | | | | | | | | Peltoperlidae | | _ | | | | 1 | <1 | | | | | | | | | Peltoperla | | | | | | | | | | | | | | | | Perlidae | | _ | | | | _ | | | | 1 | <1 | 2 | <1 | 1 | <1 | Acroneuria | | | | _ | | | | _ | | 3 | <1 | | | 2 | <1 | Agnetina | | _ | | | | _ | | | | | | _ | | 1 | <1 | Paragnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | _ | | | | | | | | | | | | _ | | Strophopteryx | | 8 | <1 | 10 | <1 | 12 | 1 | 6 | <1 | 8 | <1 | 5 | <1 | 16 | 1 | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | 1 | <1 | | | | | | | _ | | | | Rhagovelia | | | | • | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | _ | | | | | | | | | | | | Coryuandae<br>Chauliodes | | _ | | | | _ | | _ | | _ | | | | 2 | <1 | Corydalus | | 3 | <1 | 1 | <1 | _ | | | | 2 | <1 | 2 | <1 | 1 | <1<br><1 | | | J | <1 | 1 | <1 | _ | | _ | | 2 | <1 | 2 | <1 | 1 | <1 | Nigronia<br>Statuda | | | | | | | | • | | | | | | | | Sialidae | | _ | | | | | | 2 | <1 | _ | | | | | | Sialis | | | | | | | | | | | | | | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae | | | | | | | | | | | | _ | | _ | | Climacia | Table 5. Benthic-macroinvertebrate data—Continued 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42)—Continued | Hydropsychidae | Date | Nov. 2 | 2, 1981 | Nov. | 3, 1982 | Nov. | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Dec. | 5, 1986 | Oct. 2 | 3, 1987 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|------------|-------|---------|-------|--------------------------------------------------------------------------------------------------|--------|---------|--------|---------|-------|---------|--------|---------| | Trichopters | Total count | 7 | <b>'52</b> | 1, | 708 | 1, | 338 | 1, | 800 | 1, | 361 | 7 | 23 | 1, | 435 | | Apatanuliale Apatanulia Brachycentridae Micrasema Clossosoma Glossosoma Gloss | <u>-</u> | Count | Percent | Apstanta | | | | | | | | | | | | | | | | | Brachycentridae Micrasema 11 | - | | | | | _ | | | | | | | _ | | | | Micrasema | - | | | _ | | 3 | <1 | | | | | 13 | 2 | 13 | <1 | | Clossosomatidae Clossosoma 6 | _ | | | | | | | | | | | | | | | | Clossosoma | | 11 | 1 | 34 | 2 | 59 | 4 | 6 | <1 | 9 | <1 | 48 | 6 | 45 | 3 | | Protoptila | Glossosomatidae | | | | | | | | | | | | | | | | Goerlade Goera 1 < 1 12 1 7 < 1 20 Helitopsychidae Helitopsychidae Helitopsyche 3 Hydropsychidae Ceratopsyche 96 13 110 6 200 14 200 20 240 17 42 Cheumatopsyche 75 10 120 7 110 8 92 9 150 11 56 Hydropsyche 240 32 160 9 160 11 26 3 31 2 26 Hydroptilidae Hydroptilidae Hydroptilidae Hydroptilidae Alexantichia 35 5 300 18 200 14 170 17 71 5 10 Leptoceridae Mystacides 46 6 3 < 1 5 <1 3 < 3 Ocetts - 1 < 1 7 < 1 2 < 1 3 < 1 1 Triaenodes 1 < 1 7 < 1 2 < 1 3 < 1 1 Triaenodes 1 < 1 7 < 1 2 & 1 3 < 1 1 Triaenodes | | 6 | <1 | 9 | <1 | 11 | <l< td=""><td>53</td><td>5</td><td>24</td><td>2</td><td>16</td><td>2</td><td></td><td></td></l<> | 53 | 5 | 24 | 2 | 16 | 2 | | | | Hellcopsychidae Hellcopsyche Geratopsyche G | Protoptila | | | | | | | | | | | | | 1 | <1 | | Helicopsychidae | Goeridae | | | | | | | | | | | | | | | | Heltopsychidae Caratopsyche Gammatopsychidae Caratopsyche 96 13 110 6 200 14 200 20 240 17 42 Cheumatopsyche 75 10 120 7 110 8 92 9 150 11 56 Hydropsyche 240 32 160 9 160 11 26 3 31 2 26 Hydropsyche 240 32 160 9 160 11 26 3 31 2 26 Hydroptilidae Hydroptilia 8 1 40 2 35 3 4 <1 3 <1 — Leucotrichia 35 5 300 18 200 14 170 17 71 5 10 Leptoceridae Mystacides 46 6 3 <1 5 <1 — — 3 <0 3 <1 1 Triaenodes — 1 <1 7 <1 2 <1 3 <1 1 <1 Triaenodes — — — — — — — — — | Goera | 1 | <1 | | | | | 12 | 1 | 7 | <1 | 20 | 3 | 2 | <1 | | Hydropsychidae | Helicopsychidae | | | | | | | | | | | | | | | | Ceratopsyche | Helicopsyche | | | _ | | | | _ | | | | 3 | <1 | 8 | <1 | | Cheumatopsyche 75 10 120 7 110 8 92 9 150 11 56 Hydropsyche 240 32 160 9 160 11 26 3 31 2 26 Hydroptilidae Hydroptilidae Hydroptilidae Hydroptilidae Mystacides 46 6 3 <1 5 <1 3 3 <1 - 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Hydropsychidae | | | | | | | | | | | | | | | | Hydropsyche | Ceratopsyche | 96 | 13 | 110 | 6 | 200 | 14 | 200 | 20 | 240 | 17 | 42 | 6 | 390 | 28 | | Hydropsyche | | 75 | 10 | 120 | 7 | 110 | 8 | 92 | 9 | 150 | 11 | 56 | 8 | 78 | 6 | | Hydroptilidae | | 240 | 32 | 160 | 9 | 160 | 11 | 26 | 3 | 31 | 2 | 26 | 4 | 86 | 6 | | Hydroptila | | | | | | | | | | | | | | | | | Leucotrichia 35 5 300 18 200 14 170 17 71 5 10 | | 8 | 1 | 40 | 2 | 35 | 3 | 4 | <1 | 3 | <1 | | | 3 | <1 | | Leptoceridae Mystacides 46 6 3 3 5 5 4 - | | 35 | 5 | 300 | 18 | 200 | 14 | 170 | 17 | 71 | 5 | 10 | 1 | 48 | 3 | | Mystacides 46 6 3 <1 5 <1 — — 3 Oecetts — 1 <1 7 <1 2 <1 3 <1 1 Triaenodes — — — 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | Leptoceridae | | | | | | | | | | | | | | | | Oceetis — 1 <1 7 <1 2 <1 3 <1 1 Traenodes — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | • | 46 | 6 | 3 | <1 | 5 | <1 | _ | | | | 3 | <1 | | | | Triaenodes | | | _ | | | | <1 | 2 | <1 | 3 | <1 | | <1 | | | | Limnephilidae Hydatophylax - | | _ | | | | | | | | | | | | | | | Hydatophylax | | | | | | | _ | | | | | | | | | | Philopotamidae Chimarra 1 <1 14 <1 12 <1 7 <1 28 2 13 Polycentropodidae Neureclipsis 1 <1 9 <1 2 <1 7 <1 4 <1 4 Nyctiophylax 2 <1 4 <1 3 <1 12 1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 4 <1 3 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 5 <1 4 <1 5 <1 5 <1 4 Polycentropus 4 <1 9 <1 17 1 2 <1 5 <1 5 <1 4 Polycentropus 4 <1 1 3 <1 13 <1 5 Polycentropus 4 <1 1 3 <1 13 <1 5 Polycentropus 4 <1 1 2 <1 10 Polycentropus 4 <1 1 2 <1 | _ | | | _ | | | | _ | | | | | | | | | Chimarra | | | | | | | | | | | | | | | | | Polycentropodidae Neureclipsis 1 <1 9 <1 2 <1 7 <1 4 <1 4 Nyctiophylax 2 <1 4 <1 3 <1 12 1 5 <1 4 Nyctiophylax 2 <1 4 <1 3 <1 12 1 5 <1 4 Nyctiophylax 2 <1 4 <1 9 <1 17 1 2 <1 4 <1 — Psychomylidae Psychomylidae Psychomylidae Psychomylidae Rhyacophilidae Rhyacophilidae Neophylax — — — — — — — — — | = | 1 | -1 | 14 | -1 | 12 | -1 | 7 | -1 | 28 | 2 | 13 | 2 | 6 | <1 | | Neureclipsis | | - | ~, | 1.7 | ~, | 12 | ~1 | • | ~1 | 20 | - | 10 | _ | Ū | ~4 | | Nyctiophylax 2 <1 4 <1 3 <1 12 1 5 <1 4 | | 1 | _1 | a | -1 | 2 | _1 | 7 | -1 | 4 | -1 | A | <1 | 4 | <1 | | Polycentropus 4 <1 | | | | | | | | | | | | | <1 | 5 | <1 | | Psychomyidae | | | | - | | | | | | | | | _1 | | ~1 | | Psychomyla | | 7 | ~1 | 9 | ~1 | 11 | 1 | L | ~1 | 7 | ~1 | _ | | _ | | | Rhyacophilidae Rhyacophila 1 <1 3 <1 13 <1 | | | | 2 | _1 | 2 | _1 | | | | | | | | | | Rhyacophila | | | | 3 | <1 | 2 | <1 | | | | | | | | | | R. fuscula | | | | | | 1 | -1 | 2 | _1 | 12 | -1 | | | 6 | <1 | | Uenoidae Neophylax — — — — — — — — 10 Lepidoptera Pyralidae — — — — — — — — — — — — — — — — — — — | | | | _ | | 1 | <1 | 3 | <1 | 13 | <1 | | -1 | O | <1 | | Neophylax | | _ | | | | | | | | | | э | <1 | | | | Lepidoptera Pyralidae — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | | | | | | | | | | | | 10 | , | | | | Pyralidae — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | | | | | | | | | | | | 10 | 1 | | | | Petrophila 7 <1 | | | | | | | | | | | | | | | | | Coleoptera Dryopidae Helichus — 1 <1 — — — — — — — Elmidae Ancyronyx — — — — — — 1 Dubiraphia 4 <1 12 <1 8 <1 2 <1 1 <1 1 Macronychus M. glabratus — — — — — — — — — — — — Optioservus 10 1 6 <1 16 1 12 1 45 3 34 Oulimnius — 2 <1 3 <1 — 4 <1 1 | | | | | | _ | | | | | | | | | | | Dryopidae Helichus — 1 <1 | - | 7 | <1 | 2 | <1 | | | | | _ | | | | | | | Helichus — 1 <1 — — — — Elmidae Ancyronyx — — — — — 1 Dubiraphia 4 <1 | = | | | | | | | | | | | | | | | | Elmidae Ancyronyx — — — — — — 1 Dubiraphia 4 <1 12 <1 8 <1 2 <1 1 <1 1 Macronychus M. glabratus — — — — — — — — — — — — — — — — — — — | | | | | _ | | | | | | | | | | | | Ancyronyx — — — — 1 Dubiraphia 4 <1 | | | | 1 | <1 | _ | | | | _ | | | | _ | | | Dubiraphia 4 <1 | | | | | | | | | | | | | | | | | Macronychus M. glabratus — — — — — — Optioservus 10 1 6 <1 | | | | | | | | - | | | | | <1 | | | | M. glabratus — — — — — — — — — — — — — — — — — — — | - | 4 | <1 | 12 | <1 | 8 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | | Optioservus 10 1 6 <1 16 1 12 1 45 3 34 Oulimnius — 2 <1 | | | | | | | | | | | | | | | | | Oulimnius — 2 <1 3 <1 — 4 <1 1 | | _ | | | | | | _ | | | | | | | | | | Optioservus | 10 | 1 | 6 | <1 | 16 | 1 | 12 | 1 | 45 | 3 | 34 | 5 | 9 | <1 | | | Oulimnius | | | 2 | <1 | 3 | <1 | | | 4 | <1 | 1 | <1 | 6 | <1 | | Promoresia — 1 <1 3 <1 1 <1 2 | Promoresia | _ | | 1 | <1 | 3 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | | | | Stenelmis 8 1 7 <1 12 <1 11 1 7 <1 7 | Stenelmis | 8 | 1 | 7 | <1 | 12 | | 11 | | 7 | <1 | | 1 | 16 | 1 | | Hydrophilidae | | | | | | | | | | | | | | | | | Berosus — — 1 <1 — — 1 | | _ | | | | 1 | <1 | | | | | 1 | <1 | _ | | | | 5, 1988 | | 1, 1989 | | 6, 1990 | | 1,1991 | | 7, 1992 | | 4, 1993 | | 2, 1994 | Date | |-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------------------| | 1 1 | ,671 | | 617 | | 73 | | 825 | | 330 | | 554 | | 378 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Trichoptera | | _ | | | | _ | | | | | _ | | _ | | _ | Apataniidae | | 3 | <1 | 78 | 3 | 2 | <1 | 13 | <1 | 22 | 2 | 32 | 2 | 3 | <1 | Apatania | | | _ | 440 | | •• | | | | | _ | | | | _ | Brachycentridae | | 40 | 8 | 410 | 16 | 43 | 4 | 180 | 10 | 93 | 7 | 270 | 17 | 120 | 9 | Micrasema | | _ | _ | _ | _ | _ | _ | | - | _ | _ | | | | | Glossosomatidae | | 8 | <1 | 7 | <1 | 2 | <1 | 20 | 1 | 9 | <1 | 4 | <1 | 17 | 1 | Glossosoma | | _ | | | | | | | | _ | | 2 | <1 | | | Protoptila | | | | _ | | | | | - | _ | _ | | | | _ | Goeridae | | _ | | 2 | <1 | _ | | 4 | <1 | 5 | <1 | 10 | <1 | 1 | <1 | Goera | | | | | | | | | | _ | | _ | | | | Helicopsychidae | | _ | | | | | | | | 3 | <1 | 9 | <1 | _ | | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | 50 | 15 | 250 | 10 | 130 | 13 | 230 | 13 | 82 | 6 | 140 | 9 | 160 | 11 | Ceratopsyche | | 10 | 12 | 51 | 2 | 34 | 3 | 120 | 7 | 23 | 2 | 130 | 8 | 140 | 10 | Cheumatopsyche | | 20 | 7 | 120 | 5 | 22 | 2 | 92 | 5 | 31 | 2 | 82 | 5 | 58 | 4 | Hydropsyche | | | | | | | | | | | | | | | | Hydroptilidae | | 3 | <1 | 5 | <1 | 1 | <1 | | | 7 | <1 | 2 | <1 | 1 | <1 | Hydroptila | | 10 | 6 | 16 | <1 | 120 | 12 | 35 | 2 | 16 | 1 | 31 | 2 | 110 | 8 | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | 5 | <1 | _ | | _ | | 2 | <1 | 10 | <1 | 1 | <1 | 1 | <1 | Mystacides | | _ | | 40 | 2 | 5 | <1 | 12 | <1 | 6 | <1 | 10 | <1 | 3 | <1 | Oecetis | | _ | | _ | | | | | | _ | | | | | | Triaenodes | | | | | | | | | | | | | | | | Limnephilidae | | | | _ | | | | _ | | 1 | <1 | _ | | 1 | <1 | Hydatophylax | | | | | | | | | | | | | | | | Philopotamidae | | _ | | 1 | <1 | 4 | <1 | 19 | 1 | 2 | <1 | 3 | <1 | 12 | <1 | Chimarra | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | 3 | <1 | 14 | <1 | 1 | <1 | 1 | <1 | 4 | <1 | Neureclipsis | | 8 | <1 | 9 | <1 | 1 | <1 | 1 | <1 | _ | | _ | ~* | · | • | Nyctiophylax | | 16 | <1 | 3 | <1 | 3 | <1 | 3 | <1 | 1 | <1 | | | 1 | <1 | Polycentropus | | 10 | ~~ | ŭ | ~~ | Ū | -1 | • | | • | | | | • | ~1 | Psychomylidae | | _ | | | | _ | | 3 | <1 | | | 3 | <1 | _ | | Psychomyla | | | | | | | | | -1 | | | 3 | ~1 | | | Rhyacophilidae | | 8 | <1 | 21 | <1 | 3 | <1 | 9 | <1 | 13 | 1 | 5 | <1 | 18 | 1 | Rhyacophila | | _ | -1 | | -1 | _ | -1 | | ~1 | | • | | ~1 | _ | • | R. fuscula | | _ | | _ | | | | _ | | _ | | _ | | _ | | Uenoidae | | 3 | <1 | | | 1 | <1 | | | | | | | | | | | 3 | ~1 | _ | | 1 | <1 | _ | | | | _ | | _ | | Neophylax | | | | | | | | , | -1 | | | | | | | Lepidoptera | | _ | | 1 | .1 | _ | | 1 | <1 | | | 1 | | | | Pyralidae | | _ | | 1 | <1 | | | _ | | | | 1 | <1 | _ | | Petrophila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | _ | | _ | | _ | | | | _ | | _ | | | | Helichus | | | | | | | | | | _ | _ | _ | | | | Elmidae | | _ | _ | - | | _ | | _ | _ | 3 | <1 | 1 | <1 | | _ | Ancyronyx | | 3 | <1 | 13 | <1 | 5 | <1 | 4 | <1 | 12 | <1 | 1 | <1 | 2 | <1 | Dubiraphia | | | | | | | | | | | | | | | | Macronychus | | _ | | | | _ | | 1 | <1 | _ | | _ | | _ | | M. glabratus | | 45 | 3 | 38 | 1 | 27 | 3 | 60 | 3 | 100 | 8 | 95 | 6 | 32 | 2 | Optioservus | | _ | | 4 | <1 | 1 | <1 | 5 | <1 | 1 | <1 | 9 | <1 | 3 | <1 | Oulimnius | | _ | | | | _ | | 1 | <1 | 1 | <1 | _ | | 1 | <1 | Promoresia | | 40 | 2 | 43 | 2 | 25 | 3 | 92 | 5 | 33 | 3 | 57 | 4 | 12 | <1 | Stenelmis | | | | | | | | | | | | | | | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | Table 5. Benthic-macroinvertebrate data—Continued 01480653 - East Branch Brandywine Creek at Glenmoore, Pa. (Site 42)—Continued | Date | Nov. 2 | 2, 1981 | Nov. 3 | 3, 1982 | Nov. 3 | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Dec. | 5, 1986 | Oct. 2 | 3, 1987 | |--------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|--------|---------| | Total count | 7 | 52 | 1,3 | 708 | 1, | 338 | 1,0 | 800 | 1, | 361 | 7 | 23 | 1, | 435 | | Organism | Count | Percent | Coleoptera | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | | | | | | | | | | | | | | | | Psephenus | 5 | <1 | 1 | <1 | 1 | <1 | | | 2 | <1 | 12 | 2 | 10 | <1 | | Hymenoptera | | | | | | | 1 | <1 | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | _ | | | | | | | | | | 3 | <1 | 1 | <1 | | Chironomidae | 14 | 2 | 310 | 18 | 110 | 8 | 160 | 16 | 320 | 23 | 150 | 20 | 310 | 22 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 1 | <1 | 9 | <1 | 3 | <1 | 7 | <1 | 5 | <1 | 2 | <1 | 6 | <1 | | Ephydridae | | | | | | | _ | | 1 | <1 | | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | | | 20 | 1 | 2 | <1 | 20 | 2 | 23 | 2 | 13 | 2 | 4 | <1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 12 | 2 | 84 | 5 | 82 | 6 | 35 | 3 | 40 | 3 | 45 | 6 | 51 | 4 | | Tipula | 1 | <1 | | | _ | | _ | | | | | | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 1 | 5, 1988 | Nov. | 1, 1989 | Oct. 2 | 6, 1990 | Nov. 1 | 1, 1991 | Nov. 1 | 7, 1992 | Nov. 4 | , 1993 | Oct. 1 | 2, 1994 | Date | |--------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------------| | 1 1, | ,671 | 2, | 617 | 9 | 73 | 1, | 825 | 1, | 330 | 1, | 554 | 1, | 378 | Total count | | Count | Percent Organism | | , | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | _ | | _ | | _ | | 1 | <1 | _ | | 1 | <1 | E. nervosa | | 13 | <1 | 3 | <1 | 3 | <1 | 1 | <1 | 7 | <1 | 12 | <1 | 6 | <1 | Psephenus | | - | | | | | | _ | | _ | | _ | | _ | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | 3 | <1 | 1 | <1 | _ | | 1 | <1 | | | _ | | 1 | <1 | Atherix | | 160 | 27 | 290 | 11 | 200 | 20 | 550 | 31 | 210 | 16 | 120 | 8 | 250 | 18 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | 13 | <1 | 130 | 5 | 2 | <1 | 5 | <1 | 40 | 3 | 8 | <1 | 8 | <1 | Hemerodromia | | | | | | _ | | | | _ | | _ | | | | Ephydridae | | | | | | | | | | | | | | | | Simuliidae | | 16 | <1 | 11 | <1 | 2 | <1 | 2 | <1 | 13 | 1 | 1 | <1 | 4 | <1 | Simulium | | | | | | | | | | | | | | | | Tipulidae | | 64 | 4 | 73 | 3 | 19 | 2 | 110 | 6 | 52 | 4 | 74 | 5 | 35 | 3 | Antocha | | _ | | | | | | | | | | _ | | | | Tipula | **Table 5.** Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480656 - Indian Run near Springton, Pa. (Site 47) | Date | Nov. 2 | 2, 1981 | Nov. | 3, 1982 | Nov. 3 | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Oct. 2 | 9, 1986 | Oct. 1 | 9, 1987 | |-----------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|---------------------------------------------------------------------------------------------------------------|----------|---------|--------|-----------|--------|---------|--------|---------| | Total count | 1, | 050 | 1, | 883 | 1, | 165 | 1, | 027 | 7 | 29 | 6 | 88 | 6 | 40 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 1 | <1 | _ | | | | | | | | 1 | <1 | 3 | <1 | | Nematoda (nematodes) | | | | | _ | | 2 | <1 | | | _ | | 2 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 1 | <1 | _ | | | | _ | | | | _ | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 57 | 5 | 24 | 1 | 17 | 1 | | | 1 | <1 | 16 | 2 | 3 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | _ | | | | 1 | <1 | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | | | | | 1 | <1 | _ | | | | _ | | _ | | | Sphaerium | | | _ | | _ | | | | | | _ | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | 1 | <1 | | | | | | Tubificida | | | | | | | | | - | ٠. | | | | | | Naididae | 18 | 2 | 26 | 1 | 27 | 2 | 23 | 2 | | | | | 8 | 1 | | Tubificidae | 6 | <l< td=""><td>3</td><td>&lt;1</td><td>3</td><td>&lt;1</td><td>_</td><td>_</td><td></td><td></td><td>_</td><td></td><td>1</td><td>&lt;1</td></l<> | 3 | <1 | 3 | <1 | _ | _ | | | _ | | 1 | <1 | | Arthropoda (arthropods) | • | ~1 | Ŭ | • | Ū | • | | | | | | | • | ~~ | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 25 | 2 | 10 | <1 | 17 | 1 | 12 | 1 | | | | | 4 | <1 | | Crustacea | 20 | | 10 | ~1 | | • | 12 | • | | | | | - | ~* | | Decapoda | | | | | | | | | | | | | | | | Cambaridae | | | | | | | | | | | | | 1 | <1 | | Podocopa | _ | | 1 | <1 | _ | | 1 | <1 | _ | | | | • | ~1 | | Insecta | _ | | 1 | ~1 | _ | | • | ~1 | | | | | _ | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 1 | <1 | 19 | 1 | | | 7 | <1 | 20 | 3 | 11 | 2 | 7 | 1 | | Pseudocloeon | 1 | <1 | 19 | 1 | 3 | <l< td=""><td>20</td><td>2</td><td>6</td><td>-3<br/>-&lt;1</td><td>11</td><td>2</td><td>•</td><td>1</td></l<> | 20 | 2 | 6 | -3<br>-<1 | 11 | 2 | • | 1 | | Ephemerellidae | | | _ | | 3 | <1 | 20 | 2 | O | <1 | _ | | | | | | 310 | 20 | 260 | 10 | 390 | 33 | 200 | 20 | 150 | 20 | 280 | 40 | 50 | 8 | | Ephemerella<br>Ephemerelda | 310 | 28 | 360 | 19 | 390 | 33 | 200 | 20 | 130 | 20 | 200 | 40 | 30 | 0 | | Ephemeridae | | | | | | | | | | | | . • | | | | Ephemera | _ | | _ | | _ | | _ | | | | 1 | <1 | _ | | | Heptageniidae | | | 15 | . 1 | 100 | 0 | E2 | E | | | | | | | | Epeorus | | • | 15<br>50 | <1 | 100 | 8 | 52<br>46 | 5 | | | 71 | 10 | - | 10 | | Stenonema | 29 | 3 | 50 | 3 | 54 | 5 | 46 | 5 | 56 | 8 | 71 | 10 | 63 | 10 | | Isonychiidae | | .• | ^ | | | | | .• | | . 4 | r | . 4 | | . 4 | | Isonychia | 1 | <1 | 2 | <1 | 8 | <1 | 1 | <1 | 1 | <1 | 5 | <1 | 1 | <1 | | Leptophlebiidae | 1 | <1 | _ | _ | 1 | <1 | _ | | | | 2 | <1 | _ | | | Paraleptophlebia | _ | | 3 | <1 | _ | | _ | | _ | | _ | | _ | | | | 5, 1988 | Oct. 1 | 6, 1989 | Nov. 1 | 3, 1990 | Nov. 5 | 5, 1991 | Oct. 2 | 3, 1992 | Nov. 2 | 2, 1993 | Oct. 1 | 4, 1994 | Date | |-------|---------|------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-----------------------------| | | 787 | | 288 | | 40 | | 89 | | 40 | | 70 | | 232 | Total count | | Count | Percent - <b>-</b> - | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | _ | | _ | | _ | | | | _ | | 3 | <1 | _ | | Planariidae | | - | | _ | | | | _ | | | | 3 | <1 | | | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | _ | | 11 | <1 | _ | | _ | | _ | | _ | | | | Prostoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | 12 | <1 | 28 | 3 | 10 | 2 | 16 | 4 | 36 | 5 | 9 | <1 | Ferrissia | | | | | | | | | | | | | | | | Physidae | | - | | | | _ | | _ | | _ | | _ | | _ | | Physa | | | | | | | | | | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | _ | | _ | | _ | | _ | | 1 | <1 | | | Sphaeriidae | | | | 3 | <1 | _ | | _ | | - | | _ | | | | Sphaerium | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | _ | | _ | | | | 2 | <1 | | | | | Oligochaeta | | | | | | | | | | | | | | | | Tubificida | | | | 23 | 2 | 11 | 1 | 1 | <1 | _ | | 21 | 3 | 22 | 2 | Naididae | | 3 | <1 | | | _ | | | | _ | | _ | | 2 | <1 | Tubificidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | 3 | <1 | 13 | 1 | 11 | 1 | 1 | <1 | _ | | 9 | 1 | 26 | 2 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | | | | | | | | | | | | | | | Decapoda | | | | _ | | | | _ | | _ | | | | _ | | Cambaridae | | | | | | | | _ | | _ | | | | | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 8 | 1 | 1 | <1 | 4 | <1 | | | _ | | _ | | 11 | <1 | Baetis | | 3 | <1 | 18 | 1 | 1 | <1 | 2 | <1 | 1 | <1 | 1 | <1 | 26 | 2 | Pseudocloeon | | | | | | | | | | | | | | | | Ephemerellidae | | 170 | 22 | <b>6</b> 1 | 5 | 36 | 4 | 11 | 2 | 7 | 2 | 17 | 2 | 58 | 5 | Ephemerella | | | | | | | | | | | | | | | | Ephemeridae | | _ | | _ | | _ | | | | | | _ | | _ | | Ephemera . | | | | | | | | | | | | | | | | Heptageniidae | | 19 | 2 | 61 | 5 | 15 | 2 | 24 | 4 | 5 | 1 | 9 | 1 | 12 | 1 | Epeorus | | 21 | 3 | 28 | 2 | 30 | 4 | 21 | 3 | 35 | 8 | 19 | 2 | 34 | 3 | Stenonema | | | | | | | | | - | - | _ | | _ | - | | Isonychiidae | | _ | | _ | | _ | | 9 | 2 | 38 | 8 | 13 | 2 | 7 | <1 | Isonychia | | | | _ | | | | _ | - | _ | - | | - | - | - | Leptophlebiidae | | | | _ | | _ | | _ | | | | _ | | _ | | Paraleptophlebia | | | | | | | | | | | | | | | | - www.ptopinooid | Table 5. Benthic-macroinvertebrate data—Continued 01480656 - Indian Run near Springton, Pa. (Site 47) | Date | | 2, 1981 | | 3, 1982 | | 3, 1983 | _ | 7, 1984 | | 3, 1985 | | 9, 1986 | | 9, 1987 | |------------------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------| | Total count | | 050 | | 883 | | 165 | | 027 | | 29 | | 88 | | 40 | | Organism | Count | Percent | Count | Percei | | Odonata | | | | | | | | | | | | | | | | Aeshnidae | | | | | | | _ | _ | | | | | | | | Boyeria | _ | | _ | | | | 1 | <1 | | | | | - | | | Gomphidae | | | _ | | _ | | | | | | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | _ | | | | | | _ | 440 | | | | | • | | Allocapnia | 17 | 2 | | | _ | | 56 | 6 | 110 | 15 | 3 | <1 | 19 | 3 | | Chloroperlidae | | | | | | | | | | | | | 7 | 1 | | Leuctridae | | | | | | | | | | | _ | | | | | Nemouridae | | | | | | | | | | | _ | | _ | | | Peltoperlidae | | | | | | | | | | | | | | | | Peltoperla | _ | | _ | | | | | | | | | | _ | | | Perlidae | _ | | | | | | _ | | | | _ | _ | | _ | | Acroneuria | 2 | <1 | 10 | <1 | 10 | <1 | 5 | <1 | _ | | 2 | <1 | 4 | <1 | | Agnetina | | | | | _ | | | | | | _ | | _ | | | Neoperla<br>— | | | _ | | _ | | | | | | _ | | | _ | | Paragnetina | | | | | | | | | 3 | <1 | 2 | <1 | 2 | <1 | | Taeniopterygidae | | | | | | | | | | | | | | | | Strophopteryx | _ | | | | | | | | | | | | | | | Taeniopteryx | 1 | <1 | 17 | <1 | 64 | 5 | | | | | 1 | <1 | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | | | 1 | <1 | | | _ | | | | 3 | <1 | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Nigronia | 3 | <1 | 2 | <1 | 1 | <1 | | | | | 1 | <1 | | | | Sialidae | | | | | | | | | | | | | | | | Sialis | | | 1 | <1 | | | _ | | _ | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | 62 | 6 | 61 | 3 | 20 | 2 | 16 | 2 | 6 | <1 | 26 | 4 | 31 | 5 | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | 13 | 1 | 19 | 1 | 8 | <1 | 6 | <1 | 1 | <1 | 2 | <1 | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | _ | | 82 | 4 | 52 | 4 | 75 | 8 | 16 | 2 | 27 | 4 | 15 | 2 | | Goeridae | | | | | | | | | | | | | | | | Goera | 10 | <1 | 9 | <1 | 1 | <1 | | | 2 | <1 | 2 | <1 | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 8 | <1 | 47 | 2 | 34 | 3 | 24 | 2 | 41 | 6 | 17 | 2 | 33 | 5 | | Cheumatopsyche | 24 | 2 | 95 | 5 | 64 | 5 | 140 | 14 | 40 | 5 | 17 | 2 | 13 | 2 | | Diplectrona | | | | | | | | | | | | | | | | Hydropsyche | 12 | 1 | 62 | 3 | 66 | 6 | 16 | 2 | 4 | <1 | 4 | <1 | 12 | 2 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 18 | 2 | 3 | <1 | | | 1 | <1 | | | | | 1 | <1 | | Leucotrichia | 5 | <1 | 12 | <1 | 7 | <1 | 22 | 2 | 6 | <1 | 23 | 3 | 3 | <1 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | _ | | | | _ | | | | | | | | | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | 7 | <1 | 8 | <1 | | | | | _ | | | | | | | Oecetis | 1 | <1 | | | | | | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 1 | <1 | 1 | <1 | 14 | 1 | 37 | 4 | 4 | <1 | 13 | 2 | 4 | <1 | | Dolophilodes | | | _ | | 3 | <1 | 13 | 1 | 10 | 1 | 18 | 3 | 15 | 2 | | Wormaldia | | | | | | | | | | | _ | | | | | | 5, 1988 | Oct. 1 | 6, 1989 | Nov. 1 | 3, 1990 | Nov. 5 | 5, 1991 | Oct. 2 | 3, 1992 | Nov. | 2, 1993 | Oct. 1 | 4, 1994 | Date | |---------|---------|----------|---------|---------|-----------|--------|---------|--------|---------|----------|---------|----------|---------|--------------------------------| | 1 7 | 87 | 1, | 288 | 8 | 40 | 5 | 89 | 4 | 40 | 7 | 70 | 1, | 232 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Aeshnidae | | | | _ | | | | _ | | | | - | | | | Boyeria | | | | _ | | 1 | <1 | | | | | | | | | Gomphidae | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | 24 | 3 | | | 14 | 2 | 6 | 1 | 4 | 1 | 36 | 5 | _ | | Allocapnia | | _ | | | | | | | | | | 1 | <1 | | | Chloroperlidae | | _ | | | | 16 | 2 | 1 | <1 | | | _ | | _ | | Leuctridae | | 21 | 3 | _ | | | | _ | | _ | | _ | | | | Nemouridae | | | | | | | | | | | | | | | | Peltoperlidae | | _ | | | | | | | | | | | | 1 | <1 | Peltoperla | | | | | | | | | | | | | | - | | Perlidae | | 3 | <1 | 6 | <1 | | | _ | | | | 1 | <1 | 2 | <1 | Acroneuria | | 3 | <1 | _ | 74 | | | | | _ | | | ~1 | _ | ~* | Agnetina | | _ | ~. | _ | | 1 | <1 | _ | | _ | | _ | | _ | | Neoperla | | _ | | 3 | <1 | 1 | <b>~1</b> | 1 | <1 | | | | | _ | | Neuperia<br>Paragnetina | | - | | 3 | <1 | _ | | 1 | <1 | | | | | | | | | | _ | | | | | | | | | | | | | Taeniopterygidae | | 37 | 5 | | | _ | _ | _ | | | | | | _ | | Strophopteryx | | _ | | 140 | 11 | 1 | <1 | 3 | <1 | 1 | <1 | 10 | 1 | 8 | <1 | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | - | | _ | | | | | | | | 1 | <1 | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | - | | | | | | | | | | | | Nigronia | | | | | | | | | | | | | | | | Sialidae | | _ | | - | | | | | | _ | | | | _ | | Sialis | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apatanlidae | | 32 | 4 | 21 | 2 | 44 | 5 | 20 | 3 | | | 30 | 4 | 59 | 5 | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | _ | | 8 | <1 | 3 | <1 | 3 | <1 | 50 | 11 | 1 | <1 | 2 | <1 | Micrasema | | | | - | | • | | • | | | | - | | _ | | Glossosomatidae | | 4 | 8 | 32 | 2 | 16 | 2 | 27 | 5 | 10 | 2 | 42 | 5 | 63 | 5 | Glossosoma | | • | J | 02 | - | 10 | - | | J | 10 | _ | 30 | J | 00 | Ū | Goeridae | | _ | | _ | | | | | | | | | | | | Goera | | | | | | | | | | | | | | | | Hydropsychidae | | 10 | 12 | 55 | 4 | 15 | 2 | 26 | 4 | 1 | -1 | 02 | 11 | 60 | e | | | 9<br>32 | 12<br>4 | 55<br>28 | 4<br>2 | 15<br>9 | 2<br>1 | 28 | 4 | 1 | <1 | 83<br>31 | 11 | 69<br>50 | 6<br>4 | Ceratopsyche<br>Cheumatopsyche | | | 4 | | 4 | | 1 | | 5 | _<br>2 | 1 | | 4 | | 7 | Cneumatopsycne<br>Diplectrona | | | | | 11 | 40 | F | 5 | <1 | | <1 | 17 | 2 | 150 | 10 | | | 11 | 1 | 140 | 11 | 40 | 5 | 31 | 5 | 75 | 17 | 16 | 2 | 150 | 13 | Hydropsyche | | | | | | • | | | | | | | | | | Hydroptilidae | | 3 | <1 | _ | _ | 3 | <1 | | _ | 1 | <1 | | _ | _ | | Hydroptila | | _ | | 18 | 1 | 28 | 3 | 43 | 7 | 10 | 2 | 2 | <1 | 1 | <1 | Leucotrichia | | | | | | | | | | | | | | | | Lepidostomatidae | | _ | | | | _ | | _ | | | | 6 | <1 | _ | | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | | | _ | | _ | | _ | | _ | | _ | | _ | | Mystacides | | _ | | _ | | _ | | _ | | _ | | | | _ | | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 1 | 1 | 21 | 2 | 1 | <1 | 6 | 1 | 9 | 2 | 6 | <1 | 28 | 2 | Chimarra | | | | 22 | 2 | _ | | | | | | | | 26 | 2 | Dolophilodes | | _ | | 44 | | | | | | | | | | | | Dolopinoda | Table 5. Benthic-macroinvertebrate data—Continued01480656 - Indian Run near Springton, Pa. (Site 47) | Date | Nov. 2 | 2, 1981 | Nov. 3 | 3, 1982 | Nov. 3 | 3, 1983 | Oct. 1 | 7, 1984 | Oct. 2 | 3, 1985 | Oct. 2 | 9, 1986 | Oct. 1 | 9, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 050 | 1, | 883 | 1, | 165 | 1,0 | 027 | 7 | 29 | 6 | 88 | 6 | 40 | | Organism | Count | Percent | Trichoptera | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Cyrnellus | _ | | 7 | <1 | _ | | | | | | | | | | | Neureclipsis | | | 1 | <1 | _ | | _ | | _ | | _ | | | | | Nyctiophylax | 6 | <1 | _ | | 1 | <1 | 2 | <1 | | | 1 | <1 | _ | | | Polycentropus | 7 | <1 | 7 | <1 | 1 | <1 | _ | | 1 | <1 | 2 | <1 | | | | Psychomytidae Psychomytidae | | | | | | | | | | | | | | | | Psychomyia | 96 | 9 | 59 | 3 | 16 | 1 | 5 | <1 | 9 | 1 | 29 | 4 | 10 | 2 | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | 1 | <1 | 10 | <1 | 5 | <1 | 18 | 2 | 9 | 1 | 4 | <1 | 6 | 1 | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | _ | | _ | | | | | | 3 | <1 | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | _ | | | | _ | | _ | | _ | | _ | | | Dubiraphia | | | _ | | | | | | | | | | | | | Optioservus | 7 | <1 | 27 | 1 | 13 | 1 | | | 4 | <1 | 10 | 1 | 9 | 1 | | Oulimnius | 2 | <1 | 3 | <1 | 2 | <1 | 5 | <1 | 1 | <1 | | | 5 | <1 | | Promoresia | | | _ | | | | | | | | | | | | | Stenelmis | 15 | 1 | 2 | <1 | | | 4 | <1 | | | 1 | <1 | 1 | <1 | | Psephenidae | | | | | | | - | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | | | 1 | <1 | | | | | | | | | | | | Psephenus | 5 | <1 | 3 | <1 | 2 | <1 | | | 1 | <1 | 3 | <1 | 8 | 1 | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | | 2 | <1 | | | | | | | | | | Blephariceridae | | | | | _ | | | | | | | | | | | Blepharicera | | | | | | | | | | | | | | | | Chironomidae | 170 | 15 | 670 | 35 | 120 | 10 | 180 | 18 | 190 | 26 | 59 | 8 | 250 | 38 | | Empididae | | 10 | 0.0 | ••• | 120 | | 100 | | 100 | | • | Ū | -00 | • | | Hemerodromia | 7 | <1 | 4 | <1 | 2 | <1 | 1 | <1 | _ | | | | 1 | <1 | | Simuliidae | • | | • | | - | 7. | • | | | | | | • | 7. | | Simulium | | | 7 | <1 | 7 | <1 | 7 | <1 | 17 | 2 | 1 | <1 | 21 | 3 | | Tipulidae | | | | | | 74 | | -1 | | _ | | | | Ū | | Antocha | 100 | 9 | 140 | 7 | 27 | 2 | 28 | 3 | 16 | 2 | 30 | 4 | 24 | 4 | | Hexatoma | | • | | • | | _ | 1 | <1 | _ | - | _ | - | | - | | Tipula | | | | | _ | | _ | ~1 | 3 | <1 | _ | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 1 | 5, 1988 | Oct. 1 | 6, 1989 | Nov. 1 | 3, 1990 | Nov. 5 | 5, 1991 | Oct. 2 | 3, 1992 | Nov. 2 | 2, 1993 | Oct. 1 | 4, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------------------| | 1 - | 787 | 1, | 288 | 8 | 40 | 5 | 89 | 4 | 40 | 7 | 70 | 1, | 232 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Polycentropodidae | | _ | | _ | | _ | | _ | | | | | | | | Cyrnellus | | _ | | _ | | _ | | _ | | _ | | | | | | Neureclipsis | | _ | | | | | | _ | | | | _ | | | | Nyctiophylax | | | | _ | | _ | | 1 | <1 | | | _ | | _ | | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 13 | 2 | _ | | 62 | 7 | 47 | 8 | 5 | 1 | 45 | 6 | 13 | 1 | Psychomyia | | | | | | | | | | | | | | | | Rhyacophilidae | | 5 | <1 | 29 | 2 | 11 | 1 | 11 | 2 | 25 | 6 | 21 | 3 | 38 | 3 | Rhyacophila | | | | | | | | | | | | | | | | Uenoidae | | 3 | <1 | _ | | | | | | _ | | _ | | | | Neophylax | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | _ | | _ | | | | _ | | | | 3 | <1 | Ancyronyx | | | | _ | | 3 | <1 | | | 6 | 1 | _ | | | | Dubiraphia | | 24 | 3 | 24 | 2 | | | 12 | 2 | 6 | 1 | 23 | 3 | 19 | 2 | Optioservus | | | | 11 | <1 | _ | | 1 | <1 | _ | | _ | | 3 | <1 | Oulimnius | | _ | | | | | | _ | | _ | | _ | | 1 | <1 | Promoresia | | 3 | <1 | 2 | <1 | 6 | <1 | 1 | <1 | | | | | | | Stenelmis | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | | | | | | | | | | | | | | E. nervosa | | | | | | 1 | <1 | 1 | <1 | 3 | <1 | 9 | 1 | 9 | <1 | Psephenus | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | 3 | <1 | | | 1 | <1 | | | | | | | | | Atherix | | _ | | 3 | <1 | | | _ | | | | _ | | | | Blephariceridae | | | | • | - | | | | | | | | | | | Blepharicera | | 40 | 18 | 390 | 30 | 270 | 32 | 170 | 28 | 85 | 19 | 150 | 19 | 380 | 32 | Chironomidae | | | | 000 | - | 2.0 | 0.5 | 1.0 | 20 | - | 10 | 100 | 10 | 000 | 02 | Empididae | | _ | | 6 | <1 | 6 | <1 | | | | | | | 4 | <1 | Hemerodromia | | - | | U | ~1 | U | ~1 | | | | | _ | | 7 | ~1 | Simuliidae | | 8 | 1 | 80 | 6 | 12 | 1 | 6 | 1 | 18 | 4 | 8 | 1 | 49 | 4 | Simulium | | 0 | 1 | OU | U | 12 | 1 | _ | 1 | 10 | 7 | 0 | 1 | 1 | 4<br><1 | Tipulidae | | <br>16 | 2 | 16 | 1 | 140 | 16 | 60 | 10 | 25 | 6 | 97 | 12 | 46 | <1<br>4 | npundae<br>Antocha | | 10 | ۷ | | 1 | 140 | 10 | OU | 10 | 23 | O | 91 | 12 | 40 | 4 | | | _ | | _ | .1 | _ | | _ | | | | _ | | _ | | Hexatoma | | | | 2 | <1 | | | | | | | | | _ | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 36) | Date | Nov. 4 | , 1981 | Oct. 2 | 8, 1982 | Nov. 4 | 4, 1983 | Oct. 3 | 0, 1984 | Oct. 2 | 1, 1985 | Nov. 1 | 7, 1986 | Oct. 2 | 0, 1987 | |-----------------------------|--------|---------|-----------------|---------|--------|---------|----------------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1 2, | 450 | <sup>1</sup> 11 | 1,821 | 1 2 | ,848 | <sup>1</sup> 5 | ,962 | 1, | 866 | 2, | 232 | 2, | 179 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 45 | 2 | 3 | <1 | 8 | <1 | | | 8 | <1 | 2 | <1 | 6 | <1 | | Nematoda (nematodes) | | | _ | | _ | | | | _ | | | | 2 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | | | 8 | <1 | 5 | <1 | 13 | <1 | | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 3 | <1 | 3 | <1 | | | | | | | 2 | <1 | 1 | <1 | | Lymnaeidae | Ü | ~- | v | ~- | | | | | | | - | | • | ~- | | Lymnaea | | | | | | | | | | | | | 1 | <1 | | Planorbidae | | | | | | | | | | | | | • | ~1 | | | | | | | | | | | | | | | | | | Gyraulus | | | | | | | | | _ | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | _ | | _ | | _ | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | _ | | _ | | | | | | _ | | | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | | | | | | | | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | | | _ | | 3 | <1 | 3 | <1 | | | _ | | 27 | 1 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 3 | <1 | | | 5 | <1 | 11 | <1 | _ | | 3 | <1 | 35 | 2 | | Crustacea | | | | | | | | | | | | | | | | Cladocera | | | | | | | | | _ | | _ | | | | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | | | | | | | _ | | | | | | | Podocopa | | | | | | | | | _ | | | | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | 35 | _1 | | | | | 110 | e | | | | | | | | | | <1 | 32 | | | | | 6<br>1 | 2 | | 33 | 2 | | Pseudocloeon | 16 | <1 | 40 | <1 | 32 | 1 | 16 | <1 | 23 | 1 | Z | <1 | 33 | 2 | | Caenidae | | | | | | | | | | | | | | | | Caenis | _ | | | | | | | | _ | | | | | | | Ephemerellidae | | | | _ | | _ | | _ | | _ | _ | _ | | _ | | Ephemerella | _ | | 48 | <1 | 83 | 3 | 61 | 1 | 12 | <1 | 8 | <1 | 11 | <1 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | _ | | _ | | 3 | <1 | _ | | | | | | | Stenonema | 75 | 3 | 91 | <1 | 51 | 2 | 110 | 2 | 33 | 2 | 31 | 1 | 71 | 3 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | _ | | 8 | <1 | _ | | | | | | _ | | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | 3 | <1 | 5 | <1 | | | | | | | _ | | | | | man ganawa | 3 | | , | | | | | | | | | | | | | Oct. 5 | 5, 1988 | Oct. 1 | 0, 1989 | Oct. 1 | 6, 1990 | Nov. 5 | 5, 1991 | Oct. 3 | 0, 1992 | Nov. 3 | 3, 1993 | Oct. 1 | 3, 1994 | Date | |--------|---------|--------|---------|--------|---------|-------------|---------|--------|---------|--------|---------|--------|---------|---------------------------------------------------------------------------------------| | 11 | ,499 | 2,2 | 207 | 2,4 | 188 | 1,3 | 398 | 2, | 426 | 1,8 | 896 | 1,0 | 022 | Total count | | Count | Percent <u> </u> | | | | | | | | <del></del> | | | , | | | | | Platyhelminthes (flatworms) Turbellaria Tricladida | | 3 | <1 | 20 | <1 | 11 | <1 | 1 | <1 | 11 | <1 | 22 | 1 | 1 | <1 | Planariidae | | 3 | <1 | _ | | _ | | _ | | | | 1 | <1 | _ | | Nematoda (nematodes) Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | | | 8 | <1 | 1 | <1 | 1 | <1 | | | 3 | <1 | | | Prostoma Mollusca (molluscs) Gastropoda Basommatophora Ancylidae | | _ | | 3 | <1 | 3 | <1 | | | _ | | 1 | <1 | 1 | <1 | <i>Ferrissia</i><br>Lymnaeldae | | | | _ | | | | _ | | _ | | _ | | _ | | <i>Lymnaea</i><br>Planorbidae | | _ | | 1 | <1 | 1 | <1 | | | | | | | _ | | <i>Gyraulus</i><br>Bivalvia<br>Veneroida | | _ | | | | 3 | <1 | | | | | | | | | Sphaerlidae | | | | _ | | | | | | 1 | <1 | 1 | <1 | | | Annelida (segmented worms) Oligochaeta | | _ | | _ | | 1 | <1 | _ | | | | | | _ | | Lumbriculida<br>Lumbriculidae<br>Tubificida | | 3 | <1 | 15 | <1 | 20 | <1 | 4 | <1 | 6 | <1 | 4 | <1 | 1 | <1 | Naididae Arthropoda (arthropods) Acariformes | | | | 89 | 4 | 28 | 1 | 5 | <1 | 120 | 5 | 25 | 1 | 13 | 1 | Hydrachnidia<br>Crustacea | | | | 13 | <1 | | | | | | | | | | | Cladocera | | | | 5 | <1 | | | | | | | | | | | Cyclopoida<br>Amphipoda<br>Gammaridae | | | | 4 | <1 | 1 | <1 | | | 3 | <1 | | | | | Gammarus | | | | | | | | | | | | 1 | <1 | | | Podocopa | | | | | | | | | | | | | | | | Insecta<br>Ephemeroptera<br>Baetidae | | 45 | 3 | 9 | <1 | 5 | <1 | 8 | <1 | | | | | 28 | 3 | Baetis | | | | 22 | 1 | 10 | <1 | 1 | <1 | 10 | <1 | | | 41 | 4 | <i>Pseudocloeon</i><br>Caenidae | | _ | | 1 | <1 | 2 | <1 | | | _ | | _ | | | | Caerndae<br><i>Caenis</i><br>Ephemerellidae | | 11 | <1 | 75 | 3 | 150 | 6 | 49 | 3 | 180 | 8 | 140 | 7 | 24 | 2 | Ephemerella<br>Ephemerella<br>Heptageniidae | | | | 7 | <1 | 9 | <1 | 1 | <1 | 5 | <1 | 2 | <1 | 1 | <1 | Epeorus - | | 29 | 2 | 69 | 3 | 180 | 7 | 64 | 5 | 57 | 2 | 11 | <1 | 27 | 3 | Stenonema<br>Isonychiidae | | 3 | <1 | | | 1 | <1 | | | 17 | <1 | 4 | <1 | 76 | 8 | isonychiidae<br><i>Isonychia</i><br>Leptohyphidae | | _ | | _ | | | | | | _ | | 1 | <1 | _ | | Tricorythodes | | | | | | | | | | | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 36)—Continued | Date | Nov. 4 | , 1981 | | 8, 1982 | | i, 1983 | | 0, 1984 | Oct. 2 | 1, 1985 | Nov. 1 | 7, 1986 | Oct. 20 | 0, 1987 | |------------------|-------------|---------|-----------------|-----------|-------|-----------|----------------|---------|--------|-----------|--------|---------|---------|---------| | Total count | 1 2,4 | 450 | <sup>1</sup> 11 | ,821 | 12 | ,848 | <sup>1</sup> 5 | ,962 | 1,8 | 366 | 2, | 232 | 2,1 | 179 | | Organism | Count | Percent | Count | Percen | | Odonata | | | | | | | | | | | | | | | | Calopterygidae | | | | | | | | | | | | | | | | Hetaerina | _ | | | | _ | | 3 | <1 | _ | | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | _ | | 3 | <1 | _ | | _ | | _ | | 4 | <1 | | Chloroperlidae | _ | | _ | | 8 | <1 | 3 | <1 | _ | | 1 | <1 | 5 | <1 | | Nemouridae | | | | | _ | | 3 | <1 | | | _ | | | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | | | 3 | <1 | 3 | <1 | | | 1 | <1 | | | | | | | <del></del> | | 3 | <b>\1</b> | 3 | <b>\1</b> | 3 | -1 | 1 | <b>\1</b> | _ | | _ | | | Agnetina | | | | | _ | | 3 | <1 | _ | | | | _ | | | Paragnetina | 19 | <1 | 13 | <1 | _ | | _ | | 1 | <1 | 3 | <1 | 1 | <1 | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 75 | 3 | 35 | <1 | 37 | 1 | 8 | <1 | 16 | <1 | 16 | <1 | 37 | 2 | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | _ | | _ | | 3 | <1 | _ | | | | _ | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 8 | <1 | _ | | 13 | <1 | 3 | <1 | | | 2 | <1 | 2 | <1 | | Nigronia | 5 | <1 | | | | | _ | | | | 1 | <1 | _ | | | Sialidae | _ | | | | | | | | | | | | | | | Sialis | | | _ | | 3 | <1 | _ | | _ | | _ | | _ | | | Neuroptera | | | | | , | ~1 | | | | | | | | | | Sisyridae | | | | | | | | | | | | | | | | Climacia | | | | | | | | | | | | | | | | | | | | | | | | | • | | | | | | | C. areolaris | _ | | | | _ | | _ | | 2 | <1 | _ | | _ | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | _ | | | | | _ | | | | Apatania | | | | | _ | | 3 | <1 | | | 1 | <1 | _ | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | 29 | 1 | _ | | 16 | <1 | 8 | <1 | 15 | <1 | 69 | 3 | 20 | <1 | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 3 | <1 | 13 | <1 | 3 | <1 | 37 | <1 | 7 | <1 | 16 | <1 | 3 | <1 | | Protoptila | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Goeridae | | | | | | | | | | | | | | | | Goera | _ | | | | _ | | | | _ | | _ | | _ | | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | | | _ | | _ | | _ | | _ | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 1,100 | 44 | 1,100 | 9 | 880 | 30 | 500 | 8 | 470 | 25 | 240 | 11 | 320 | 15 | | Cheumatopsyche | 170 | 7 | 48 | <1 | 250 | 9 | 48 | <1 | 110 | 6 | 61 | 3 | 48 | 2 | | Hydropsyche | 140 | 6 | 85 | <1 | 200 | 7 | 56 | <1 | 92 | 5 | 280 | 13 | 220 | 10 | | | 140 | 0 | 63 | <1 | 200 | , | 30 | <1 | 92 | 3 | 200 | 13 | 220 | 10 | | Hydroptilidae | | | | | • | _ | | | | | | | _ | | | Hydroptila | | | _ | | 8 | <1 | 16 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | | Leucotrichia | 11 | <1 | 16 | <1 | | | 290 | 5 | 160 | 8 | 130 | 6 | 190 | 9 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | _ | | _ | | _ | | _ | | _ | | _ | | | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Oecetis | _ | | _ | | _ | | 5 | <1 | 1 | <1 | 4 | <1 | | | | | | | | | | | | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | | 5, 1988 | Oct. 1 | 0, 1989 | Oct. 1 | 6, 1990 | Nov. | 5, 1991 | Oct. 3 | 0, 1992 | Nov. | 3, 1993 | Oct. 1: | 3, 1994 | Date | |-------|---------|--------|---------|--------|---------|-------|---------|------------|---------|-------|---------|---------|---------|------------------| | 11 | ,499 | 2, | 207 | 2, | 488 | 1, | 398 | 2, | 426 | 1, | 896 | 1,0 | 022 | Total count | | Count | Percent Organism | | | | | - | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Calopterygidae | | _ | | _ | | | | | | | | _ | | _ | | Hetaerina | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capnildae | | 3 | <1 | _ | | | | 4 | <1 | 5 | <1 | _ | | | | Allocapnia | | _ | | 4 | <1 | | | 19 | 1 | 60 | 3 | 12 | <1 | 2 | <1 | Chloroperlidae | | _ | | | | | | _ | | | | | | | | Nemouridae | | | | | | | | | | | | | | | | Perlidae | | _ | | _ | | 4 | <1 | 2 | <1 | 5 | <1 | 3 | <1 | 2 | <1 | Acroneuria | | _ | | 1 | <1 | 41 | 2 | 2 | <1 | 9 | <1 | 3 | <1 | 3 | <1 | Agnetina | | 3 | <1 | | | | | | | 1 | <1 | 2 | <1 | | | Paragnetina | | _ | | | | | | | | _ | | _ | | | | Taeniopterygidae | | 35 | 2 | 15 | <1 | 6 | <1 | 6 | <1 | 8 | <1 | 19 | 1 | 4 | <1 | Taeniopteryx | | | _ | | 1- | • | | Ū | 7- | Ū | 1. | | • | - | 7. | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | _ | | _ | | | | 1 | <1 | | | _ | | | | Rhagovelia | | | | | | _ | | • | ~1 | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | 5 | <1 | | | | | 2 | <1 | 8 | <1 | 3 | <1 | 1 | <1 | Corydalus | | J | <1 | | | _ | | 1 | <1 | О | <1 | 3 | <1 | 1 | <1 | | | | | _ | | _ | | 1 | <1 | | | _ | | _ | | Nigronia | | | | | | | | | | | | | | | | Sialidae | | | | | | _ | | _ | | | | _ | | | | Sialis | | | | | | | | | | | | | | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae | | | | | | | | | | | | | | | | Climacia | | _ | | _ | | | | _ | | _ | | _ | | | | C. areolaris | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | 3 | <1 | 19 | <1 | 12 | <1 | 11 | <1 | 22 | <1 | 67 | 4 | 2 | <1 | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | 5 | <1 | 97 | 4 | 100 | 4 | 50 | 4 | 56 | 2 | 220 | 12 | 19 | 2 | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | 8 | <1 | 44 | 2 | 3 | <1 | 13 | <1 | 22 | <1 | 39 | 2 | 10 | 1 | Glossosoma | | - | | | | _ | | 1 | <1 | _ | | 3 | <1 | 2 | <1 | Protoptila | | | | | | | | | | | | | | | | Goeridae | | | | _ | | - | | _ | | _ | | 1 | <1 | _ | | Goera | | | | | | | | | | | | | | | | Helicopsychidae | | | | 1 | <1 | 6 | <1 | | | 22 | <1 | 10 | <1 | 8 | <1 | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | 600 | 40 | 310 | 14 | 620 | 25 | 340 | 24 | 360 | 15 | 520 | 27 | 290 | 29 | Ceratopsyche | | 45 | 3 | 55 | 3 | 82 | 3 | 41 | 3 | 17 | <1 | 79 | 4 | 27 | 3 | Cheumatopsyche | | 83 | 6 | 37 | 2 | 130 | 5 | 110 | 8 | 100 | 4 | 190 | 10 | 67 | 7 | Hydropsyche | | | | | | | | | | | | | | | | Hydroptilidae | | | | 9 | <1 | _ | | 1 | <1 | 1 | <1 | 1 | <1 | _ | | Hydroptila | | 75 | 5 | 36 | 2 | 170 | 7 | 75 | 5 | 73 | 3 | 88 | 5 | 180 | 18 | Leucotrichia | | | | | | | | | | | | | | | | Lepidostomatidae | | _ | | | | 6 | <1 | 2 | <1 | 1 <b>9</b> | <1 | 13 | <1 | _ | | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | | | 1 | <1 | _ | | _ | | _ | | | | _ | | Mystacides | | | | 5 | <1 | 17 | <1 | 2 | <1 | 12 | <1 | 2 | <1 | 1 | <1 | Oecetis | | | | - | - | | • • | - | | | | - | •• | - | | Philopotamidae | | | | | | | | | | | | | | | | Philopotaminae | **Table 5.** Benthic-macroinvertebrate data—Continued 01480700 - East Branch Brandywine Creek near Downingtown, Pa. (Site 36)—Continued | Date | | 4, 1981 | | 8, 1982 | | 4, 1983 | | 0, 1984 | | 1, 1985 | | 7, 1986 | | 0, 1987 | |-------------------|-------|---------|-----------------|---------|-----------------------------------------|---------|----------------|---------|-------|---------|-------|---------|-------|---------| | Total count | 1 2 | ,450 | <sup>1</sup> 11 | ,821 | <sup>1</sup> 2 | ,848 | <sup>1</sup> 5 | ,962 | 1, | B66 | 2, | 232 | 2, | 179 | | Organism | Count | Percent | Trichoptera | | | | | *************************************** | | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | 11 | <1 | _ | | 3 | <1 | 43 | <1 | _ | | 25 | 1 | 1 | <1 | | Nyctiophylax | 3 | <1 | _ | | | | 3 | <1 | _ | | 1 | <1 | 2 | <1 | | Polycentropus | 3 | <1 | _ | | _ | | _ | | _ | | _ | | _ | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | | | _ | | | | 13 | <1 | 35 | 2 | 8 | <1 | 120 | 5 | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | | | _ | | _ | | 3 | <1 | _ | | 2 | <1 | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | | | | | _ | | _ | | _ | | _ | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 21 | <1 | | | | | | | | | 1 | <1 | 2 | <1 | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | | | _ | | _ | | _ | | | | | | _ | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | | | | | _ | | | | | | | | | Dubiraphia | 5 | <1 | - | | 5 | <1 | 5 | <1 | 2 | <1 | | | | | | Optioservus | 13 | <1 | 13 | <1 | 32 | 1 | 19 | <1 | 10 | <1 | | | 18 | <1 | | Oulimnius | - | | | | _ | | _ | | 1 | <1 | | | 8 | <1 | | Promoresia | _ | | _ | | _ | | _ | | 2 | <1 | 5 | <1 | | | | Stenelmis | 14 | <1 | 3 | <1 | 13 | <1 | 3 | <1 | 3 | <1 | _ | | _ | | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | _ | | | | 3 | <1 | _ | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Ectopria | | | 3 | <1 | | | _ | | | | _ | | _ | | | Psephenus | | | | | 3 | <1 | | | | | | | _ | | | Hymenoptera | | | | | _ | | | | 1 | <1 | _ | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Chaoboridae | | | | | | | | | | | | | | | | Chaoborus | | | _ | | | | | | _ | | _ | | _ | | | Chironomidae | 570 | 23 | 10,000 | 83 | 770 | 27 | 3,400 | 57 | 580 | 31 | 400 | 18 | 840 | 38 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 3 | <1 | 19 | <1 | 8 | <1 | 3 | <1 | 4 | <1 | 6 | <1 | 5 | <1 | | Simuliidae | | _ | | | | | | | | | | | | | | Simulium | 83 | 3 | 200 | 2 | 380 | 13 | 1,200 | 20 | 99 | 5 | 780 | 35 | 14 | <1 | | Stratiomyidae | _ | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 16 | <1 | 37 | <1 | 3 | <1 | 75 | 1 | 53 | 3 | 130 | 6 | 130 | 6 | | Tipula | _ | | | | | | | | | | | | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | | i, 1988 | Oct. 10 | 0, 1989 | Oct. 10 | 6, 1990 | Nov. 5 | i, 1991 | Oct. 3 | 0, 1992 | Nov. 3 | , 1993 | Oct. 1 | 3, 1994 | Date | |-------|---------|---------|---------|---------|---------|--------|---------|--------|------------|--------|---------|--------|---------|-------------------| | 11 | 499 | 2,2 | 207 | 2,4 | 188 | 1,3 | 398 | 2,4 | <b>426</b> | 1,8 | 396 | 1, | 022 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | , | Trichoptera | | | | | | | | | | | | | | | | Polycentropodidae | | | | | | 12 | <1 | 6 | <1 | 8 | <1 | 1 | <1 | _ | | Neureclipsis | | 3 | <1 | 1 | <1 | 12 | <1 | 2 | <1 | 5 | <1 | 1 | <1 | _ | | Nyctiophylax | | | | 2 | <1 | 2 | <1 | _ | | 4 | <1 | _ | | _ | | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 16 | 1 | 7 | <1 | 35 | 1 | 16 | 1 | 5 | <1 | 4 | <1 | 2 | <1 | Psychomyia | | | | | | | | | | | | | | | | Rhyacophilidae | | | | | | 4 | <1 | 1 | <1 | 20 | <1 | 8 | <1 | 1 | <1 | Rhyacophila | | | | | | | | | | | | | | | | Uenoidae | | | | | | | | | | _ | | 2 | <1 | | | Neophylax | | | | | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | 3 | <1 | 7 | <1 | 5 | <1 | 1 | <1 | 2 | <1 | Petrophila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | 1 | <1 | _ | | | | | | _ | | Helichus | | | | | | | | | | | | | | | | Elmidae | | | | | | _ | | _ | | | | _ | | 1 | <1 | Ancyronyx | | | | 1 | <1 | 3 | <1 | _ | | 6 | <1 | 5 | <1 | _ | | Dubiraphia | | 24 | 2 | 34 | 2 | 71 | 3 | 66 | 5 | 140 | 6 | 92 | 5 | 44 | 4 | Optioservus | | | | _ | | _ | | | | 2 | <1 | 8 | <1 | | | Oulimnius | | | | | | 1 | <1 | _ | | 18 | <1 | 39 | 2 | 37 | 4 | Promoresia | | 5 | <1 | 5 | <1 | 22 | <1 | 1 | <1 | 16 | <1 | 8 | <1 | 4 | <1 | Stenelmis | | | | | | | | | | | | | | | | Hydrophilidae | | _ | | | | _ | | _ | | | | _ | | | | Berosus | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | _ | | _ | | | | | | Ectopria | | _ | | | | 3 | <1 | 5 | <1 | 4 | <1 | 3 | <1 | 2 | <1 | Psephenus | | | | | | | | | | _ | | _ | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | 1 | <1 | _ | | | | _ | | | | | | Atherix | | | | | | | | | | | | | | | | Chaoboridae | | _ | | 1 | <1 | | | _ | | _ | | _ | | | | Chaoborus | | 30 | 29 | 980 | 45 | 620 | 25 | 420 | 30 | 880 | 37 | 180 | 9 | 65 | 7 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | | | 110 | 5 | 6 | <1 | 1 | <1 | 15 | <1 | 5 | <1 | 1 | <1 | Hemerodromia | | | | | | | | | | | | | | | | Simuliidae | | 59 | 4 | 75 | 3 | 16 | <1 | 1 | <1 | 37 | 2 | 5 | <1 | 25 | 3 | Simulium | | | | | | _ | | | | | | _ | | _ | | Stratiomyidae | | | | | | | | | | | | | | | | Tipulidae | | | | 15 | <1 | 45 | 2 | 49 | 3 | 37 | 2 | 34 | 2 | 4 | <1 | Antocha | | | | | | _ | | _ | | 2 | <1 | _ | | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44) | Date | Nov. | 4, 1981 | Oct. 2 | 8, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 3 | 1, 1985 | Oct. 8 | 3, 1986 | Nov. | 4, 1987 | |----------------------------------------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------| | Total count | 2, | 812 | 1, | 556 | 1, | 918 | 1, | 475 | 2, | 091 | 1,0 | 079 | 2, | 352 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 38 | 1 | 27 | 2 | 39 | 2 | 6 | <1 | 62 | 3 | 13 | 1 | 21 | <1 | | Nematoda (nematodes) | 1 | <1 | 1 | <1 | | | 3 | <1 | | | | | 1 | <1 | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | _ | | | | _ | | 1 | <1 | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | | | 1 | <1 | | | | | 1 | <1 | _ | | | Physidae | | | | | _ | | | | | | - | | | | | Physa | 1 | <1 | 16 | 1 | | | | | _ | | | | | | | Planorbidae | _ | | | _ | | | | | | | | | | | | Helisoma | | | 3 | <1 | | | | | | | | | | | | Annelida (segmented worms) Oligochaeta | | | - | - | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | _ | | | | | | | | _ | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | _ | | 4 | <1 | | | 1 | <1 | 1 | <1 | 2 | <1 | 5 | <1 | | Arthropoda (arthropods) | | | - | | | | - | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 28 | 1 | 6 | <1 | 18 | <1 | 10 | <1 | 1 | <1 | 1 | <1 | 6 | <1 | | Crustacea | | - | · | | | | | •• | - | | _ | | • | | | Cyclopoida | | | | | | | | | | | | | _ | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | | | | | | | | | _ | | | | | Podocopa | 1 | <1 | | | | | | | 1 | <1 | | | 1 | <1 | | Insecta | - | 7- | | | | | | | - | | | | - | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 16 | <1 | 4 | <1 | _ | | 30 | 2 | 14 | <1 | 26 | 2 | 2 | <1 | | Pseudocloeon | _ | | 5 | <1 | 1 | <1 | 3 | <1 | 12 | <1 | _ | | 21 | <1 | | Caenidae | | | | | | | | | | | | | | | | Caenis | _ | | _ | | | | | | | | _ | | _ | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 230 | 8 | 180 | 11 | 330 | 17 | 44 | 3 | 260 | 12 | 30 | 3 | 200 | 8 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | | | | | | | _ | | | | _ | | | Stenonema | 83 | 3 | 90 | 6 | 84 | 4 | 29 | 2 | 31 | 1 | 10 | <1 | 31 | 1 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 10 | <1 | 17 | 1 | 14 | <1 | 19 | 1 | 3 | <1 | 2 | <1 | 3 | <1 | | Leptohyphidae | | | | - | | | | - | _ | _ | | | - | _ | | Tricorythodes | 3 | <1 | 5 | <1 | 5 | <1 | | | 3 | <1 | | | 4 | <1 | | Leptophlebiidae | _ | | _ | | | | 1 | <1 | _ | | | | | | | _optopiaconduc | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | l, 1988 | Oct. ( | 6, 1989 | Oct. 1 | 1, 1990 | Nov. 1 | 8, 1991 | Nov. 1 | 7, 1992 | Nov. 4 | l, 1993 | Oct. 6 | , 1994 | Date – | |-----------------|---------|--------|---------|--------|---------|--------|---------|--------|------------|--------|---------|--------|---------|-----------------------------| | <sup>1</sup> 2, | 626 | 1, | 105 | 1, | 100 | 1, | 499 | 1, | 380 | 1, | 179 | 1, | 163 | Total count | | Count | Percent d Organism | | | | • | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 21 | <1 | 6 | <1 | 10 | <1 | 7 | <1 | 93 | 7 | 38 | 3 | 52 | 4 | Planariidae | | - | | _ | | 1 | <1 | _ | | _ | | | | _ | | Nematoda (nematodes) | | | | | | | | | | | | | | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | 1 | <1 | 1 | <1 | 1 | <1 | | | | | _ | | Prostoma | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | _ | | | | Ancylidae | | _ | | | | | | _ | | _ | | 2 | <1 | | | Ferrissia | | | | | | _ | _ | | | | | | | | | Physidae | | | | | | 1 | <1 | | | | | | | _ | | Physa | | | | | | | | | | | | | | | | Planorbidae | | | | | | | | _ | | _ | | | | _ | | Helisoma | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | • | | | | | | | | - | | | | Tubificida | | | | 6 | <1 | 1 | <1 | | | 11 | <1 | 7 | <1 | | | Naididae | | | | | | | | | | | | | | | | Lumbriculida | | | | | | _ | | _ | | | | 1 | <1 | _ | | Lumbriculidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | 10 | 1 | 3 | .1 | | -1 | E 1 | | 17 | , | • | .1 | Acariformes | | | | 12 | 1 | 3 | <1 | 4 | <1 | 51 | 4 | 17 | 1 | 6 | <1 | Hydrachnidia<br>Crustacea | | | | | | | | | | | | 2 | <1 | | | | | _ | | _ | | _ | | _ | | _ | | 2 | <1 | | | Cyclopoida | | | | | | | | | | | | | | | | Amphipoda<br>Gammaridae | | | | | | | | | | 2 | <1 | | | | | Gammarus | | | | _ | | 1 | <1 | | | | <b>\</b> 1 | _ | | _ | | Podocopa | | | | | | 1 | ~1 | _ | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 85 | 3 | 34 | 3 | 36 | 3 | _ | | | | 2 | <1 | 58 | 5 | Baetis | | 5 | <1 | 8 | <1 | _ | · | | | 1 | <1 | | | 5 | <1 | Pseudocloeon | | - | | • | | | | | | _ | | | | _ | - | Caenidae | | _ | | | | | | _ | | | | 1 | <1 | 1 | <1 | Caenis | | | | | | | | | | | | - | | - | - | Ephemerellidae | | 110 | 4 | 360 | 33 | 94 | 9 | 150 | 10 | 310 | 22 | 230 | 19 | 46 | 4 | Ephemerella | | | | | | | | | | | | | | | | Heptageniidae | | _ | | 2 | <1 | 3 | <1 | 4 | <1 | 2 | <1 | 2 | <1 | | | Epeorus | | 45 | 2 | 13 | 1 | 46 | 4 | 37 | 2 | 37 | 3 | 25 | 2 | 2 | <1 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | 3 | <1 | | | 3 | <1 | 9 | <1 | 2 | <1 | 9 | <1 | 47 | 4 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | 11 | <1 | 4 | <1 | | | _ | | 8 | <1 | 4 | <1 | | | Tricorythodes | | | | | | | | | | | | | | | | Leptophlebiidae | **Table 5.** Benthic-macroinvertebrate data—Continued 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44)—Continued | Date | Nov. | 4, 1981 | Oct. 2 | 8, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 3 | 1, 1985 | Oct. 8 | 3, 1986 | Nov. | 4, 1987 | |---------------------------------------------|-------|-----------|--------|---------|--------|---------|--------|---------|--------|----------------|--------|---------|-------|---------| | Total count | 2, | 812 | 1, | 556 | 1,9 | 918 | 1,4 | 475 | 2,0 | 091 | 1, | 079 | 2, | 352 | | Organism | Count | Percent | Odonata | | | | | | | | | | | • | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | 1 | <1 | | | _ | | | | | | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | 11 | <1 | 2 | <1 | 9 | <1 | 5 | <1 | 68 | 3 | _ | | 6 | <1 | | Chloroperlidae | 3 | <1 | | | 6 | <1 | 2 | <1 | 9 | <1 | | | 7 | <1 | | Perlidae | | | | | | | | | | | | | | | | Agnetina | 12 | <1 | 1 | <1 | | | | | 1 | <1 | 5 | <1 | 1 | <1 | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | | | | | | | | | 1 | <1 | | | 2 | <1 | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 1 | <1 | 1 | <1 | | | 4 | <1 | 2 | <1 | 2 | <1 | 4 | <1 | | Nigronia | | - | 1 | <1 | | | | - | | · <del>-</del> | | _ | | _ | | Trichoptera | | | - | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | | | | | _ | | | | | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 2 | <1 | 13 | <1 | 20 | 1 | 28 | 2 | 4 | <1 | 1 | <1 | 2 | <1 | | Helicopsychidae | L | ~1 | 15 | ~1 | 20 | 1 | 20 | 2 | -3 | ~1 | • | -1 | _ | -1 | | Helicopsyche | 11 | <1 | | | | | | | | | | | 6 | <1 | | Hydropsychidae | 11 | <b>~1</b> | | | | | | | | | _ | | Ū | -1 | | Ceratoopsyche | 680 | 24 | 250 | 16 | 510 | 27 | 590 | 39 | 400 | 19 | 250 | 23 | 630 | 26 | | | 220 | | 42 | 3 | 120 | 6 | 90 | 6 | 130 | 6 | 28 | 23<br>3 | 60 | 3 | | Cheumatopsyche | | 8<br>3 | 75 | ა<br>5 | | 3 | 88 | 6 | 9 | -0<br>-1 | 50 | ა<br>5 | 200 | ა<br>8 | | Hydropsyche | 76 | 3 | 73 | Э | 60 | 3 | 00 | 0 | 9 | <1 | 30 | J | 200 | 0 | | Hydroptilidae | • | .1 | | | | | | | 2 | . 4 | | | , | .1 | | Hydroptila | 2 | <1 | 410 | 20 | 270 | 1.4 | ~ | - | 2 | <1 | 200 | 20 | 1 | <1 | | Leucotrichia | 110 | 4 | 410 | 26 | 270 | 14 | 75 | 5 | 63 | 3 | 290 | 26 | 300 | 13 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | | | 1 | <1 | _ | | _ | | _ | | | | | | | Oecetis | | | | | | | _ | | | | | | | | | Philopotamidae | | _ | _ | _ | | _ | | | | _ | | _ | | | | Chimarra | 150 | 5 | 9 | <1 | 14 | <1 | 21 | 1 | 55 | 3 | 52 | 5 | 26 | 1 | | Dolophilodes | | | | | | | | | | | | | | | | Wormaldia | | | | | _ | | _ | | - | | - | | _ | | | Polycentropodidae | | | | | | | | | | | | | | | | Nyctiophylax | 8 | <1 | 3 | <1 | 11 | <1 | _ | | | | _ | | _ | | | Polycentropus | 1 | <1 | | | 1 | <1 | | | | | | | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | 4 | <1 | 2 | <1 | 5 | <1 | 1 | <1 | 17 | <1 | 9 | <1 | 8 | <1 | | Lepidoptera | | | | | | | | | | | | | | | | NT | | | | | | | | | | | | | | | | Noctuidae | | | | | | | | | | | | | | | | Noctuidae<br>Pyralidae<br><i>Petrophila</i> | | | | | | <1 | | | 2 | <1 | | | 1 | <1 | | Oct. 14 | 4, 1988 | Oct. 6 | 5, 1989 | Oct. 1 | 1, 1990 | Nov. 1 | 8, 1991 | Nov. 1 | 7, 1992 | Nov. 4 | l, 1993 | Oct. 6 | 5, 1994 | Date | |-------------|---------|-------------------|---------|----------|---------|-----------|---------|--------|-----------|--------------------|---------|-----------|---------|-------------------------------------| | 1 2, | ,626 | 1, | 105 | 1, | 100 | 1,4 | 499 | 1,: | 380 | 1, | 179 | 1, | 163 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | _ | | 1 | <1 | _ | | | | | | _ | | | | Argia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | _ | | _ | | | | 1 | <1 | 11 | <1 | 4 | <1 | | | Allocapnia | | _ | | | | | | 8 | <1 | 10 | <1 | 3 | <1 | | | Chloroperlidae | | _ | | | | _ | | 1 | <1 | | | _ | | _ | | Perlidae | | 3 | <1 | 5 | <1 | 8 | <1 | | | 1 | <1 | | | | | Agnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | _ | | _ | | _ | | | | - | | _ | | | | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | _ | _ | | | Veliidae | | | | _ | | | | _ | | | | 1 | <1 | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | _ | | _ | _ | | | | | | | | | Corydalidae | | | | 6 | <1 | 2 | <1 | | | | | _ | | 1 | <1 | Corydalus | | | | | | | | | | | | | | 1 | <1 | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | _ | | _ | | | | | | 1 | <1 | _ | | Apatania | | | | | | | | | | _ | | | | | | Brachycentridae | | | | | | | | _ | | 2 | <1 | 1 | <1 | | | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | _ | | 4 | <1 | 1 | <1 | 2 | <1 | 4 | <1 | | | | | Glossosoma | | | | 10 | • | | | | | 11 | | | | | - | Helicopsychidae | | _ | | 18 | 2 | | | _ | | 11 | <1 | 11 | <1 | 58 | 5 | Helicopsyche | | 1 200 | 46 | 280 | 25 | 560 | 51 | 490 | 33 | 270 | 19 | 280 | 22 | 260 | 22 | Hydropsychidae | | 1,200<br>40 | 46<br>2 | 13 | 23<br>1 | 33 | 3 | 490<br>28 | 33<br>2 | 12 | <19<br><1 | 2 <b>6</b> 0<br>55 | 23<br>5 | 200<br>72 | 22 | Ceratopsyche<br>Cheumatopsyche | | 93 | 4 | 23 | 2 | 33<br>75 | 3<br>7 | 25 | 2 | 33 | 2 | 38 | 3 | 58 | 6<br>5 | | | 93 | 7 | 23 | 2 | 73 | , | 23 | 2 | 33 | L | 30 | 3 | 30 | 3 | <i>Hydropsyche</i><br>Hydroptilidae | | 3 | <1 | | | | | | | 3 | <1 | | | | | | | 340 | 13 | <del></del><br>58 | 5 | 3 | <1 | _ | | 3 | <1 | 2 | <1 | 1 | <1 | Hydroptila<br>Leucotrichia | | 340 | 13 | 36 | 3 | 3 | <1 | _ | | | | 2 | <1 | 1 | <1 | Lepidostomatidae | | | | | | | | | | | | 1 | <1 | | | Lepidostoma Lepidostoma | | _ | | | | | | | | | | 1 | <1 | _ | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides Mystacides | | | | 1 | <1 | | | _ | | _ | | _ | | | | Oecetis | | | | 1 | ~1 | _ | | | | _ | | _ | | _ | | Philopotamidae | | 11 | <1 | 14 | 1 | | | 1 | <1 | 2 | <1 | 30 | 3 | 30 | 3 | Chimarra | | | ~1 | | • | 2 | <1 | | ~1 | | ~1 | | 3 | | J | Dolophilodes | | | | _ | | | ~1 | | | _ | | _ | | 1 | <1 | Wormaldia | | | | | | | | | | | | | | 1 | ~1 | Polycentropodidae | | 3 | <1 | | | | | _ | | | | 1 | <1 | | | Nyctiophylax | | | ~4 | | | 1 | <1 | _ | | _ | | | ~1 | | | Polycentropus | | _ | | | | • | ~1 | | | | | | | | | Psychomyiidae | | 11 | <1 | 3 | <1 | 23 | 2 | 7 | <1 | 5 | <1 | 3 | <1 | 3 | <1 | Psychomyla | | 41 | ~1 | J | ~1 | 20 | - | • | ~1 | J | ~1 | J | ~1 | J | ~1 | Lepidoptera | | _ | | _ | | | | _ | | | | 1 | <1 | 1 | <1 | Noctuidae | | | | | | | | | | | | • | | • | | Pyralidae | | _ | | _ | | | | | | | | | | _ | | Petrophila | | | | | | | | | | | | | | | | 1 on opinia | Table 5. Benthic-macroinvertebrate data—Continued 01480903 - Valley Creek at Mullsteins Meadows near Downingtown, Pa. (Site 44)—Continued | Date | Nov. 4 | 4, 1981 | Oct. 2 | 8, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 3 | 1, 1985 | Oct. 8 | 3, 1986 | Nov. 4 | 1, 1987 | |-----------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2, | 812 | 1, | 556 | 1,9 | 918 | 1,4 | 475 | 2, | 091 | 1, | 079 | 2, | 352 | | Organism | Count | Percent | Coleoptera | | | , | | | | | | | | | | ***** | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | | | | | | | | | _ | | | | | | | Optioservus | 48 | 2 | 12 | <1 | 75 | 4 | 22 | 1 | 51 | 2 | 36 | 3 | 67 | 3 | | Oulimnius | | | | | _ | | _ | | 3 | <1 | | | _ | | | Stenelmis | 13 | <1 | 1 | <1 | 6 | <1 | 2 | <1 | 6 | <1 | 4 | <1 | 4 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | _ | | 1 | <1 | _ | | _ | | | | 2 | <1 | _ | | | Diptera | | | | | | | | | | | | | | | | Ceratopogonidae | | | | | | | | | _ | | | | | | | Chironomidae | 400 | 14 | 240 | 15 | 220 | 12 | 160 | 11 | 330 | 16 | 41 | 4 | 340 | 14 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 5 | <1 | 3 | <1 | 2 | <1 | | | 2 | <1 | | | 2 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 600 | 21 | 120 | 8 | 82 | 4 | 230 | 15 | 500 | 24 | 220 | 20 | 360 | 15 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 42 | 2 | 10 | <1 | 14 | <1 | 11 | <1 | 46 | 2 | 3 | <1 | 29 | 1 | | Tipula | 1 | <1 | 1 | <1 | _ | | | | 1 | <1 | 1 | <1 | 1 | <1 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Date | i, 1994 | Oct. 6 | , 1993 | Nov. 4 | 7, 1992 | Nov. 1 | 3, 1991 | Nov. 18 | 1, 1990 | Oct. 1 | , 1989 | Oct. 6 | 1, 1988 | Oct. 1 | |-----------------|---------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------| | Total count | 63 | 1,1 | 79 | 1,1 | 80 | 1,3 | 199 | 1,4 | 100 | 1,1 | 05 | 1,1 | 626 | 1 2 | | Organism | Percent | Count | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Dubiraphia | <1 | 1 | | _ | | | | | | | | | | | | Optioservus | 9 | 110 | 5 | 54 | 10 | 140 | 2 | 24 | 3 | 36 | 3 | 31 | 3 | 67 | | Oulimnius | | _ | | | | | <1 | 3 | <1 | 3 | | | | | | Stenelmis | 4 | 48 | <1 | 6 | <1 | 5 | | | | | 1 | 15 | <1 | 6 | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | 1 | 14 | <1 | 4 | | | | | <1 | 5 | <1 | 7 | <1 | 8 | | Diptera | | | | | | | | | | | | | | | | Ceratopogonidae | | | <1 | 1 | | | | | | | | | | | | Chironomidae | 20 | 240 | 21 | 250 | 17 | 240 | 39 | 580 | 10 | 110 | 10 | 110 | 16 | 420 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | <1 | 3 | <1 | 4 | <1 | 9 | | | | | <1 | 8 | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 2 | 22 | 2 | 18 | 3 | 49 | 6 | 87 | 2 | 19 | 5 | 54 | 5 | 130 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 2 | 22 | 6 | 70 | 4 | 56 | 2 | 30 | 2 | 19 | <1 | 7 | <1 | 11 | | Tipula | | | | _ | | _ | | | | | <1 | 1 | | | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found]</td> 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39) | Date | Nov. 4 | 1, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 2 | 2, 1985 | Nov. 3 | 1, 1986 | Nov. 4 | 1, 1987 | |-------------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-----------| | Total count | 6 | 41 | 2, | 825 | 7 | 71 | 2, | 999 | 6 | 99 | 2, | 583 | 1, | 115 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 5 | <1 | 19 | <1 | 110 | 14 | 11 | <1 | 13 | 2 | 28 | 1 | 44 | 4 | | Nematoda | _ | | _ | | 1 | <1 | _ | | _ | | _ | | 2 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | _ | | _ | | 3 | <1 | _ | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | | | | | | | | | | | | | | | Amnicola | | | | | | | _ | | _ | | | | | | | Basommatophora | _ | | | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | | | | Ancylidae | | • | 01 | | 00 | • | 10 | | 10 | | 20 | | 10 | 1 | | Ferrissia | 51 | 8 | 31 | 1 | 22 | 3 | 17 | <1 | 10 | 1 | 23 | <1 | 10 | <1 | | Lymnaeidae | _ | | | | | | | | | | | | _ | | | Lymnaea | 1 | <1 | _ | | _ | | _ | | _ | | _ | | 1 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | _ | | 12 | <1 | 2 | <1 | 1 | <1 | _ | | 2 | <1 | _ | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | _ | | _ | | _ | | _ | | _ | | | | | | | Helisoma | 3 | <1 | 2 | <1 | 2 | <1 | _ | | | | 1 | <1 | 2 | <1 | | Planorbula | _ | | _ | | _ | | _ | | _ | | | | _ | | | Bivalvia | | | | | | | | | | | | | | | | Venerolda | | | | | | | | | | | | | | | | Sphaeriidae | 1 | <1 | 5 | <1 | 1 | <1 | 1 | <1 | _ | | 1 | <1 | _ | | | Pisidium | _ | | _ | | _ | - | _ | | | | _ | | | | | Sphaerium | _ | | | | | | | | _ | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Tubificida | | | | | | | | | | | | | | | | | 00 | | | | | | 120 | | | | | | 40 | | | Naididae | 26 | 4 | 52 | 2 | 1 | <1 | 120 | 4 | _ | | 1 | <1 | 48 | 4 | | Stylaria | | | | | _ | | _ | | 2 | <1 | _ | | _ | | | Tubificidae | 1 | <1 | | | 2 | <1 | 1 | <1 | 3 | <1 | _ | | 13 | 1 | | Hirudinea | 1 | <1 | | | _ | | | | _ | | _ | | _ | | | Pharyngobdellida | | | | | | | | | | | | | | | | Erpobdellidae | _ | | 1 | <1 | _ | | _ | | _ | | _ | | _ | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | _ | | 30 | 1 | 4 | <1 | 8 | <1 | 3 | <1 | 9 | <1 | 33 | 3 | | Crustacea | | | | | | | | | | | | | | | | Cladocera | _ | | | | _ | | _ | | _ | | 1 | <1 | _ | | | Cyclopoida | | | | | | | | | | | | | | | | Cyclopidae | _ | | 1 | <1 | | | | | _ | | | | _ | | | Amphipoda | | | | _ | | | | | | | | | | | | Crangonyctidae | | | | | | | | | | | | | | | | Crangonyx | _ | | _ | | 1 | <1 | 4 | <1 | _ | | _ | | _ | | | | _ | | _ | | 1 | <1 | 4 | <1 | _ | | _ | | _ | | | | | | | | | | | | | | | <1 | 5 | <1 | | Gammaridae | | | | | | | | | | | | | ٠. | - I | | Gammarus | _ | | _ | | _ | | _ | | | | 3 | <1 | J | ~1 | | <i>Gammarus</i><br>Talitridae | _ | | _ | | _ | | _ | | _ | | 3 | <1 | J | ~1 | | Gammarus | _ | | 11 | <1 | _ | | _ | | 1 | <1 | 3<br>7 | <1 | J | <b>\1</b> | | Oct. | 5, 1988 | Oct. 1 | 3, 1989 | Oct. 1: | 5, 1990 | Oct. 3 | 0, 1991 | Oct. 2 | 9, 1992 | Nov. 1 | 6, 1993 | Oct. 1 | 1, 1994 | Date - | |------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------------------------------------| | 1, | 357 | 2, | 698 | 3, | 793 | 11, | 771 | 1,3 | 354 | 1, | 701 | 7 | 92 | Total count | | ount | Percent | Count | Percent | t Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | 7 | <1 | 29 | 1 | 21 | <1 | 13 | <1 | 20 | 1 | 71 | 4 | 28 | 3 | Planariidae | | _ | | 1 | <1 | | | _ | | _ | | _ | | | | Nematoda | | | | - | | | | | | | | | | | | Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | 5 | <1 | 1 | <1 | | | | | | | 9 | 1 | Prostoma | | • | | 3 | <1 | 1 | <1 | _ | | | | _ | | 9 | 1 | | | | | | | | | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Hydrobiidae | | - | | 2 | <1 | _ | | | | | | 1 | <1 | | | Amnicola | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | 1 | <1 | 11 | <1 | 1 | <1 | 1 | <1 | | | 1 | <1 | 14 | 2 | Ferrissia | | • | ~1 | ** | ~1 | 1 | ~1 | 1 | ~* | | | | ~1 | 1.4 | L | | | | | | | | .1 | c | .1 | | | | | 11 | | Lymnaeidae | | - | | _ | | 1 | <1 | 6 | <1 | | | _ | | 11 | 1 | Lymnaea | | | | | | | | | | | | | | | | Physidae | | - | | 1 | <1 | 3 | <1 | 9 | <1 | | | | | 110 | 14 | Physa | | | | | | | | | | | | | | | | Planorbidae | | - | | _ | | | | | | _ | | | | 1 | <1 | Gyraulus | | _ | | _ | | | | | | _ | | | | | | Helisoma | | _ | | | | | | 1 | <1 | | | | | | | Planorbula | | | | | | | | • | ~1 | | | | | | | Bivalvia | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | Veneroida | | - | | | | | | _ | | | | _ | | 1 | <1 | Sphaerlidae | | - | | 4 | <1 | _ | | 10 | <1 | _ | | | | _ | | Pisidium | | - | | | | 7 | <1 | 7 | <1 | | | _ | | _ | | Sphaerium | | | | | | | | | | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Tubificida | | _ | | 61 | 2 | | | 1 | <1 | | | | | 6 | <1 | Naididae | | _ | | | - | | | _ | | | | | | | ~~ | Stylaria | | | | _ | | 4 | <1 | _ | | | | | | _ | | Tubificidae | | - | | _ | | 4 | ~1 | | | _ | | | | | | | | - | | | | | | _ | | - | | | | _ | | Hirudinea | | | | | | | | | | | | | | | | Pharyngobdellida | | - | | | | | | - | | | | _ | | - | | Erpobdellidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | _ | | 47 | 2 | 16 | <1 | 19 | <1 | | | 2 | <1 | 6 | <1 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | _ | | | | _ | | _ | | _ | | | | | | Cladocera | | | | | | - | | - | | - | | _ | | = | | Cyclopoida | | | | | | | | | | | | | | | | | | - | | | | | | _ | | _ | | _ | | | | Cyclopidae | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Crangonyctidae | | - | | _ | | _ | | | | _ | | | | - | | Crangonyx | | | | | | | | | | | | | | | | Gammaridae | | 3 | <1 | 10 | <1 | 19 | <1 | 8 | <1 | 4 | <1 | 2 | <1 | 5 | <1 | Gammarus | | | | | | | | - | | - | | _ | | - | | Talitridae | | | | | | | | | | | | | | | | Hyallela | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | H. azteca | Table 5. Benthic-macroinvertebrate data—Continued 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)—Continued | Date | Nov. | 4, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 16 | 6, 1984 | Oct. 2 | 2, 1985 | Nov. 3 | 3, 1986 | Nov. 4 | 1, 1987 | |---------------------------|-------|-----------------------------------------|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|--------|---------| | Total count | 6 | 41 | 2,8 | 825 | 7 | 71 | 2,9 | 999 | 6 | 99 | 2, | 583 | 1, | 115 | | Organism | Count | Percent | Decapoda | | *************************************** | | | | | | | | | | - | | | | Cambaridae | | | _ | | | | _ | | | | _ | | | | | Orconectes | | | _ | | | | 1 | <1 | | | | | _ | | | Podocopa | 17 | 3 | 270 | 10 | 39 | 5 | 1 | <1 | _ | | 2 | <1 | _ | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 2 | <1 | 27 | <1 | | | 150 | 5 | | | 2 | <1 | _ | | | Pseudocloeon | _ | | _ | | | | _ | | 9 | 1 | | | 6 | <1 | | Caenidae | | | | | | | | | | | | | | | | Caenis | 1 | <1 | | | 1 | <1 | 4 | <1 | 2 | <1 | 3 | <1 | 4 | <1 | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella | 9 | 1 | 2 | <1 | 6 | <1 | 7 | <1 | 16 | 2 | 140 | 5 | 18 | 2 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Stenonema | 19 | 3 | 130 | 5 | 55 | 7 | 260 | 9 | 69 | 10 | 270 | 10 | 56 | 5 | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | _ | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | 6 | 1 | 12 | <1 | 16 | 2 | 4 | <1 | 11 | 2 | 11 | <1 | 46 | 4 | | Leptophlebiidae | | | | | | | | | | | | | | | | Paraleptophlebia | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Potamanthidae | | | | | | | | | | | | | | | | Anthopotamus | | | _ | | _ | | _ | | | | 1 | <1 | 5 | <1 | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Amphiagrion | _ | | | | 1 | <1 | _ | | _ | | _ | | _ | | | Argia | 13 | 2 | 48 | 2 | 2 | <1 | | | 1 | <1 | 11 | <1 | 3 | <1 | | Enallagma | _ | | _ | | _ | | _ | | | | | | _ | | | Ischnura | _ | | _ | | | | _ | | | | | | _ | | | Gomphidae | | | | | | | | | | | | | | | | Stylogomphus | _ | | - | | 1 | <1 | _ | | _ | | - | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | - | | | | 1 | <1 | 1 | <1 | | | _ | | | Perlidae | | | | | | | | | | | | | | | | Acroneuria | _ | | | | _ | | _ | | _ | | _ | | _ | | | Agnetina | _ | | _ | | _ | | _ | | _ | | | | _ | | | Neoperla | _ | | _ | | | | _ | | _ | | _ | | _ | | | Paragnetina | _ | | | | _ | | 3 | <1 | | | _ | | _ | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | 1 | <1 | 2 | <1 | | | 5 | <1 | _ | | | | 1 | <1 | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | | | | | | | | | | | | Sigara | | | | | _ | | | | _ | | | | _ | | | Gerridae | | | | | | | | | | | | | | | | Rheumatobates | _ | | | | | | 1 | <1 | _ | | _ | | | | | Veliidae | | | | | | | | | | | | | | | | Microvelia | | | _ | | | | - | | | | | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | _ | | _ | | | | 1 | <1 | - | | - | | - | | | | | | | | | | | | | | | | | | | Sialidae<br><i>Sialis</i> | | | 1 | <1 | - | | | | | | | | 1 | <1 | | Oct. 6 | 5, 1988 | Oct. 1 | 3, 1989 | Oct. 1 | 5, 1990 | Oct. 3 | 0, 1991 | Oct. 2 | 9, 1992 | Nov. 1 | 6, 1993 | Oct. 1 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------| | 1, | 357 | 2, | 698 | 3, | 793 | 11 | ,771 | 1, | 354 | 1, | 701 | 7 | 92 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Decapoda | | | | | | | | 1 | <1 | | | | | | | Cambaridae | | | | | | | | | | | | | | _ | | Orconectes | | | | | | 4 | <1 | | | 2 | <1 | | | | | Podocopa | | | | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 130 | 9 | | | 13 | <1 | 1 | <1 | 1 | <1 | | | 11 | 1 | Baetis | | 10 | <1 | | | 5 | <1 | 12 | <1 | | | | | 2 | <1 | Pseudocloeon | | | | | | _ | _ | | | | | | | | | Caenidae | | | | 4 | <1 | 1 | <1 | 1 | <1 | | | | | 8 | 1 | Caenis | | | | _ | | _ | | - | | | | | | • | _ | Ephemerellidae | | 11 | <1 | 110 | 4 | 120 | 3 | 84 | <1 | 71 | 5 | 290 | 17 | 6 | <1 | Ephemerella | | | | 110 | • | 120 | Ū | 01 | | •• | Ū | 200 | | Ū | | Heptageniidae | | 1 | <1 | 6 | <1 | 4 | <1 | | | | | | | | | Epeorus | | 250 | 18 | 210 | 8 | 260 | 7 | 100 | <1 | 39 | 2 | 59 | 3 | 22 | 3 | Stenonema | | 230 | 10 | 210 | 0 | 200 | ' | 100 | ~1 | 35 | 2 | 33 | 3 | 22 | J | Isonychiidae | | 1 | <1 | , | <1 | 3 | <1 | 4 | <1 | | | 8 | <1 | | | | | 1 | <1 | 1 | <1 | 3 | <1 | 4 | <1 | | | 0 | <1 | | | Isonychia | | - | .1 | | | 20 | | - | | | | | | 10 | | Leptohyphidae | | 5 | <1 | 4 | <1 | 32 | <1 | 5 | <1 | | | | | 10 | 1 | Tricorythodes | | | | _ | _ | | | | | | | | | | | Leptophlebiidae | | | | 3 | <1 | | | | | | | | | | | Paraleptophlebia | | | | | | | | | | | | | | | | Potamanthidae | | _ | | _ | | | | 1 | <1 | | | | | 3 | <1 | Anthopotamus | | | | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | _ | | | | _ | | Amphiagrion | | 3 | <1 | 4 | <1 | | | 2 | <1 | _ | | 1 | <1 | 7 | <1 | Argia | | | | _ | | | | 3 | <1 | _ | | | | | | Enallagma | | | | | | | | | | | | 1 | <1 | _ | | Ischnura | | | | | | | | | | | | | | | | Gomphidae | | | | _ | | _ | | _ | | | | | | | | Stylogomphus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | _ | | | | | | _ | | | | _ | | Allocapnia | | | | | | | | | | | | | | | | Perlidae | | | | | | | | | | | | 1 | <1 | | | Acroneuria | | | | 1 | <1 | | | | | | | | | _ | | Agnetina | | | | | | | | | | 1 | <1 | _ | | | | Neoperla | | | | _ | | | | | | | | | | | | Paragnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | | | 4 | <1 | _ | | 1 | <1 | | | | | | | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | | 5 | <1 | | | | | | | | | Sigara | | | | | | | | | | | | | | | | Gerridae | | | | | | _ | | | | | | | | | | Rheumatobates | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | 1 | <1 | Microvelia | | | | | | | | | | | | | | • | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | 1 | <1 | | | 2 | <1 | | | Corydalus | | | | | | | | • | 7. | | | - | ~1 | - | | Sialidae | | | | _ | | _ | | 1 | <1 | | | | | 1 | <1 | Sialis | | | | | | _ | | 1 | ~1 | | | | | 1 | ~1 | Jans | Table 5. Benthic-macroinvertebrate data—Continued 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)—Continued | Date | Nov. 4 | 4, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 16 | 5, 1984 | Oct. 2 | 2, 1985 | Nov. 3 | , 1986 | Nov. 4 | l, 1987 | |--------------------------|--------|---------|--------|---------|--------|---------|---------|-----------|--------|---------|--------|-----------|--------|---------| | Total count | 6 | 41 | 2,8 | 825 | 7 | 71 | 2,9 | 99 | 6 | 99 | 2,5 | 83 | 1, | 115 | | Organism | Count | Percent | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | _ | | | | _ | | _ | | _ | | | | | | | Brachycentridae | | | | | | | | | | | | | | | | Brachycentrus | _ | | | | | | _ | | _ | | | | | | | Micrasema | 2 | <1 | _ | | | | | | _ | | _ | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Culoptila | | | | | _ | | _ | | _ | | _ | | | | | Glossosoma | _ | | | | 1 | <1 | _ | | | | _ | | | | | Protoptila | _ | | | ( | | | _ | | _ | | 9 | <1 | 1 | <1 | | Helicopsychidae | | | | [ | | | | | | | | | | | | Helicopsyche | | | | ' | 1 | <1 | _ | | | | 580 | 22 | 320 | 29 | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 110 | 17 | 270 | 10 | 140 | 18 | 500 | 17 | 120 | 17 | 230 | 9 | 130 | 12 | | Cheumatopsyche | 73 | 11 | 310 | 11 | 61 | 8 | 140 | 5 | 46 | 6 | 34 | 1 | 29 | 3 | | Hydropsyche | 26 | 4 | 54 | 2 | 62 | 8 | 100 | 3 | 13 | 2 | 52 | 2 | 29 | 3 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 7 | 1 | 77 | 3 | 4 | <1 | 2 | <1 | | | 32 | 1 | | | | Leucotrichia | 20 | 3 | 14 | <1 | 1 | <1 | 30 | 1 | 6 | <1 | 55 | 2 | 5 | <1 | | Lepidostomatidae | | - | | | | | | | - | | | | - | | | Lepidostoma | | | | | _ | | | | | | | | | | | Leptoceridae | | | | | | | | | | | | | | | | Mystacides | _ | | _ | | 1 | <1 | 1 | <1 | _ | | 9 | <1 | 4 | <1 | | Oecetis | 2 | <1 | 6 | <1 | 1 | <1 | 1 | <1 | 3 | <1 | 4 | <1 | 14 | 1 | | Philopotamidae | - | ~* | · | ~* | - | | • | ~* | · | ~* | • | | | • | | Chimarra | _ | | | | | | | | _ | | 2 | <1 | _ | | | Polycentropodidae | | | | | | | | | | | - | ~- | | | | Neureclipsis | _ | | _ | | | | 4 | <1 | _ | | 2 | <1 | 1 | <1 | | Nyctiophylax | | | | | | | _ | ~1 | | | | ~1 | _ | ~1 | | Polycentropus | | | | | | | | | 2 | <1 | 1 | <1 | 1 | <1 | | Psychomytidae | | | _ | | | | | | L | ~1 | • | ~1 | • | ~1 | | Psychomyia | | | | | | | 11 | <1 | 8 | 1 | 9 | <1 | | | | | _ | | _ | | | | 11 | <b>\1</b> | 0 | 1 | 3 | <b>\1</b> | _ | | | Lepidoptera | | | | | | | 1 | _1 | | | | | | | | Noctuidae | | | | | | | 1 | <1 | | | | | | | | Pyralidae | 17 | 2 | • | | 22 | • | _ | .1 | | , | 15 | .1 | 11 | 1 | | Petrophila | 17 | 3 | 9 | <1 | 23 | 3 | 5 | <1 | 8 | 1 | 15 | <1 | 11 | 1 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | _ | | | | | | | | | • | _ | | | A.variegata | 1 | <1 | 1 | <1 | 1 | <1 | _ | | | | 1 | <1 | 2 | <1 | | Dubiraphla | | | 3 | <1 | 2 | <1 | 1 | <1 | _ | | 10 | <1 | 12 | 1 | | Macronychus | | | | | | | | | | | | | | | | M. glabratus | _ | _ | | | | | | | _ | | _ | | | | | Optioservus | 2 | <1 | | | 1 | <1 | 5 | <1 | _ | | 7 | <1 | 5 | <1 | | Oulimnius | | | | | | | | | _ | | _ | | | | | Promoresia | _ | _ | | _ | | _ | | _ | | | - | _ | | _ | | Stenelmis | 59 | 9 | 66 | 2 | 64 | 8 | 34 | 1 | 29 | 4 | 120 | 5 | 34 | 3 | | Hydrophilidae | | | _ | _ | _ | _ | | | | | _ | - | _ | _ | | Berosus | | | 2 | <1 | 2 | <1 | - | | _ | | 1 | <1 | 2 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Psephenus<br>Hymenoptera | | | _<br>1 | <1 | _ | | 1<br>1 | <1<br><1 | 1 | <1 | 6<br>1 | <1<br><1 | 1 | <1 | | | | | | | | | | | | | | | | | | Oct. 6 | , 1988 | Oct. 1 | 3, 1989 | Oct. 1 | 5, 1990 | Oct. 3 | 0, 1991 | Oct. 2 | 9, 1992 | Nov. 1 | 6, 1993 | Oct. 1 | 1, 1994 | Date | |--------|---------|--------|---------|--------|-----------|--------|---------|--------|---------|--------|---------|--------|-----------|------------------------------------| | | 357 | | 698 | | 793 | | 771 | | 354 | | 701 | | 92 | Total count | | ount | Percent | Count | Percent | Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | _ | | _ | | 1 | <1 | 1 | <1 | | | _ | | - | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | _ | | _ | | _ | | _ | | | | 3 | <1 | _ | | Brachycentrus | | _ | | _ | | _ | | 1 | <1 | 2 | <1 | | | - | | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | _ | | 220 | 8 | _ | | _ | | | | | | | | Culoptila | | 3 | <1 | _ | | _ | | _ | | _ | | 3 | <1 | | | Glossosoma | | _ | | _ | | 4 | <1 | 77 | <1 | | | _ | | 7 | <1 | Protoptila | | | | | | | | | | | | | | | | Helicopsychidae | | _ | | 89 | 3 | 1,300 | 34 | 9,700 | 81 | 300 | 21 | 290 | 17 | 29 | 4 | Helicopsyche | | | | | | | | | | | | | | | | Hydropsychidae | | 0 | 23 | 540 | 20 | 420 | 11 | 250 | 2 | 100 | 7 | 51 | 3 | 77 | 10 | Ceratopsyche | | 0 | 9 | 120 | 4 | 130 | 3 | 150 | 1 | 41 | 3 | 150 | 9 | 25 | 3 | Cheumatopsyche | | 0 | 10 | 180 | 7 | 69 | 2 | 26 | <1 | 110 | 8 | 180 | 11 | 2 | <1 | Hydropsyche | | • | | | · | 0, | _ | | | | • | | | _ | | Hydroptilidae | | _ | | 2 | <1 | 14 | <1 | 57 | <1 | 3 | <1 | 1 | <1 | 5 | <1 | Hydroptila | | 9 | 2 | 1 | <1 | _ | ~1 | | ~1 | _ | ~- | _ | ~, | | ~1 | Leucotrichia | | 3 | 2 | • | ~1 | | | | | | | | | | | Lepidostomatidae | | | | | | 4 | -1 | 4 | <1 | | | | | | | = | | - | | _ | | 4 | <1 | 4 | <1 | | | | | _ | | <i>Lepidostoma</i><br>Leptoceridae | | | | | | | .1 | 32 | -1 | | | | | 2 | .1 | - | | _ | | _ | | 9 | <1 | | <1 | _ | | _ | | 2 | <1 | Mystacides | | 2 | <1 | 4 | <1 | 8 | <1 | 15 | <1 | _ | | 2 | <1 | 67 | 8 | Oecetis | | | | | | | | | | | | | | _ | | Philopotamidae | | - | | _ | | 1 | <1 | | | | | 1 | <1 | 3 | <1 | Chimarra | | | | | | | | | | | | | | | | Polycentropodidae | | 7 | <1 | | | _ | | _ | | | | _ | | 3 | <1 | Neureclipsis | | 1 | <1 | | | | | | | | | | | _ | | Nyctiophylax | | - | | 2 | <1 | 1 | <1 | | | _ | | _ | | 1 | <1 | Polycentropus | | | | | | | | | | | | | | | | Psychomylidae | | 5 | <1 | 21 | <1 | 10 | <1 | 2 | <1 | _ | | _ | | _ | | Psychomyia | | | | | | | | | | | | | | | | Lepidoptera | | - | | _ | | _ | | | | _ | | _ | | _ | | Noctuidae | | | | | | | | | | | | | | | | Pyralidae | | 5 | 5 | 14 | <1 | 4 | <1 | 7 | <1 | | | 13 | <1 | 12 | 2 | Petrophila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | _ | | | | _ | | 1 | <1 | | | 1 | <1 | 4 | <1 | Ancyronyx | | _ | | _ | | 1 | <1 | | | _ | | _ | | | | A.variegata | | _ | | 1 | <1 | _ | | 3 | <1 | 1 | <1 | 4 | <1 | | | Dubiraphia | | | | | | | | | | | | | | | | Macronychus | | _ | | | | _ | | 1 | <1 | | | _ | | | | M. glabratu | | 1 | <1 | 11 | <1 | 19 | <1 | 62 | <1 | 11 | <1 | 97 | 6 | 3 | <1 | Optioservus | | _ | | | | 2 | <1 | 3 | <1 | _ | | 2 | <1 | _ | | Oulimnius | | _ | | | | _ | - | _ | - | | | 4 | <1 | _ | | Promoresia | | 7 | 3 | 110 | 4 | 320 | 8 | 170 | 1 | 6 | <1 | 170 | 10 | 14 | 2 | Stenelmis | | • | • | | • | 223 | 3 | | • | • | | | | •• | - | Hydrophilidae | | _ | | | | 1 | <1 | 1 | <1 | _ | | _ | | 1 | <1 | Berosus | | _ | | | | 1 | <b>\1</b> | 1 | ~1 | | | _ | | 1 | <b>~1</b> | | | | .1 | o | -1 | n | -1 | , | <1 | | | 1 | -1 | 1 | -1 | Psephenidae | | 1 | <1 | 8 | <1 | 9 | <1 | 4 | <1 | | | 1 | <1 | 1 | <1 | Psephenus | | _ | | | | | | | | _ | | _ | | _ | | Hymenoptera | Table 5. Benthic-macroinvertebrate data—Continued 01480950 - East Branch Brandywine Creek at Wawaset, Pa. (Site 39)—Continued | Date | Nov. 4 | l, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 6, 1984 | Oct. 2 | 2, 1985 | Nov. 3 | 3, 1986 | Nov. 4 | , 1987 | |----------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 6 | 41 | 2, | 825 | 7 | 71 | 2,9 | 999 | - 6 | 99 | 2, | 583 | 1, | 115 | | Organism | Count | Percent | Diptera | | | | | | | | | | | | | | | | Chironomidae | 130 | 20 | 600 | 21 | 130 | 17 | 1,000 | 33 | 270 | 38 | 780 | 30 | 170 | 15 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 1 | <1 | 12 | <1 | 2 | <1 | 7 | <1 | 2 | <1 | 1 | <1 | 3 | <1 | | Ephydridae | _ | | 3 | <1 | | | | | _ | | | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 13 | 2 | 170 | 6 | | | 430 | 14 | 3 | <1 | 5 | <1 | 9 | <1 | | Stratiomyidae | | | | | | | | | | | | | | | | Stratiomys | _ | | | | | | 1 | <1 | | | | | | | | Tabanidae | | | | | | | | | | | | | | | | <i>Tabanus</i> | _ | | | | | | | | | | _ | | | | | Tipulidae | _ | | _ | | _ | | _ | | | | _ | | | | | Antocha | 21 | 3 | 570 | 20 | 7 | <1 | 120 | 4 | 47 | 7 | 100 | 4 | 33 | 3 | | Tipula | | | 1 | <1 | | | | | | | | | 1 | <1 | | Oct. 6 | , 1988 | Oct. 1 | 3, 1989 | Oct. 1 | 5, 1990 | Oct. 3 | 0, 1991 | Oct. 2 | 9, 1992 | Nov. 1 | 6, 1993 | Oct. 1 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-------------|--------|------------|---------------| | 1,3 | 357 | 2,0 | 698 | 3,7 | 793 | 11, | 771 | 1,3 | 354 | 1,7 | 701 | 7 | 92 | Total count | | Count | Percent Organism | | | | | | | | | | | | | <del></del> | | | Diptera | | 140 | 10 | 610 | 23 | 660 | 17 | 730 | 6 | 480 | 34 | 190 | 11 | 250 | <b>3</b> 1 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | 1 | <1 | 32 | 1 | 3 | <1 | 2 | <1 | | | 3 | <1 | 6 | <1 | Hemerodromia | | | | | | _ | | | | | | | | | | Ephydridae | | | | | | | | | | | | | | | | Simuliidae | | 18 | 1 | 140 | 5 | 2 | <1 | 49 | <1 | 100 | 7 | 15 | <1 | 2 | <1 | Simulium | | | | | | | | | | | | | | | | Stratiomyidae | | | | _ | | | | | | | | | | | | Stratiomys | | | | | | | | | | | | | | | | Tabanidae | | | | | | | | 1 | <1 | | | | | | | Tabanus | | _ | | | | 1 | <1 | | | | | | | | | Tipulidae | | 42 | 3 | 74 | 3 | 280 | 7 | 130 | 1 | 62 | 4 | 81 | 5 | 16 | 2 | Antocha | | _ | | 1 | <1 | | | | | | | | | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01481030 - Brandywine Creek near Chadds Ford, Pa. (Site 40) | Date | Nov. 4 | , 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 5, 1984 | Oct. 3 | 0, 1985 | Dec. 2 | 2, 1986 | Nov. 2 | 0, 1987 | |-----------------------------|--------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|-----------------------------------------|--------|---------| | Total count | 6 | 51 | 1,0 | 673 | 1,0 | 009 | 1,4 | 446 | 9 | 93 | 4 | 28 | 1,0 | 046 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | *************************************** | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planarlidae | 67 | 10 | 27 | 2 | 16 | 2 | 18 | 1 | 4 | <1 | 32 | 7 | 20 | 2 | | Nematoda (nematodes) | _ | | _ | | | | _ | | | | _ | | _ | | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 1 | <1 | | | | | | | | | | | | | | Mollusca (molluscs) | <del>.</del> | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 4 | <1 | 26 | 2 | 3 | <1 | 8 | <1 | 38 | 4 | | | 17 | 2 | | | 4 | <1 | 20 | 2 | 3 | <1 | • | <1 | 36 | 4 | _ | | 17 | 2 | | Physidae | | | | | | | | | | | | | | | | Physa | _ | | _ | | | | | | _ | | 4 | 1 | | | | Planorbidae | | | | | | | | | | | | | | | | Helisoma | | | | | 1 | <1 | _ | | _ | | 1 | <1 | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | 5 | <1 | 5 | <1 | 3 | <1 | - | | 1 | <1 | 20 | 5 | 6 | <1 | | Pisidium | | | | | _ | | _ | | - | | | | _ | | | Sphaerium | - | | | | _ | | _ | | - | | | | | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 3 | <1 | 10 | <1 | 2 | <1 | 1 | <1 | _ | | 1 | <1 | 32 | 3 | | Tubificidae | | | | | _ | | | | _ | | 1 | <1 | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | | | 1 | <1 | 3 | <1 | 1 | <1 | | | | | 35 | 3 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | | | | | | | _ | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | | | | | | Gammarus | | | | | | | | | | | 8 | 2 | 1 | <1 | | Isopoda | _ | | _ | | | | _ | | _ | | 0 | 2 | | <1 | | Asellidae | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Caecidotea | | | _ | | | | | | | | | | | | | Podocopa | _ | | 1 | <1 | | | _ | | | | 1 | <1 | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | _ | | | | _ | | | _ | | | _ | | | | | Baetis | 3 | <1 | 24 | 1 | 10 | 1 | 46 | 3 | 7 | <1 | 3 | <1 | _ | | | Pseudocloeon | _ | | 4 | <1 | | | | | 28 | 3 | _ | | 1 | <1 | | Caenidae | | | | | | | | | | | | | | | | Caenis | - | | _ | | | | | | | | | | 1 | <1 | | <b>Ephemerellidae</b> | | | | | | | | | | | | | | | | Ephemerella | 33 | 5 | 92 | 5 | 93 | 9 | 10 | <1 | 65 | 7 | 10 | 2 | 42 | 4 | | Heptageniidae | | | | | | | | | | | | | | | | Epeorus | | | | | | | | | | | | | _ | | | Stenacron | | | _ | | _ | | | | | | | | | | | Stenonema | 100 | 15 | 220 | 13 | 170 | 17 | 130 | 9 | 53 | 5 | 25 | 6 | 39 | 4 | | | | - | - | - | | | | - | | - | | - | | - | | | 7, 1988 | Oct. 1 | 7, 1989 | Oct. 1 | 5, 1990 | Nov. 1 | 5, 1991 | Oct. 2 | 7, 1992 | Nov. 9 | 9, 1993 | Oct. 4 | , 1994 | Date - | |-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------------------------------------------------------------------------------| | 1 1 | ,824 | 2, | 155 | 1, | 702 | 2, | 380 | 1, | 335 | 1, | 142 | 1,4 | 124 | Total count | | Count | Percent t Organism | | | | 7770 | | | | | | | | | | | | Platyhelminthes (flatworms) Turbellaria Tricladida | | 43 | 2 | 35 | 2 | 74 | 4 | 11 | <1 | 1 | <1 | 92 | 8 | 33 | 2 | Planariidae | | | | 1 | <1 | _ | | _ | | | | | | | | Nematoda (nematodes) Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | _ | | 3 | <1 | 1 | <1 | - | | - | | _ | | _ | | Prostoma Mollusca (molluscs) Gastropoda | | | | | | | | | | | | | | | | Basommatophora<br>Ancylidae | | 11 | <1 | 3 | <1 | _ | | 21 | <1 | _ | | 2 | <1 | 3 | <1 | <i>Ferrissia</i><br>Physidae | | _ | | | | _ | | | | 1 | <1 | _ | | | | Physa | | | | | | | | | | | | | | | | Planorbidae<br><i>Helisoma</i> | | _ | | | | | | _ | | _ | | _ | | _ | | Bivalvia<br>Veneroida | | _ | | _ | | _ | | _ | | _ | | 3 | <1 | _ | | Sphaeriidae | | _ | | 2 | <1 | _ | | | | _ | | - | | _ | | Pisidium | | 3 | <1 | _ | | _ | | _ | | _ | | _ | | _ | | Sphaerium Annelida (segmented worms) Oligochaeta Tubificida | | | | 26 | 1 | 1 | <1 | 9 | <1 | _ | | 10 | <1 | | | Naididae | | | | | | _ | | | | | | _ | | _ | | Tubificidae<br>Arthropoda (arthropods)<br>Acariformes | | 3 | <1 | 46 | 2 | 9 | <1 | 18 | <1 | 13 | <1 | 77 | 6 | 12 | <1 | Hydrachnidia<br>Crustacea<br>Amphipoda<br>Gammaridae | | | | 3 | <1 | | | 2 | <1 | | | 1 | <1 | _ | | Gammarus | | _ | | 1 | <1 | | | _ | | _ | | _ | | - | | Cyclopoida<br>Isopoda<br>Asellidae | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | _ | | Caecidotea<br>Podocopa | | | | | | | | | | | | | | | | Insecta<br>Ephemeroptera<br>Baetidae | | 80 | 4 | 11 | <1 | 4 | <1 | 5 | <1 | 1 | <1 | 1 | <1 | 26 | 2 | Baetis | | 5 | <1 | _ | | _ | | 9 | <1 | _ | | 4 | <1 | 18 | 1 | <i>Pseudocloeon</i><br>Caenidae | | | | _ | | - | | _ | | 3 | <1 | 1 | <1 | 2 | <1 | <i>Caenis</i><br>Ephemerellidae | | 88 | 5 | 220 | 10 | 240 | 14 | 120 | 5 | 520 | 29 | 66 | 6 | 160 | 11 | Ephemerella<br>Heptageniidae | | - | | 8 | <1 | 3 | <1 | | | | | _ | | _ | | Epeorus | | _ | | _ | | | | - | | | | - | | 10 | <1 | Stenacron | | 53 | 3 | 150 | 7 | 97 | 6 | 87 | 4 | 130 | 7 | 21 | 2 | 78 | 6 | Stenonema | Table 5. Benthic-macroinvertebrate data—Continued 01481030 - Brandywine Creek near Chadds Ford, Pa. (Site 40)—Continued | Date | Nov. | 4, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 5, 1984 | Oct. 3 | 0, 1985 | Dec. | 2, 1986 | Nov. 2 | 20, 1987 | |------------------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|--------|----------| | Total count | 6 | 551 | 1, | 673 | 1, | 009 | 1, | 446 | 9 | 93 | 4 | 128 | 1, | 046 | | Organism | Count | Percent | Count | Percen | | Ephemeroptera | | | | | | | | | | | | | | ` | | Isonychiidae | | | | | | | | | | | | | | | | Isonychia | 3 | <1 | _ | | 3 | <1 | _ | | _ | | | | 2 | <1 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | 6 | <1 | 6 | <1 | 1 | <1 | | | 1 | <1 | 7 | <1 | | Leptophlebiidae | | | | | | | | | | | | | | | | Paraleptophlebia | | | | | _ | | _ | | _ | | | | _ | | | Potamanthidae | | | | | | | | | | | | | | | | Anthopotamus | _ | | _ | | 1 | <1 | 1 | <1 | _ | | 1 | <1 | 3 | <1 | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | 3 | <1 | _ | | | | 7 | 2 | 5 | <1 | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | 1 | <1 | 2 | <1 | _ | | | | | | _ | | | Chloroperlidae | _ | | - | | _ | | _ | | | | _ | | | | | Perlidae | _ | | _ | | _ | | _ | | _ | | | | _ | | | Acroneuria | | | | | | | | | | | 1 | <1 | | | | Agnetina | | | | | | | | | | | • | ~1 | 7 | <1 | | Paragnetina | _ | | | | | | | | 2 | <1 | _ | | • | ~1 | | Taeniopterygidae | _ | | | | _ | | | | 2 | <1 | | | _ | | | | | | 4 | -1 | 3 | -1 | | | 2 | <1 | 2 | <1 | 2 | <1 | | Taeniopteryx | | | 4 | <1 | 3 | <1 | _ | | 2 | <1 | 2 | <1 | Z | <1 | | lemiptera | | | | | | | | | | | | | | | | Corixidae | | | | | | | | | | | | | | | | Sigara | _ | | _ | | | | | | _ | | | | | | | Gerridae | | | | | | | | | | | | | | | | Metrobates | _ | | _ | | | | 1 | <1 | | | | | _ | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | _ | | _ | | | | _ | | _ | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | _ | | _ | | _ | | | | 1 | <1 | | | 1 | <1 | | Nigronia | _ | | _ | | _ | | | | _ | | 1 | <1 | _ | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | | _ | | | | _ | | | | _ | | 1 | <1 | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 12 | 2 | 14 | <1 | 4 | <1 | 3 | <1 | 25 | 3 | 2 | <1 | 1 | <1 | | Protoptila | _ | | | | | | | | _ | | | | 5 | <1 | | Helicopsychidae | | | | | | | | | | | | | | | | Helicopsyche | | | | | | | _ | | _ | | _ | | _ | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 86 | 13 | 180 | 11 | 47 | 5 | 180 | 12 | 100 | 10 | 50 | 11 | 99 | 9 | | Cheumatopsyche | 80 | 12 | 43 | 3 | 24 | 2 | 74 | 5 | 28 | 3 | 6 | 1 | 24 | 2 | | Hydropsyche | 3 | <1 | 110 | 6 | 6 | <1 | 77 | 5 | 5 | <1 | 1 | <1 | 28 | 3 | | Hydroptilidae | ŭ | | | Ū | · | | •• | • | • | | • | | | ٠ | | Hydroptila | _ | | 1 | <1 | 3 | <1 | | | 2 | <1 | 1 | <1 | 1 | <1 | | Leucotrichia | 13 | 2 | 170 | 10 | 120 | 12 | | <1 | 150 | 15 | 42 | 10 | 72 | 7 | | | 13 | ۷ | 110 | 10 | 120 | 12 | 0 | <1 | 130 | 13 | 42 | 10 | 16 | 1 | | Lepidostomatidae | | | | | | | | | | | | | | | | Lepidostoma | | | _ | | _ | | | | _ | | - | | _ | | | Leptoceridae | | | | | 4 | | | | | | | | | _ | | Oecetis | | | _ | | 1 | <1 | | | _ | | _ | | 1 | <1 | | Philopotamidae | _ | _ | _ | _ | _ | _ | | _ | | _ | | 4- | | _ | | Chimarra | 4 | <1 | 5 | <1 | 5 | <1 | 1 | <1 | 45 | 5 | 50 | 11 | 31 | 3 | | | , 1988 | | 7, 1989 | | 5, 1990 | | 5, 1991 | | 7, 1992 | 1404. | 9, 1993 | | , 1994 | Date | |-----------------|---------|-------|---------|-------|---------|----------|---------|-------|---------|-------|---------|-------|---------|------------------| | <sup>1</sup> 1, | 824 | 2, | 155 | 1,3 | 702 | 2,3 | 380 | 1, | 835 | 1, | 142 | 1,4 | 124 | Total count | | Count | Percent Organism | | | | | | | | | | | | | , | | | Ephemeroptera | | | | | | | | | | | | | | | | Isonychiidae | | 8 | <1 | 2 | <1 | 1 | <1 | | | 14 | <1 | 1 | <1 | 15 | 1 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | 3 | <1 | | | 18 | 1 | | | _ | | | | | | Tricorythodes | | - | | | | | _ | | | | | | | | | Leptophlebiidae | | | | 4 | <1 | | | | | _ | | | | | | Paraleptophlebia | | | | • | | | | | | | | | | | | Potamanthidae | | 3 | <1 | | | | | | | _ | | 1 | <1 | | | Anthopotamus | | • | ~1 | | | | | | | | | • | ~1 | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | , | <1 | | | | <1 | | | | | | | | | | | 1 | <1 | | | 1 | <1 | Argia | | | | | | | | | | | | | | | | Plecoptera | | | | _ | _ | _ | _ | | | | | | | | | Capniidae | | _ | | 2 | <1 | 1 | <1 | | | _ | | 1 | <1 | _ | | Allocapnia | | | | 7 | <1 | 4 | <1 | 56 | 2 | | | 9 | <1 | | | Chloroperlidae | | | | | | | | | | 4 | <1 | | | | | Perlidae | | _ | | | | | | | | | | | | | | Acroneuria | | | | | | | | | | | | | | | | Agnetina | | | | _ | | | | | | | | | | | | Paragnetina | | | | | | | | | | | | | | | | Taeniopterygidae | | 3 | <1 | 4 | <1 | | | 2 | <1 | | | | | 1 | <1 | Taeniopteryx | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Corixidae | | _ | | | | 3 | <1 | | | | | | | | | Sigara | | | | | | • | | | | | | | | | | Gerridae | | | | | | | | | | | | | | | | Metrobates | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | 1 | .1 | | | | | | | | | | | | | | | 1 | <1 | | | **** | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | _ | | _ | | | | _ | | | | | | Corydalus | | | | | | | | | | _ | | | | _ | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | _ | | | | | | - | | _ | | | | | | Apatania | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | | _ | | 5 | <1 | | | | | Glossosoma | | 99 | 6 | 330 | 15 | 19 | 1 | 58 | 2 | 7 | <1 | 77 | 6 | 46 | 3 | Protoptila | | | | | | | | | | | | | | | | Helicopsychidae | | | | | | | | 310 | 13 | 6 | <1 | 180 | 15 | 1 | <1 | Helicopsyche | | | | | | | | 010 | | • | | | | • | | Hydropsychidae | | 50 | 19 | 240 | 11 | 130 | 8 | 60 | 3 | 68 | 4 | 68 | 6 | 190 | 14 | Ceratopsyche | | 110 | 6 | 21 | <1 | 33 | 2 | 54 | 2 | 100 | 6 | 55 | 5 | 240 | 17 | Cheumatopsyche | | 37 | 2 | 40 | 2 | 2 | <1 | 54<br>67 | 3 | 230 | 13 | 31 | 3 | 96 | 7 | Hydropsyche | | 31 | ۵ | 40 | 2 | ۷. | <1 | 0/ | J | 230 | 13 | 31 | ა | 30 | • | | | | | | | - | | | .1 | | | • | . 4 | | .1 | Hydroptilidae | | | 10 | _ | | 7 | <1 | 8 | <1 | | _ | 3 | <1 | 1 | <1 | Hydroptila | | 90 | 16 | 11 | <1 | 4 | <1 | 15 | <1 | 16 | <1 | 63 | 5 | 190 | 14 | Leucotrichia | | | | | | | | | | | | | | | | Lepidostomatidae | | | | 55 | 3 | 63 | 4 | 5 | <1 | 9 | <1 | 5 | <1 | 9 | <1 | Lepidostoma | | | | | | | | | | | | | | | | Leptoceridae | | | | 5 | <1 | 4 | <1 | 15 | <1 | 4 | <1 | 10 | <1 | 2 | <1 | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | 111107011111111 | Table 5. Benthic-macroinvertebrate data—Continued 01481030 - Brandywine Creek near Chadds Ford, Pa. (Site 40)—Continued | Date | Nov. 4 | 4, 1981 | Oct. 2 | 1, 1982 | Oct. 3 | 1, 1983 | Oct. 1 | 5, 1984 | Oct. 3 | 0, 1985 | Dec. 2 | 2, 1986 | Nov. 2 | 0, 1987 | |-------------------|--------|---------|--------|---------|--------|-------------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 6 | 51 | 1, | 673 | 1, | 009 | 1, | 146 | 9 | 93 | 4 | 28 | 1,0 | 046 | | Organism | Count | Percent | Count | Percen | | Trichoptera | | | | | | ··········· | | | | | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Neureclipsis | 2 | <1 | 2 | <1 | 22 | 2 | 7 | <1 | _ | | 6 | 1 | 4 | <1 | | Polycentropus | _ | | | | _ | | _ | | | | | | | | | Psychomylidae | | | | | | | | | | | | | | | | Psychomyia | _ | | | | | | | | 1 | <1 | _ | | 13 | 1 | | Lepidoptera | | | | | | | | | | | | | | | | Noctuidae | _ | | | | _ | | | | | | | | | | | Pyralidae | | | | | | | | | | | | | | | | Petrophila | 16 | 2 | 58 | 3 | 88 | 9 | 45 | 3 | 92 | 9 | 2 | <1 | 51 | 5 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | _ | | | | _ | | _ | | | | | | | | | A.variegata | | | | | _ | | _ | | 1 | <1 | | | | | | Dubiraphia | | | _ | | 1 | <1 | _ | | | | 1 | <1 | | | | Optioservus | 12 | 2 | 14 | <1 | 9 | <1 | 3 | <1 | 25 | 3 | 9 | 2 | 16 | 1 | | Stenelmis | 5 | <1 | 15 | <1 | 23 | 2 | 20 | 1 | 6 | <1 | 5 | 1 | 6 | <1 | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | | | _ | | | | _ | | | | 2 | <1 | 1 | <1 | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | _ | | _ | | _ | | | | | | 11 | 3 | _ | | | Hymenoptera | _ | | 1 | <1 | _ | | | | | | | | _ | | | Diptera | | | | | | | | | | | | | | | | Blephariceridae | | | | | | | | | | | | | | | | Chironomidae | 160 | 24 | 550 | 32 | 310 | 31 | 610 | 41 | 270 | 27 | 43 | 10 | 380 | 35 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 7 | 1 | 6 | <1 | _ | | 2 | <1 | _ | | 1 | <1 | 3 | <1 | | Ephydridae | | | 2 | <1 | _ | | _ | | | | _ | | | | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 28 | 4 | 65 | 4 | 11 | 1 | 150 | 10 | 21 | 2 | 43 | 10 | 53 | 5 | | Tipulidae | | - | | | | = | | | | - | | | | - | | Antocha | 4 | <1 | 16 | <1 | 15 | 2 | 49 | 3 | 21 | 2 | 29 | 7 | 37 | 3 | | Dicranota | | | _ | | | - | | - | _ | - | _ | - | | - | | Tipula | | | _ | | | | | | _ | | 1 | <1 | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Oct. 7 | , 1988 | Oct. 1 | 7, 1989 | Oct. 1 | 5, 1990 | Nov. 1 | 5, 1991 | Oct. 2 | 7, 1992 | Nov. 9 | 9, 1993 | Oct. 4 | l, 1994 | Date | |-----------------|---------|--------|---------|------------|---------|--------|---------|--------|---------|------------|---------|--------|---------|-------------------| | <sup>1</sup> 1, | 824 | 2, | 155 | 1,7 | 702 | 2, | 380 | 1,8 | 835 | 1, | 142 | 1, | 424 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Polycentropodidae | | 5 | <1 | 8 | <1 | 11 | <1 | 2 | <1 | | | 1 | <1 | 3 | <1 | Neureclipsis | | - | | _ | | | | _ | | | | | | 1 | <1 | Polycentropus | | | | | | | | | | | | | | | | Psychomyiidae | | 13 | <1 | 78 | 4 | 37 | 2 | 1 | <1 | 2 | <1 | 7 | <1 | 5 | <1 | Psychomyia | | | | | | | | | | | | | | | | Lepidoptera | | | | _ | | _ | | _ | | | | | | 1 | <1 | Noctuidae | | | | | | | | | | | | | | | | Pyralidae | | 30 | 7 | 22 | 1 | 56 | 3 | 100 | 4 | 97 | 5 | 34 | 3 | 82 | 6 | Petrophila | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | 1 | <1 | | | | | | | | | | | Ancyronyx | | _ | | _ | | _ | | | | | | | | | | A.variegata | | | | | | 2 | <1 | _ | | _ | | 1 | <1 | | | Dubiraphia | | 8 | <1 | 20 | <1 | <b>3</b> 1 | 2 | 49 | 2 | 55 | 3 | 42 | 3 | 8 | <1 | Optioservus | | 66 | 4 | 61 | 3 | 35 | 2 | 9 | <1 | 24 | 1 | 1 <b>6</b> | 1 | 2 | <1 | Stenelmis | | | | | | | | | | | | | | | | Hydrophilidae | | | | _ | | | | | | | | | | | | Berosus | | | | | | | | | | | | | | | | Psephenidae | | _ | | 2 | <1 | _ | | _ | | | | | | | | Psephenus | | _ | | | | | | _ | | | | _ | | | | Hymenoptera | | | | | | | | | | | | | | | | Diptera | | _ | | | | | | 1 | <1 | | | | | | | Blephariceridae | | 80 | 10 | 660 | 30 | 540 | 32 | 1,200 | 50 | 460 | 26 | 150 | 13 | 150 | 11 | Chironomidae | | | | | | | | _,0 | | | | | | | | Empididae | | _ | | 20 | <1 | _ | | 2 | <1 | | | 8 | <1 | 3 | <1 | Hemerodromia | | | | _ | ~* | | | _ | ~- | | | | ~* | | •• | Ephydridae | | | | | | | | _ | | | | - | | | | Simuliidae | | 80 | 10 | 9 | <1 | 32 | 2 | 6 | <1 | 6 | <1 | 16 | 1 | 11 | <1 | Simulium | | | 10 | • | ~, | OL. | | J | ~1 | v | ~1 | 10 | 1 | 11 | ~1 | Tipulidae | | _ | | 34 | 2 | 130 | 8 | 26 | 1 | 18 | 1 | 25 | 2 | | | Antocha | | | | J4 | 4 | 130 | o | 20 | 1 | 10 | 1 | 23 | <1 | | | Dicranota | | _ | | _ | | | | | | | | 2 | <1 | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found]</td> 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31) | Date | Oct. 2 | 9, 1981 | Nov. | 1, 1982 | Nov. | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 1 | 7, 1985 | Oct. 2 | 8, 1986 | Oct. 2 | 7, 1987 | |-----------------------------|--------|---------|-------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 8 | 146 | 1, | 416 | 1, | 171 | 1, | 216 | 5 | 46 | 8 | 51 | 1.0 | 638 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | • | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | _ | | _ | | _ | | _ | | 5 | 1 | 31 | 4 | 5 | <1 | | Nematoda (nematodes) | | | | | _ | | _ | | _ | | _ | | 4 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | | | _ | | _ | | 1 | <1 | _ | | _ | | _ | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Mesogastropoda | | | | | | | | | | | | | | | | Pleuroceridae | | | | | | | | | | | | | | | | Goniobasis | _ | | | | _ | | | | _ | | _ | | _ | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | _ | | | | | | | | | | | | Ferrissia | 28 | 3 | 25 | 2 | 7 | <1 | 47 | 4 | 9 | 2 | 16 | 2 | 16 | 1 | | Physidae | | | | | | | | | | | | | | | | Physa | 1 | <1 | 2 | <1 | _ | | | | _ | | _ | | _ | | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | _ | | | | _ | | _ | | _ | | _ | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | _ | | _ | | | | _ | | | | _ | | _ | | | Tubificida | | _ | | _ | _ | | _ | _ | _ | _ | _ | | | | | Naididae | 18 | 2 | 29 | 2 | 4 | <1 | 2 | <1 | 6 | 1 | 7 | <1 | 510 | 32 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | _ | | | _ | | | | _ | | | _ | | Hydrachnidia | 1 | <1 | 19 | 1 | 17 | 1 | 7 | <1 | _ | | 6 | <1 | 82 | 5 | | Crustacea | | | | | | | | | | | | | | | | Podocopa | | | _ | | | | 1 | <1 | _ | | _ | | 1 | <1 | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | _ | 1 | <1 | | | | _ | _ | | _ | | _ | | | Baetis | 1 | <1 | | | _ | _ | 11 | <1 | _ | | _ | | _ | | | Pseudocloeon | | | _ | | 2 | <1 | 11 | <1 | _ | | | | - | | | Caenidae | _ | _ | _ | _ | | | | | | | | | | | | Caenis | 3 | <1 | 1 | <1 | _ | | _ | | 1 | <1 | | | 1 | <1 | | Ephemerellidae | _ | _ | | _ | _ | _ | | _ | | | _ | _ | | - | | Ephemerella | 1 | <1 | 10 | <1 | 4 | <1 | 13 | 1 | _ | | 3 | <1 | 2 | <1 | | Heptagenlidae | | _ | | | _ | _ | | | | | | | | | | Stenacron | 22 | 3 | _ | | 4 | <1 | | | | | _ | | _ | | | Stenonema | 13 | 2 | 13 | <1 | 51 | 4 | 15 | 1 | 3 | <1 | 3 | <1 | _ | | | Isonychiidae | | | | | | _ | _ | _ | | | | | | | | Isonychia | _ | | _ | | 4 | <1 | 1 | <1 | _ | | _ | | _ | | | Leptohyphidae | | _ | | | | | _ | _ | | | | | | | | Tricorythodes | 1 | <1 | _ | | _ | | 1 | <1 | | | _ | | _ | | | Leptophlebiidae | | | _ | | | | _ | | | | _ | | _ | | | Odonata | | | | | | | | | | | | | | | | Aeshnidae | | | | | | | | | _ | _ | | | | | | Boyeria | | | | | _ | | _ | | 1 | <1 | _ | | _ | | | Oct. 1 | 7, 1988 | Oct. 1 | 2, 1989 | Oct. 1 | 8, 1990 | Oct. 2 | 5, 1991 | Nov. 1 | 0, 1992 | Nov. 1 | 0, 1993 | Nov. 4 | , 1994 | Date | |-------------|---------|--------|---------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------------|---------|--------|---------|--------|------------------------------------------------------------------------------------------------------|--------|---------|--------------------------------------------------------------| | 1, | 357 | 1, | 722 | 1, | 387 | 8 | 10 | 7 | 55 | 9 | 48 | 5 | 53 | Total count | | Count | Percent t Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms)<br>Turbellaria<br>Tricladida | | 4 | <1 | 8 | <1 | 10 | <1 | | | _ | | 11 | 1 | _ | | Planariidae | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | 1 | <1 | Nematoda (nematodes)<br>Nemertea (proboscis worms)<br>Enopla | | | | | | | | | | | | | | | | Hoplonemertea<br>Tetrastemmatidae | | <del></del> | | 1 | <1 | _ | | <del></del> | | _ | | 2 | <l< td=""><td>_</td><td></td><td>Prostoma Mollusca (molluscs) Gastropoda Mesogastropoda</td></l<> | _ | | Prostoma Mollusca (molluscs) Gastropoda Mesogastropoda | | | | _ | | _ | | | | 1 | <1 | | | _ | | Pleuroceridae Goniobasis | | | | | | | | | | | | | | | | Basommatophora<br>Ancylidae | | 130 | 9 | 92 | 5 | 120 | 9 | 40 | 5 | 2 | <1 | 6 | <1 | 1 | <1 | <i>Ferrissia</i><br>Physidae | | | | _ | | 1 | <1 | 1 | <1 | 2 | <1 | _ | | _ | | Physa Annelida (segmented worms) | | _ | | _ | | _ | | _ | | _ | | 2 | <1 | _ | | Oligochaeta Lumbriculida | | | | | | _ | | | | 1 | <1 | _ | | _ | | Lumbriculidae | | 9 | <1 | 55 | 3 | 13 | <1 | 20 | 2 | 79 | 10 | 9 | <1 | 82 | 15 | Tubificida<br>Naididae | | | | | | | | | | | | | | | | Arthropoda (arthropods) Acariformes | | 1 | <1 | 96 | 6 | 20 | 1 | | | 20 | 3 | 32 | 3 | 2 | <1 | Hydrachnidia<br>Crustacea | | | | | | _ | | | | _ | | | | _ | | Podocopa<br>Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | - | | _ | | _ | | | | _ | | _ | | _ | | Baetidae | | 4 | <1 | 7 | <1 | 1 | <1 | | | 1 | <1 | _ | | _ | | Baetis | | _ | | _ | | 1 | <1 | | | _ | | - | | _ | | Pseudocloeon<br>Caenidae | | 1 | <1 | | | | | | | 1 | <1 | _ | | _ | | <i>Caenis</i><br>Ephemerellidae | | 5 | <1 | 5 | <1 | 2 | <1 | 3 | <1 | 23 | 3 | 8 | <1 | _ | | <i>Ephemerella</i><br>Heptageniidae | | | | | | | | _ | | | | | | | | Stenacron | | 19 | 1 | 3 | <1 | 3 | <1 | _ | | 10 | 1 | 2 | <1 | _ | | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | 2 | <1 | 2 | <1 | _ | | 3 | <1 | 8 | 1 | 6 | <1 | 2 | <1 | Isonychia | | | | | | _ | | _ | | _ | | ****** | | _ | | Leptohyphidae<br>Tricorythodes | | - | | 1 | <l< td=""><td>_</td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>Leptophlebiidae</td></l<> | _ | | | | _ | | _ | | _ | | Leptophlebiidae | | | | | | | | | | | | | | | | Odonata<br>Aeshnidae | | _ | | | | _ | | | | | | | | _ | | Boyeria | Table 5. Benthic-macroinvertebrate data—Continued 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31)—Continued | Date | Oct. 2 | 9, 1981 | Nov. | 1, 1982 | Nov. | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 1 | 7, 1985 | Oct. 2 | 8, 1986 | Oct. 2 | 7, 1987 | |-------------------|--------|---------|-------|---------|-------|---------|--------|---------|-------------|---------|--------|---------|--------|---------| | Total count | 8 | 46 | 1, | 416 | 1, | 171 | 1, | 216 | 5 | 46 | 8 | 51 | 1. | 638 | | Organism | Count | Percent | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | _ | | _ | | _ | | | | <del></del> | | _ | | _ | | | Nemouridae | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Microvelia | _ | | _ | _ | | | _ | | 1 | <1 | _ | | - | | | Rhagovelia | _ | | 1 | <1 | _ | | _ | | 1 | <1 | _ | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | _ | | Nigronia | _ | | 1 | <1 | _ | | _ | | _ | | _ | | 1 | <1 | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | | _ | | 1 | <1 | 9 | <1 | _ | | 2 | <1 | _ | | | Hydropsychidae | | - | | _ | | | | | | | | _ | | | | Ceratopsyche | 25 | 3 | 95 | 7 | 85 | 7 | 46 | 4 | 50 | 9 | 59 | 7 | 20 | 1 | | Cheumatopsyche | 110 | 13 | 140 | 10 | 170 | 14 | 160 | 13 | 58 | 11 | 50 | 6 | 2 | <1 | | Hydropsyche | 13 | 2 | 63 | 5 | 88 | 7 | 130 | 11 | 42 | 8 | 170 | 20 | 33 | 2 | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 44 | 5 | 26 | 2 | 7 | <1 | | | 3 | <1 | 61 | 7 | 7 | <1 | | Leucotrichia | 8 | 1 | 47 | 3 | 280 | 23 | 320 | 27 | _ | | | | | | | Leptoceridae | | | | | | | | | | | | | | | | Oecetis | | | 2 | <1 | _ | | | | _ | | | | _ | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 4 | <1 | 16 | 1 | 4 | <1 | 2 | <1 | 1 | <1 | 3 | <1 | 2 | <1 | | Dolophilodes | | | _ | | _ | | _ | | _ | | - | | _ | | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | | | 1 | <1 | 4 | <1 | | | _ | | _ | | _ | | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | | | _ | | _ | | _ | | _ | | _ | | | | | R. fuscula | _ | | _ | | _ | | 1 | <1 | | | _ | | _ | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Curculionidae | | | _ | | _ | | _ | | - | | _ | | _ | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | _ | | _ | | _ | | _ | | _ | | 1 | <1 | _ | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | 1 | <1 | | | _ | | _ | | 1 | <1 | _ | | _ | | | Dubiraphia | _ | | _ | | _ | | | | | | | | 3 | <1 | | Macronychus | | | | | | | | | | | | | | | | M. glabratus | 1 | <1 | _ | | 2 | <1 | _ | | _ | | | | _ | | | Optioservus | 37 | 4 | 29 | 2 | 9 | <1 | 19 | 2 | 8 | 2 | 4 | <1 | 13 | <1 | | Oulimnius | _ | | | | 1 | <1 | | | 7 | 1 | 4 | <1 | 4 | <1 | | Stenelmis | 4 | <1 | 8 | <1 | 10 | <1 | 12 | 1 | 6 | 1 | 14 | 2 | 43 | 3 | | Gyrinidae | | | | | | | | | | | | | | | | Dineutus | | | | | _ | | _ | | _ | | | | _ | | | Hydrophilidae | | | | | | | | | | | | | | | | Hydrobius | | | _ | | _ | | _ | | 1 | <1 | | | _ | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | 7 | <1 | 2 | <1 | | | 4 | <1 | _ | | 2 | <1 | | | | _ | 7, 1988 | | 2, 1989 | | B, 1990 | | 5, 1991 | | 0, 1992 | | 0, 1993 | | 4, 1994 | Date | |----------|---------|-------|---------|-------|---------|-------|---------|----------|---------|-------|---------|-------|---------|-------------------| | | 357 | | 722 | | 387 | | 10 | | 55 | | 48 | | 553 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | _ | | | | 1 | <1 | | | | | Allocapnia | | 1 | <1 | | | | | | | _ | | | | | | Nemouridae | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | _ | | | | | | | | _ | | | | | | Microvelia | | - | | | | | | | | _ | | | | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | 1 | <1 | | | 1 | <1 | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Glossosomatidae | | | | 6 | <1 | 4 | <1 | | | 10 | 1 | 3 | <1 | | | Glossosoma | | | | Ū | ~, | - | ~1 | | | 10 | • | ٠ | ~1 | | | Hydropsychidae | | 70 | 19 | 71 | 4 | 100 | 7 | 49 | 6 | 38 | 5 | 72 | 8 | 37 | 7 | Ceratopsyche | | 53 | 4 | 9 | <1 | 7 | <1 | 4 | <1 | 23 | 3 | 74 | 8 | 77 | 14 | Cheumatopsyche | | 33<br>71 | 5 | 370 | 22 | 83 | 6 | 61 | 8 | 23<br>67 | 9 | 28 | 3 | 21 | 4 | | | /1 | 3 | 3/0 | 22 | 03 | О | 01 | • | 01 | 9 | 20 | 3 | 21 | 4 | Hydropsyche | | | _ | | _ | | _ | | | | _ | | | | | Hydroptilidae | | 89 | 6 | 59 | 3 | 18 | 1 | 11 | 1 | 22 | 3 | 11 | 1 | 14 | 3 | Hydroptila | | 5 | <1 | _ | | | | _ | | _ | | _ | | 1 | <1 | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | _ | | 1 | <1 | | | 1 | <1 | | | 2 | <1 | 1 | <1 | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 7 | <1 | 30 | 2 | 2 | <1 | | | 8 | 1 | 9 | <1 | | | Chimarra | | _ | | | | 1 | <1 | | | | | | | _ | | Dolophilodes | | | | | | | | | | | | | | | | Polycentropodidae | | 1 | <1 | | | _ | | | | | | | | | | Polycentropus | | | | | | | | | | | | | | | | Rhyacophilidae | | | | | | _ | | | | _ | | 1 | <1 | | | Rhyacophila | | | | | | | | | | | | | | | | R. fuscula | | | | | | | | | | | | | | | | Uenoidae | | | | | | | | | | 2 | <1 | | | | | Neophylax | | | | | | | | | | _ | ~- | | | | | Coleoptera | | | | | | | | | | | | 1 | <1 | | | Curculionidae | | | | | | | | | | | | - | ~1 | | | Dryopidae | | | | | | 1 | <1 | | | | | | | | | Helichus | | | | | | 1 | <1 | _ | | _ | | | | | | Elmidae | | | | 1 | -1 | | | | | | | | | | | | | | | 1 | <1 | | | _ | | | | _ | | | | Ancyronyx | | | | | | _ | | | | _ | | | | | | Dubiraphia | | | | | | | | | | | | | | | | Macronychus | | | | _ | | _ | _ | _ | | | _ | _ | _ | _ | _ | M. glabratus | | 10 | <1 | 15 | <1 | 4 | <1 | 6 | <1 | 25 | 3 | 48 | 5 | 9 | 2 | Optioservus | | 3 | <1 | 2 | <1 | _ | | _ | | - | | 4 | <1 | | | Oulimnius | | 16 | 1 | 43 | 3 | 8 | <1 | 6 | <1 | 11 | 1 | 22 | 2 | 3 | <1 | Stenelmis | | | | | | | | | | | | | | | | Gyrinidae | | 3 | <1 | _ | | | | - | | _ | | _ | | | | Dineutus | | | | | | | | | | | | | | | | Hydrophilidae | | _ | | | | | | _ | | _ | | | | | | Hydrobius | | | | | | | | | | | | | | | | Psephenidae | | 1 | <1 | 1 | <1 | | | | | | | 1 | <1 | | | Psephenus | Table 5. Benthic-macroinvertebrate data—Continued 01494900 - East Branch Big Elk Creek at Elkview, Pa. (Site 31)—Continued | Date | Oct. 2 | 9, 1981 | Nov. | 1, 1982 | Nov. | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 1 | 7, 1985 | Oct. 2 | 8, 1986 | Oct. 2 | 7, 1987 | |--------------|--------|---------|-------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 8 | 46 | 1, | 416 | 1, | 171 | 1,: | 216 | 5 | 46 | 8 | 51 | 1. | 638 | | Organism | Count | Percent | Diptera | | | | | | - | | | | | | | | | | Chironomidae | 450 | 53 | 650 | 46 | 280 | 23 | 370 | 31 | 290 | 53 | 340 | 40 | 610 | 38 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 19 | 2 | 43 | 3 | 17 | 1 | 3 | <1 | 11 | 2 | 15 | 2 | 49 | 3 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 3 | <1 | 11 | <1 | | | 2 | <1 | 3 | <1 | | | | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 31 | 4 | 180 | 13 | 120 | 10 | 28 | 2 | 38 | 7 | 60 | 7 | 230 | 14 | | Tipula | | | 1 | <1 | | | | | | | | | | | | Oct. 1 | 7, 1988 | Oct. 1 | 2, 1989 | Oct. 1 | 8, 1990 | Oct. 2 | 5, 1991 | Nov. 1 | 0, 1992 | Nov. 1 | 0, 1993 | Nov. | l, 19 <del>9</del> 4 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|-------|----------------------|--------------| | 1,3 | 357 | 1, | 722 | 1, | 387 | 8 | 10 | 7 | 55 | 9 | 48 | 5 | 53 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Diptera | | 440 | 31 | 620 | 36 | 760 | 54 | 510 | 63 | 220 | 29 | 360 | 38 | 160 | 29 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | 3 | <1 | 37 | 2 | 15 | 1 | 8 | 1 | 5 | <1 | 13 | 1 | 1 | <1 | Hemerodromia | | | | | | | | | | | | | | | | Simuliidae | | 9 | <1 | 17 | 1 | 3 | <1 | | | 4 | <1 | | | | | Simulium | | | | | | | | | | | | | | | | Tipulidae | | 200 | 14 | 170 | 10 | 210 | 15 | 87 | 11 | 170 | 22 | 220 | 23 | 140 | 25 | Antocha | | | | _ | | | | | | | | | | | | Tipula | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32) | Date | Oct. 2 | 9, 1981 | Nov. | 1, 1982 | Nov. 2 | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 1 | 7, 1985 | Oct. 2 | 8, 1986 | Oct. 2 | 7, 1987 | |-----------------------------|-----------|-----------|-------|---------|--------|----------------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 517 | 2, | 458 | 1,3 | 203 | 1, | 875 | 1, | 124 | 1, | 402 | 1, | 309 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 14 | <1 | 15 | <1 | 2 | <1 | 2 | <1 | 1 | <1 | | | 3 | <1 | | Nematoda | | | | | | | | | | | _ | | 1 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | 3 | <1 | 1 | <1 | 4 | <1 | _ | | | | | | | | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | | | 1 | <1 | 1 | <1 | 1 | <1 | | | | | | | | Physidae | | | - | | - | · <del>-</del> | - | | | | | | | | | Physa | 1 | <1 | | | | | | | | | 4 | <1 | | | | Annelida (segmented worms) | • | ~1 | | | | | | | | | • | •• | | | | Oligochaeta | 2 | <1 | 10 | <1 | 38 | 3 | 2 | <1 | | | | | | | | Lumbriculida | 2 | <b>\1</b> | 10 | ~1 | 36 | 3 | L | ~1 | | | | | | | | | | | | | | | | | | | | | | | | Lumbriculidae | | | | | _ | | | | | | | | | | | Tubificida | | | | | | | | | | | | | | _ | | Naididae | | | | | _ | | | | _ | | 4 | <1 | 94 | 7 | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | | | | | | | | | | | | Hydrachnidia | 8 | <1 | 13 | <1 | 12 | 1 | 2 | <1 | 2 | <1 | 3 | <1 | 17 | 1 | | Crustacea | | | | | | | | | | | | | | | | Cyclopoida | | | | | _ | | | | _ | | | | | | | Podocopa | | | 2 | <1 | _ | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | | | 3 | <1 | 49 | 3 | 12 | 1 | 4 | <1 | 1 | <1 | | Pseudocloeon | | | | | 1 | <1 | | | | | | | 2 | <1 | | Caenidae | | | | | | - | | | | | | | | - | | Caenis | | | | | | | | | | | | | 1 | <1 | | Ephemerellidae | | | | | | | | | | | | | - | | | Ephemerella | 34 | 2 | 2 | <1 | 3 | <1 | 38 | 2 | 17 | 2 | 19 | 1 | 24 | 2 | | Heptageniidae | <b>51</b> | | | ~1 | | ~1 | 56 | | | | 10 | • | 21 | | | Stenonema | 15 | | 39 | 2 | 22 | 2 | 42 | 2 | 63 | 6 | 48 | 3 | 65 | 5 | | Isonychiidae | 13 | 1 | 39 | 2 | 22 | 2 | 42 | 2 | 65 | О | 40 | 3 | 63 | J | | | • | | | | , | • | | | | | | | | | | Isonychia | 2 | <1 | _ | | 1 | <1 | 4 | <1 | 4 | <1 | 4 | <1 | 14 | 1 | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | | | | | _ | | | | _ | | | | | | | Leptophlebiidae | | | - | | | | | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | 1 | <1 | | | | | | | _ | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | | | | | | | | | 1 | <1 | | | | Chloroperlidae | | | _ | | _ | | | | _ | | _ | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | | | | | | | | | | | | | 1 | <1 | | <u> </u> | | | | | | | | | | | | | • | | | Oct. 1 | 7, 1988 | Oct. 1 | 2, 1989 | Oct. 2 | 9, 1990 | Oct. 2 | 5, 1991 | Nov. 1 | 0, 1992 | Nov. 1 | 0, 1993 | Nov. 4 | l, 1994 | Date | |--------|---------|-------------|---------|--------|----------|--------|---------|--------|---------|--------|---------|--------|---------|---------------------------------------------------------------------------| | 1 2 | 2,245 | 1, | 533 | 1., | 536 | 2, | 733 | 7 | 52 | 4 | 24 | 1,5 | 587 | -<br>Total count | | Count | Percent t Organism | | | | 9,40 | | 2 | | • | • | 2 | | • | | • | -1 | Platyhelminthes (flatworms) Turbellaria Tricladida | | | | | | 2<br>1 | <1<br><1 | 1 | <1 | 2 | <1 | 1 | <1 | 3<br>3 | <1 | Planariidae | | | | <del></del> | | 1 | <1 | | | _ | | | | 3 | <1 | Nematoda Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | | | 5 | <1 | | | 1 | <1 | | | | | 1 | <1 | Prostoma Mollusca (molluscs) Gastropoda Basommatophora Ancylidae | | 3 | <1 | | | | | 3 | <1 | _ | | _ | | 8 | <1 | <i>Ferrissia</i><br>Physidae | | 3 | <1 | | | | | | | | | | | | | Physa | | | | _ | | | | | | | | | | _ | | Annelida (segmented worms) Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | _ | | | | 1 | <1 | _ | | | | | | _ | | Lumbriculidae<br>Tubificida | | 53 | 2 | 37 | 2 | 23 | 2 | 100 | 4 | 15 | 2 | | | 63 | 4 | Naididae | | 33 | L | 3, | L | 25 | L | 100 | • | 10 | L | | | 00 | 7 | Arthropoda (arthropods) Acariformes | | 8 | <1 | 43 | 3 | 12 | <1 | 35 | 1 | 22 | 3 | _ | | 61 | 4 | Hydrachnidia | | | | | | | | | | | | | | | | Crustacea | | | | | | _ | | 1 | <1 | | | _ | | | | Cyclopoida | | | | | | | | | | _ | | _ | | | | Podocopa | | | | | | | | | | | | | | | | Insecta<br>Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | 3 | <1 | 7 | <1 | | | 3 | <1 | | | | | 2 | <1 | Baetis | | | | 13 | <1 | _ | | 2 | <1 | 2 | <1 | | | 5 | <1 | Pseudocloeon | | | | | | | | | | | | | | | | Caenidae | | | | | | 1 | <1 | 3 | <1 | | | _ | | 1 | <1 | Caenis | | 21 | <1 | 17 | 1 | 55 | 4 | 110 | 4 | 21 | 3 | 2 | <1 | 36 | 2 | Ephemerellidae<br><i>Ephemerella</i> | | | ~1 | •• | • | 00 | • | 110 | - | | J | - | ~* | 00 | - | Heptageniidae | | 67 | 3 | 22 | 1 | 47 | 3 | 21 | <1 | 12 | 2 | 10 | 2 | 57 | 4 | Stenonema | | | | | | | | | | | | | | | | Isonychiidae | | 19 | <1 | | | 10 | <1 | 64 | 2 | 14 | 2 | 8 | 2 | 7 | <1 | Isonychia | | | | | | | | | | | | | | | | Leptohyphidae | | | | _ | | 1 | <1 | | | 1 | <1 | _ | | | | <i>Tricorythode</i> s<br>Leptophlebildae | | | | | | • | ~. | | | | | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | _ | | | | | | _ | | | | Argia | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | 2 | .1 | | | | | | | Capniidae | | _ | | | | | | 2 | <1 | 1 | <1 | _ | | | | <i>Allocapnia</i><br>Chloroperlidae | | | | | | | | , | | • | ~- | | | | | Taeniopterygidae | | | | | | _ | | 4 | <1 | | | | | | | Taeniopteryx | Table 5. Benthic-macroinvertebrate data—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32)—Continued | Date | Oct. 2 | 9, 1981 | Nov. 1 | , 1982 | Nov. 2 | 2, 1983 | Oct. 18 | 8, 1984 | Oct. 1 | 7, 1985 | Oct. 2 | 8, 1986 | Oct. 2 | 7, 1987 | |-------------------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|------------|---------| | Total count | 1,5 | 517 | 2, | 458 | 1, | 203 | 1,8 | 875 | 1, | 124 | 1, | 402 | 1, | 309 | | Organism | Count | Percent | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | | | | | | | | | | | | | | | Rhagovelia | | | _ | | 2 | <1 | | | | | _ | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 3 | <1 | 1 | <1 | | | 4 | <1 | | | 2 | <1 | | | | Nigronia | 1 | <1 | | | | | | | | | _ | | | | | Trichoptera | - | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | | | | _ | | _ | | 1 | <1 | | | | | | Brachycentridae | | | | | | | | | • | ~1 | | | | | | | | | | | | | | | | | | | | | | Brachycentrus | | | | | | | | | | | _ | | | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | 1 | <1 | | | | | 4 | <1 | | | - | | _ | | | Hydropsychidae | | - | | _ | | | | | | | | | | | | Ceratopsyche | 120 | 8 | 160 | 6 | 120 | 10 | 470 | 25 | 260 | 24 | 400 | 29 | 210 | 16 | | Cheumatopsyche | 310 | 21 | 220 | 9 | 180 | 15 | 320 | 17 | 200 | 18 | 120 | 9 | <b>4</b> 1 | 3 | | Hydropsyche | 260 | 17 | 460 | 18 | 84 | 7 | 120 | 6 | 9 | <1 | 140 | 10 | 51 | 4 | | Macrostemum | 1 | <1 | | | 3 | <1 | | | | | _ | | | | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | 62 | 4 | 46 | 2 | 17 | 1 | 3 | <1 | 4 | <1 | 23 | 2 | 50 | 4 | | Leucotrichia | 320 | 21 | 860 | 34 | 180 | 15 | 470 | 25 | | | 180 | 13 | 14 | 1 | | Leptoceridae | | | | | | | | | | | | | | | | Oecetis | 9 | <1 | 5 | <1 | | | | | 2 | <1 | _ | | | | | Philopotamidae | • | | • | ~* | | | | | _ | | | | | | | Chimarra | | | | | 4 | <1 | _ | | 18 | 2 | 22 | 2 | 18 | 1 | | Dolophilodes | 4 | | | | 7 | <1 | _ | | 10 | L | 1 | <1 | 10 | 1 | | | | | | | | | | | | | 1 | <1 | | | | Polycentropodidae | • | _ | | | | | | | | | | | | | | Neureclipsis | 8 | <1 | | | 4 | <1 | _ | | | | | | | | | Polycentropus | 1 | <1 | 1 | <1 | 1 | <1 | | | 1 | <1 | 6 | <1 | _ | | | Rhyacophilidae | | | | | | | | | | | | | | | | Rhyacophila | | | _ | | | | | | _ | | _ | | | | | Uenoidae | | | | | | | | | | | | | | | | Neophylax | 2 | <1 | 1 | <1 | | | | | | | | | | | | Lepidoptera | | | | | | | | | | | | | | | | Pyralidae | | | | | | | 1 | <1 | _ | | | | _ | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | | | | | | | | | | | Helichus | | | | | 2 | <1 | | | | | _ | | | | | Dytiscidae | | | | | - | | | | | | | | | | | Agabus | | | | | | | | | | | | | | | | Agavus<br>Elmidae | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | Ancyronyx | _ | _ | _ | | | | | | | | _ | | | | | Dubiraphia | 3 | <1 | _ | _ | | _ | | _ | | _ | | _ | _ | _ | | Optioservus | 6 | <1 | 9 | <1 | 2 | <1 | 10 | <1 | 5 | <1 | 6 | <1 | 3 | <1 | | Oulimnius | 1 | <1 | | | | | 5 | <1 | 2 | <1 | 10 | <1 | | | | Stenelmis | 31 | 2 | 17 | <1 | 4 | <1 | 11 | <1 | 2 | <1 | 25 | 2 | | | | Gyrinidae | | | | | | | | | | | | | | | | Dineutus | 1 | <1 | _ | | | | _ | | | | | | | | | Hydraenidae | | | | | | | | | | | | | | | | Limnebius | | | | | | | | | | | | | | | | Hydrophilidae | | | | | | | | | | | | | | | | Berosus | _ | | | | | | _ | | | | _ | | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | 1 | <1 | | | | | | | | | | | | 1 septienus | | | 1 | ~1 | | | | | | | _ | | | | | Oct. 1 | 7, 1988 | Oct. 1 | 2, 1989 | Oct. 2 | 9, 1990 | Oct. 2 | 5, 1991 | Nov. 1 | 0, 1992 | Nov. 1 | 0, 1993 | Nov. 4 | l, 1994 | Date | |--------|---------|--------|-----------|--------|----------|---------|----------|--------|---------|--------|----------|----------|---------|---------------------------------| | 1 2 | ,245 | 1, | 533 | 1., | 536 | 2, | 733 | 7 | 52 | 4 | 24 | 1, | 587 | Total count | | Count | Percent Organism | | | | | | | | | | | | | | | | Hemiptera | | | | | | | | | | | | | | | | Veliidae | | _ | | _ | | | | _ | | _ | | | | | | Rhagovelia | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | _ | | 6 | <1 | 3 | <1 | 3 | <1 | 1 | <1 | 1 | <1 | 2 | <1 | Corydalus | | _ | | | | | | | | | | _ | | _ | | Nigronia | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | _ | | | | _ | | | | - | | _ | | _ | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | _ | | _ | | _ | | _ | | _ | | _ | | 1 | <1 | Brachycentrus | | | | | | | | | | | | | | | | Glossosomatidae | | _ | | | | 1 | <1 | | | | | | | _ | | Glossosoma | | | | | | | | | | | | | | | | Hydropsychidae | | 590 | 27 | 400 | 27 | 290 | 19 | 580 | 21 | 91 | 12 | 80 | 19 | 410 | 26 | Ceratopsyche | | 160 | 7 | 190 | 13 | 86 | 6 | 250 | 9 | 57 | 8 | 17 | 4 | 270 | 17 | Cheumatopsyche | | 64 | 3 | 280 | 19 | 120 | 8 | 100 | 4 | 19 | 3 | 69 | 16 | 99 | 6 | Hydropsyche | | _ | | | | _ | | _ | | 1 | <1 | _ | | | | Macrostemum | | | | | | | | | | | | | | | | Hydroptilidae | | 69 | 3 | 10 | <1 | 18 | 1 | 6 | <1 | 19 | 3 | | | 13 | <1 | Hydroptila | | 220 | 10 | 99 | 7 | 150 | 10 | 240 | 9 | 96 | 13 | 2 | <1 | | _ | Leucotrichia | | _ | | _ | - | _ | | | • | 1 | <1 | _ | | | | Leptoceridae | | _ | | 1 | <1 | | | 7 | <1 | 4 | <1 | _ | | 5 | <1 | Oecetis | | | | • | | | | • | | • | 7. | | | · | | Philopotamidae | | _ | | 4 | <1 | 4 | <1 | 10 | <1 | 4 | <1 | 1 | <1 | | | Chimarra | | _ | | | | _ | | _ | ~~ | | | _ | ~_ | _ | | Dolophilodes | | | | | | | | | | | | | | | | Polycentropodidae | | 13 | <1 | 3 | <1 | 7 | <1 | 2 | <1 | 1 | <1 | | | 7 | <1 | Neureclipsis | | 5 | <1 | _ | ~~ | | | 1 | <1 | | ~- | | | <u>.</u> | ~1 | Polycentropus | | J | ~- | | | | | • | ~1 | | | | | | | Rhyacophilidae | | | | | | | | | | | | 3 | <1 | | | Rhyacophila | | | | | | | | | | | | J | ~1 | | | Uenoidae | | _ | | | | 2 | <1 | | | | | | | | | Neophylax | | | | | | 2 | ~1 | | | | | | | | | Lepidoptera | | _ | | | | | | | | _ | | | | | | Pyralidae | | | | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Dryopidae | | | | | | _ | | | | | | | | | | Helichus | | | | | | | | | | | | | | _ | | Dytiscidae | | _ | | 1 | <1 | _ | | _ | | _ | | _ | | | | Agabus | | | | • | ~1 | | | | | | | | | _ | | Elmidae | | | | | | | | | | | | | | 2 | <1 | Ancyronyx | | _ | | | | _ | | _ | | | | | | Z | <1 | Dubiraphia | | 3 | <1 | 11 | <1 | 10 | <1 | 33 | 1 | 7 | <1 | 4 | 1 | 6 | <1 | Optioservus | | 3 | <1 | | <1 | 6 | <1 | 9 | <1 | | <1 | | <1 | O | <1 | Oulimnius | | 21 | <1 | 1<br>2 | <1<br><1 | 6 | <1<br><1 | 9<br>12 | <1<br><1 | 9 | 1 | 1<br>2 | <1<br><1 | _ | | Stenelmis | | 21 | ~1 | L | <b>~1</b> | U | ~1 | 16 | ~1 | J | 1 | L | <1 | | | Gyrinidae | | | | | | | | | | | | | | | | Dineutus | | | | | | _ | | _ | | | | | | _ | | Dineutus<br>Hydraenidae | | | | 4 | _4 | | | | | | | | | | | Hydraenidae<br><i>Limnebius</i> | | _ | | 4 | <1 | | | _ | | _ | | | | _ | | | | | | | | , | . • | | | | | | | | | Hydrophilidae | | _ | | | | 1 | <1 | _ | | | | | | _ | | Berosus | | | | | | | | | .• | _ | .• | • | | | .1 | Psephenidae | | _ | | | | _ | | 1 | <1 | 2 | <1 | 2 | <1 | 1 | <1 | Psephenus | Table 5. Benthic-macroinvertebrate data—Continued 01494950 - West Branch Big Elk Creek near Oxford, Pa. (Site 32)—Continued | Date | Oct. 2 | 9, 1981 | Nov. | 1, 1982 | Nov. | 2, 1983 | Oct. 1 | 8, 1984 | Oct. 1 | 7, 1985 | Oct. 2 | 8, 1986 | Oct. 2 | 7, 1987 | |-----------------|--------|---------|-------|---------|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 1, | 517 | 2, | 458 | 1, | 203 | 1, | 875 | 1, | 124 | 1,4 | 402 | 1, | 309 | | Organism | Count | Percent | Coleoptera | | | | | | | | | | | - | | **** | | | Ptilodactylidae | | | | | | | | | | | | | | | | Anchytarsus | | | | | | | | | | | | | | | | A. bicolor | | | | | 1 | <1 | | | | | | | | | | Hymenoptera | | | | | | | | | | | 1 | <1 | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | | | | | | | | | | | _ | | | | | Chironomidae | 140 | 9 | 410 | 16 | 400 | 33 | 270 | 14 | 490 | 45 | 190 | 14 | 610 | 47 | | Empididae | | | | | | | | | | | | | | | | Chelifera | | | _ | | _ | | | | | | | | _ | | | Hemerodromia | 5 | <1 | 9 | <1 | 9 | <1 | 3 | <1 | 3 | <1 | 9 | <1 | 5 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 3 | <1 | 3 | <1 | 3 | <1 | 28 | 1 | 5 | <1 | | | 8 | <1 | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 150 | 10 | 170 | 7 | 100 | 8 | 16 | <1 | 23 | 2 | 180 | 13 | 76 | 6 | | Tipula | | | 1 | <1 | _ | | | | | | _ | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Date | l, 1994 | Nov. 4 | ), 1993 | Nov. 10 | ), 1992 | Nov. 10 | 5, 1991 | Oct. 25 | 9, 1990 | Oct. 29 | 2, 1989 | Oct. 12 | 7, 1988 | Oct. 1 | |-----------------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------| | Total count | 587 | 1,5 | 24 | 42 | 52 | 7: | 33 | 2,7 | 536 | 1., | 533 | 1,5 | 245 | 12 | | Organism | Percent | Count | Coleoptera | | | | | | | | | | | | | | | | Ptilodactylidae | | | | | | | | | | | | | | | | Anchytarsus | | | | | | | | | | | | | | | | A. bicolor | | _ | | _ | | _ | | _ | | | | | | _ | | Hymenoptera | | _ | | _ | | _ | | | | _ | | _ | | | | Diptera | | | | | | | | | | | | | | | | Athericidae | | | | | | | | | | | | | | | | Atherix | <1 | 2 | | | | _ | | | | | | _ | | _ | | Chironomidae | 24 | 380 | 30 | 130 | 30 | 230 | 30 | 810 | 37 | 560 | 17 | 250 | 28 | 620 | | Empididae | | | | | | | | | | | | | | | | Chelifera | <1 | 1 | | | | _ | | | | | | _ | | _ | | Hemerodromia | <1 | 13 | 1 | 5 | <1 | 5 | <1 | 18 | <1 | 9 | 3 | 42 | <1 | 3 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | <1 | 8 | | | <1 | 5 | <1 | 1 | | | <1 | 4 | | _ | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 8 | 120 | 20 | 86 | 14 | 110 | 11 | 290 | 7 | 110 | 5 | 81 | 14 | 300 | | Tipula | | | | | | | | _ | | | | | | | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33) | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | Oct. 2 | 8, 1983 | Oct. 2 | 6, 1984 | Oct. 2 | 4, 1985 | Nov. 2 | 0, 1986 | Nov. 1 | 8, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 9 | 78 | 1,0 | 670 | 8 | 56 | 1,5 | 518 | 5 | 93 | 1,1 | 110 | 1,4 | 421 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | 5 | <1 | 10 | <1 | 21 | 2 | 38 | 3 | 41 | 7 | 35 | 3 | 39 | 3 | | Nematoda (nematodes) | | | 1 | <1 | | | _ | | _ | | _ | | 3 | <1 | | Mollusca (molluscs) | | | | | | | | | | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | Ancylidae | | | | | | | | | | | | | | | | Ferrissia | 150 | 15 | 140 | 8 | 19 | 2 | | | 1 | <1 | 1 | <1 | 1 | <1 | | Physidae | | | | | | | | | | | | | | | | Physa | | | _ | | _ | | | | _ | | | | _ | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | | | | | _ | | | | _ | | | | _ | | | Helisoma | 1 | <1 | | | _ | | | | _ | | 1 | <1 | _ | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaerlidae | | | | | _ | | | | 1 | <1 | 3 | <1 | 2 | <1 | | Pisidium | _ | | | | 1 | <1 | | | | | | | _ | | | Annelida (segmented worms) | | | | | - | • | | | | | | | | | | Oligochaeta | | | _ | | | | | | _ | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 97 | 10 | 61 | 4 | 7 | <1 | 3 | <1 | 8 | 1 | 2 | <1 | 320 | 23 | | Tubificidae | 31 | 10 | 01 | 7 | • | _1 | | -1 | 4 | <1 | | -1 | 320 | 20 | | Hirudinea | | | | | _ | | _ | | 4 | ~1 | | | _ | | | | | | | | | | | | | | | | | | | Pharyngobdellida | | | | | | | | | | | | | | | | Erpobdellidae | - | | 1 | <1 | 1 | <1 | _ | | 1 | <1 | | | | | | Arthropoda (arthropods) | | | | | | | | | | | | | | | | Acariformes | | | | | _ | | | | _ | | _ | _ | | _ | | Hydrachnidia | _ | | _ | | 1 | <1 | | | 1 | <1 | 2 | <1 | 48 | 3 | | Crustacea | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | _ | | _ | | _ | | | | | | _ | | _ | | | Gammarus | _ | | _ | | _ | | _ | | _ | | _ | | _ | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | _ | | _ | | _ | | | | _ | | _ | | | | | Caecidotea | 21 | 2 | 110 | 6 | 6 | <1 | 32 | 2 | 6 | 1 | 6 | <1 | 4 | <1 | | Lirceus | _ | | | | _ | | | | | | _ | | - | | | Podocopa | _ | | _ | | | | | | | | | | | | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | | | 6 | <1 | | | 2 | <1 | 3 | <1 | | | 1 | <1 | | Pseudocloeon | | | | | | | 2 | <1 | _ | | | | | | | Ephemerellidae | | | | | | | | | | | | | | | | Ephemerella . | 1 | <1 | 9 | <1 | 41 | 5 | 16 | 1 | 61 | 10 | 180 | 16 | 150 | 11 | | Heptageniidae | - | - | - | _ | | - | - | | - | | | | | | | Stenacron | | | | | _ | | _ | | | | | | _ | | | Stenacion | 3 | <1 | 12 | <1 | 12 | 1 | 5 | <1 | 7 | 1 | 10 | <1 | 4 | <1 | | Isonychiidae | J | ~1 | 16 | ~1 | 16 | 1 | J | ~1 | , | 1 | 10 | ~1 | * | ~1 | | | | | | | | | | | 1 | <1 | 1 | ر 1 | | | | Isonychia | _ | | _ | | | | _ | | 1 | <1 | 1 | <1 | _ | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | | | _ | | | | _ | | _ | | | | | Nov. 9 | 9, 1988 | Oct. 2 | 7, 1989 | Oct. 1 | 8, 1990 | Oct. 2 | 4, 1991 | Nov. 9 | 9, 1992 | Oct. 1 | 9, 1993 | Nov. 2 | 1, 1994 | Date | |--------|----------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|------------------------------------------------------------------------------| | 1 1 | ,953 | 2, | 083 | 1, | 419 | 1, | 476 | 1, | 268 | 5 | 58 | 2, | 194 | Total count | | Count | Percent t Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms) Turbellaria Tricladida | | 160 | 8 | 120 | 6 | 57 | 4 | 30 | 2 | 15 | 1 | 36 | 6 | 47 | 2 | Planarlidae | | _ | | _ | | | | | | | | _ | | | | Nematoda (nematodes) Mollusca (molluscs) Gastropoda Basommatophora Ancylidae | | _ | | 3 | <1 | 23 | 2 | 5 | <1 | | | _ | | 5 | <1 | Ferrissia<br>Dhymidae | | | | _ | | 1 | <1 | | | _ | | | | _ | | Physidae<br><i>Physa</i> | | | | | | | | | | | | | | _ | _ | Planorbidae | | _ | | _ | | | | | | | | _ | | 1 | <1 | Gyraulus<br>Helisoma | | | | _ | | | | | | _ | | | | _ | | Hensoma<br>Bivalvia | | | | | | | | _ | | _ | _ | | | _ | | Veneroida | | | | <br>25 | , | 3 | . 1 | 1 | <1 | 3 | <1 | _ | | 2 | <1 | Sphaeriidae | | | | 25 | 1 | 3 | <1 | | | | | | | | | Pisidium Annelida (segmented worms) | | | | _ | | | | | | _ | | 1 | <1 | | | Oligochaeta | | • | | 7 | .• | 10 | | | | | | | | 0.5 | • | Tubificida | | 3<br>3 | <1<br><1 | 7 | <1 | 18 | 1 | 4 | <1 | _ | | | | 65 | 3 | Naididae<br>Tubificidae | | 3 | <1 | _ | | _ | | | | | | | | | | Hirudinea | | _ | | _ | | 1 | <1 | _ | | _ | | _ | | | | Pharyngobdellida<br>Erpobdellidae | | | | | | | | | | | | | | | | Arthropoda (arthropods) Acariformes | | _ | | 12 | <1 | 6 | <1 | 3 | <1 | 5 | <1 | 4 | <1 | 19 | <1 | Hydrachnidia<br>Crustacea | | | | | | | | | | | | | | | | Amphipoda | | _ | | _ | | | | | | | | | | 3 | <1 | Gammaridae | | _ | | _ | | _ | | 1 | <1 | 3 | <1 | _ | | _ | | Gammarus<br>Isopoda | | _ | | _ | | | | | | 8 | <1 | | | | | Asellidae | | 21 | 1 | 13 | <1 | 34 | 2 | 6 | <1 | | | | | _ | | Caecidotea | | | | _ | .1 | | .1 | | | | | _ | | 8 | <1 | Lirceus | | _ | | 1 | <1 | 1 | <1 | _ | | | | _ | | _ | | Podocopa<br>Insecta | | | | | | | | | | | | | | | | Ephemeroptera<br>Baetidae | | 3 | <1 | 9 | <1 | 12 | <1 | 16 | 1 | | | 4 | <1 | 1 | <1 | Baetis | | _ | | | | 3 | <1 | _ | | _ | | | | _ | | Pseudocloeon | | | | | | | | | | | | | | | | Ephemerellidae | | 600 | 30 | 570 | 27 | 250 | 18 | 180 | 12 | 260 | 20 | 120 | 21 | 180 | 8 | <i>Ephemerella</i><br>Heptageniidae | | _ | | | | _ | | 2 | <1 | _ | | | | _ | | Stenacron | | 24 | 1 | 52 | 2 | 32 | 2 | 37 | 2 | 19 | 1 | 7 | 1 | 5 | <1 | Stenonema | | | | • | | | | | | _ | _ | | | | _ | Isonychiidae | | _ | | 2 | <1 | 1 | <1 | 4 | <1 | 5 | <1 | 1 | <1 | 1 | <1 | <i>Isonychia</i><br>Leptohyphidae | | | | _ | | _ | | | | | | | | 2 | <1 | Tricorythodes | Table 5. Benthic-macroinvertebrate data—Continued 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33)—Continued Stenelmis | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | Oct. 2 | 8, 1983 | Oct. 2 | 6, 1984 | Oct. 2 | 4, 1985 | Nov. 2 | 0, 1986 | Nov. 1 | 8, 1987 | |-----------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 9 | 78 | 1,0 | 670 | 8 | 56 | 1, | 518 | 5 | 93 | 1, | 110 | 1, | 421 | | Organism | Count | Percent | | | Count | Percent | Count | Percent | Count | Percent | | | Count | Percent | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | | | | | | | | | | | | | Argia | | | | | | | | | | | | | 1 | <1 | | Plecoptera | | | | | | | | | | | | | _ | - | | Chloroperlidae | _ | | _ | | | | _ | | | | _ | | | | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | | | 3 | <1 | _ | | 7 | <1 | | | 1 | <1 | | | | Hemiptera | | | Ū | -1 | | | • | | | | • | ~1 | | | | Saldidae | _ | | 1 | <1 | | | | | _ | | | | | | | | | | 1 | <1 | | | | | | | _ | | _ | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | | | | | | | | | | | | | _ | | | Nigronia | | | | | _ | | | | | | | | | | | Sialidae | | | | | | | | | | | | | | | | Sialis | _ | | | | 1 | <1 | _ | | | | _ | | | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae | | | | | | | | | | | | | | | | Climacia | | | | | | | | | | | | | | | | C. areolaris | | | _ | | | | | | _ | | 1 | <1 | _ | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | | | Apatania | | | | | _ | | _ | | | | _ | | 6 | <1 | | Brachycentridae | | | | | | | | | | | | | | | | Micrasema | | | _ | | | | _ | | | | _ | | _ | | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | _ | | - | | | | | | | | | | | | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 42 | 4 | 76 | 4 | 28 | 3 | 76 | 5 | 78 | 13 | 100 | 9 | 27 | 2 | | Cheumatopsyche | 150 | 15 | 110 | 6 | 83 | 10 | 270 | 18 | 77 | 13 | 10 | <1 | 36 | 3 | | Hydropsyche | 89 | 9 | 250 | 15 | 120 | 14 | 220 | 15 | 35 | 6 | 69 | 6 | 71 | 5 | | Potamyia | | | 47 | 3 | 1 | <1 | | | | | | | | | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | | | 18 | 1 | 2 | <1 | 3 | <1 | 2 | <1 | 7 | <1 | 39 | 3 | | Leucotrichia | 150 | 15 | 390 | 23 | 340 | 40 | 53 | 4 | 120 | 20 | 65 | 6 | 120 | 9 | | Leptoceridae | | | | _ | | | _ | | | | | | | | | Ceraclea | | | | | | | | | | | | | _ | | | Oecetis | | | _ | | | | | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 5 | <1 | 4 | <1 | 20 | 2 | 10 | <1 | 8 | 1 | 130 | 12 | 110 | 8 | | Wormaldia | _ | | _ | 7. | | - | | | _ | - | | | | | | Polycentropodidae | | | | | | | | | | | | | | | | Polycentropus | | | | | | | _ | | | | 3 | <1 | _ | | | Psychomyiidae | _ | | | | _ | | | | | | 3 | ~1 | | | | Psychomyia | | | | | | | 18 | 1 | 1 | <1 | | | 6 | <1 | | Uenoidae | | | _ | | | | 16 | 1 | 1 | ~1 | | | U | ~1 | | Neophylax | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | Coleoptera<br>Curculionidae | | | | | 1 | _1 | | | | | | | | | | | | | _ | | 1 | <1 | _ | | | | | | | | | Dytiscidae | | | _ | | | | _ | | | | _ | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | _ | | | | _ | | _ | | | _ | | _ | | Dubiraphia | _ | | _ | | 1 | <1 | | | _ | | 1 | <1 | 1 | <1 | | Optioservus | | | | | | | 2 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | | Oulimnius | - | | _ | | | | _ | | | | _ | | | | | Stanolmic | 20 | 2 | 26 | 2 | Ω | 1 | 1 0 | 1 | _ | 1 | 2 | _1 | • | _1 | | Nov. 9 | 9, 1988 | Oct. 2 | 7, 1989 | Oct. 1 | 8, 1990 | Oct. 2 | 4, 1991 | Nov. 9 | 9, 1992 | Oct. 1 | 9, 1993 | Nov. 2 | 1, 1994 | Date | |-----------|----------|-----------|----------|--------|-----------------------------------------|-----------|---------|---------|---------|----------|---------|--------|---------|-------------------------------------------| | 11 | ,953 | 2,0 | 083 | 1, | 419 | 1,4 | 476 | 1, | 268 | 5 | 58 | 2, | 194 | Total count | | Count | Percent Organism | | | | | | | *************************************** | | | | - | | | | | Odonata | | | | | | | | | | | | | | | | Coenagrionidae | | | | 1 | <1 | _ | | | | _ | | _ | | _ | | Argia | | | | | | | | | | | | | | | | Plecoptera | | | | _ | | | | | | _ | | | | 1 | <1 | Chloroperlidae<br>Taeniopterygidae | | | | | | 1 | <1 | | | | | | | 2 | <1 | Taeniopteryx | | | | | | | ~1 | | | | | | | - | ~1 | Hemiptera | | | | _ | | _ | | | | _ | | _ | | | | Saldidae | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | - | | | | | | _ | | 1 | <1 | | | Corydalus | | | | 2 | <1 | | | | | _ | | | | _ | | Nigronia | | | | | | | | | | | | | | | | Sialidae | | | | _ | | 1 | <1 | | | _ | | 1 | <1 | _ | | Sialis | | | | | | | | | | | | | | | | Neuroptera | | | | | | | | | | | | | | | | Sisyridae<br><i>Climacia</i> | | | | _ | | _ | | | | _ | | _ | | | | Cimacia<br>C. areolaris | | | | | | | | | | | | | | _ | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | _ | | _ | | _ | | | | | | | | Apatania | | | | | | | | | | | | | | | | Brachycentridae | | _ | | | | _ | | _ | | 5 | <1 | 1 | <1 | 3 | <1 | Micrasema | | | | | | | | | | | | | | | | Glossosomatidae | | _ | | _ | | _ | | 1 | <1 | | | _ | | _ | | Glossosoma | | | _ | | | | | _ | | | | | | | | Hydropsychidae | | 37 | 2 | 84 | 4 | 59 | 4 | 9 | <1 | _ | _ | 14 | 3 | 55 | 3 | Ceratopsyche | | 16<br>210 | <1<br>11 | 75<br>290 | 4<br>14 | 14 | <1<br>7 | 28<br>110 | 2 | 12 | <1 | 22<br>84 | 4 | 120 | 5 | Cheumatopsyche | | 210 | 11 | 290 | 14 | 100 | • | 110 | 7 | 200 | 15 | 04 | 15 | 100 | 5 | Hydropsyche<br>Potamyia | | | | | | | | | | | | | | _ | | Hydroptilidae | | 29 | 1 | 14 | <1 | 5 | <1 | 8 | <1 | 6 | <1 | | | 20 | <1 | Hydroptila | | 310 | 16 | 230 | 11 | 170 | 12 | 210 | 14 | 2 | <1 | 3 | <1 | 13 | <1 | Leucotrichia | | | | | | | | | | | | | | | | Leptoceridae | | _ | | | | | | _ | | 2 | <1 | | | | | Ceraclea | | _ | | | | _ | | 1 | <1 | _ | | | | | | Oecetis | | | | | | | | | | | | | | | | Philopotamidae | | 260 | 13 | 180 | 9 | 170 | 12 | 85 | 6 | 19 | 1 | 54 | 10 | 81 | 4 | Chimarra | | _ | | | | 1 | <1 | _ | | _ | | | | | | Wormaldia | | | | 1 | <1 | 3 | <1 | | | | | 1 | <1 | | | Polycentropodidae<br><i>Polycentropus</i> | | | | 1 | <1 | J | <b>~</b> 1 | | | | | 1 | <1 | | | Psychomyiidae | | | | 4 | <1 | 2 | <1 | 1 | <1 | | | | | _ | | Psychomyia | | | | - | | - | - | - | • | | | | | | | Uenoidae | | | | | | | | _ | | _ | | | | 1 | <1 | Neophylax | | | | | | | | | | | | | | | | Coleoptera | | | | _ | | _ | | _ | | | | _ | | | | Curculionidae | | | | _ | | 1 | <1 | | | | | | | _ | | Dytiscidae | | | | | | | | | | | | | | | | Elmidae | | _ | _ | 1 | <1 | _ | | | | _ | _ | | | _ | | Ancyronyx | | 3 | <1 | | _1 | 1 | <1 | 1 | .1 | 5 | <1 | | | | -1 | Dubiraphia<br>Optioses vo | | | | 1<br>1 | <1<br><1 | | <1 | | <1 | 3 | <1 | _ | | 3 | <1 | Optioservus<br>Oulimnius | | 35 | 2 | 30 | 1 | <br>25 | 2 | 20 | 1 | 3<br>21 | <1<br>2 | 26 | 5 | 9 | <1 | Stenelmis | | 50 | - | - | • | 20 | - | 20 | • | | - | 23 | , | • | ~~ | Continue | Table 5. Benthic-macroinvertebrate data—Continued 01578340 - East Branch Octoraro Creek at Christiana, Pa. (Site 33)—Continued | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | Oct. 2 | 8, 1983 | Oct. 2 | 6, 1984 | Oct. 2 | 4, 1985 | Nov. 2 | 0, 1986 | Nov. 1 | 8, 1987 | |---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 9 | 78 | 1, | 670 | 8 | 56 | 1, | 518 | 5 | 93 | 1, | 110 | 1,4 | 421 | | Organism | Count | Percent | Coleoptera | | | | | | | | | | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | 2 | <1 | 4 | <1 | 11 | 1 | | | 2 | <1 | 3 | <1 | 6 | <1 | | Diptera | | | | | | | | | | | | | | | | Chironomidae | 210 | 21 | 300 | 18 | 120 | 14 | 450 | 30 | 120 | 20 | 420 | 38 | 340 | 24 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 11 | 1 | 24 | 1 | 1 | <1 | 4 | <1 | 4 | <1 | 3 | <1 | 8 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 6 | <1 | 30 | 2 | 1 | <1 | 240 | 16 | | | 18 | 2 | 44 | 3 | | Stratiomyidae | | | | | | | | | | | | | | | | Stratiomys | | | | | | | | | | | | | | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 15 | 2 | 37 | 2 | 8 | <1 | 49 | 3 | 4 | <1 | 35 | 3 | 30 | 2 | | Dicranota | | | | | | | | | | | | | | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Nov. 9 | 9, 1988 | Oct. 2 | 7, 1989 | Oct. 1 | 8, 1990 | Oct. 2 | 4, 1991 | Nov. 9 | 9, 1992 | Oct. 1 | 9, 1993 | Nov. 2 | 1, 1994 | Date | |--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------| | 11 | ,953 | 2, | 083 | 1, | 419 | 1, | 476 | 1, | 268 | 5 | 58 | 2, | 194 | Total count | | Count | Percent Organism | | | V | | | | | | | | | | | | | Coleoptera | | | | | | | | | | | | | | | | Psephenidae | | 8 | <1 | 23 | 1 | 30 | 2 | 7 | <1 | 8 | <1 | 13 | 2 | 17 | <1 | Psephenus | | | | | | | | | | | | | | | | Diptera | | 180 | 9 | 180 | 9 | 320 | 23 | 640 | 43 | 620 | 48 | 120 | 21 | 1,300 | 59 | Chironomidae | | | | | | | | | | | | | | | | Empididae | | 3 | <1 | 14 | <1 | 4 | <1 | 9 | <1 | _ | | 1 | <1 | 12 | <1 | Hemerodromia | | | | | | | | | | | | | | | | Simuliidae | | 40 | 2 | 18 | <1 | 16 | 1 | 11 | <1 | 28 | 2 | 6 | 1 | 15 | <1 | Simulium | | | | | | | | | | | | | | | | Stratiomyidae | | | | | | | | | | 1 | <1 | _ | | | | Stratiomys | | | | | | | | | | | | | | | | Tipulidae | | 8 | <1 | 120 | 6 | 54 | 4 | 46 | 3 | 18 | 1 | 38 | 7 | 95 | 4 | Antocha | | | | | | _ | | | | _ | | | | 8 | <1 | Dicranota | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01578343 - Valley Creek at Atglen, Pa. (Site 34) | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | Oct. 2 | 8, 1983 | Oct. 2 | 6, 1984 | Oct. 2 | 4, 1985 | Nov. 2 | 0, 1986 | Nov. 1 | 8, 1987 | |-----------------------------|-------------|----------------|--------|---------|--------|---------|------------|----------------|--------|---------|--------|---------|--------|---------| | Total count | 2, | 173 | 2, | 478 | 9 | 30 | 2, | 239 | 9 | 62 | 7 | 83 | 2, | 316 | | Organism | Count | Percent | Platyhelminthes (flatworms) | | | | | | | | | | | | | | | | Turbellaria | | | | | | | | | | | | | | | | Tricladida | | | | | | | | | | | | | | | | Planariidae | _ | | 1 | <1 | _ | | | | 1 | <1 | | | 7 | <1 | | Nematoda (nematodes) | 1 | <1 | 1 | <1 | _ | | | | | | | | 1 | <1 | | Nemertea (proboscis worms) | | | | | | | | | | | | | | | | Enopla | | | | | | | | | | | | | | | | Hoplonemertea | | | | | | | | | | | | | | | | Tetrastemmatidae | | | | | | | | | | | | | | | | Prostoma | _ | | | | | | | | 1 | <1 | | | | | | Mollusca (molluscs) | | | | | | | | | • | | | | | | | Gastropoda | | | | | | | | | | | | | | | | Basommatophora | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ancylidae | 22 | | 40 | • | 1.4 | , | | | | | | | 1 | -1 | | Ferrissia | 32 | 1 | 48 | 2 | 14 | 1 | | | _ | | | | 1 | <1 | | Physidae | _ | | _ | _ | | | | | | | | | | | | Physa | 1 | <1 | 1 | <1 | | | | | | | | | _ | | | Planorbidae | | | | | | | | | | | | | | | | Gyraulus | _ | | _ | | | | _ | | _ | | | | | | | Bivalvia | | | | | | | | | | | | | | | | Veneroida | | | | | | | | | | | | | | | | Sphaeriidae | _ | | | | _ | | | | _ | | | | 1 | <1 | | Annelida (segmented worms) | | | | | | | | | | | | | | | | Oligochaeta | | | | | | | | | | | | | | | | Lumbriculida | | | | | | | | | | | | | | | | Lumbriculidae | | | | | | | 1 | <1 | | | | | | | | Tubificida | | | | | | | | | | | | | | | | Naididae | 68 | 3 | 45 | 2 | 10 | 1 | 48 | 2 | 2 | <1 | | | 470 | 20 | | Tubificidae | | _ | 4 | <1 | | _ | | _ | | | | | 3 | <1 | | Hirudinea | | | _ | | | | | | | | | | _ | _ | | Pharynobdellidae | | | | | | | | | | | | | | | | Erpobdellidae | | | | | | | 1 | <1 | | | | | | | | Arthropoda (arthropods) | _ | | | | | | 1 | ~1 | _ | | _ | | | | | Acariformes | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FC | • | | Hydrachnidia | _ | | | | | | | | | | | | 56 | 2 | | Crustacea | | | | | | | | | | | | | | | | Amphipoda | | | | | | | | | | | | | | | | Gammaridae | | | | | | | | | | | _ | | | | | Gammarus | | | 1 | <1 | | | _ | | 1 | <1 | 2 | <1 | | | | Isopoda | | | | | | | | | | | | | | | | Asellidae | | | | | | | | | | | | | | | | Caecidotea | | | 1 | <1 | 8 | <1 | 1 | <1 | 1 | <1 | 4 | <1 | 8 | <1 | | Podocopa | | | | | | | | | - | | _ | | 3 | <1 | | Insecta | | | | | | | | | | | | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Baetidae | | | | | | | | | | | | | | | | Baetis | 3 | <1 | | | | | 5 | <1 | 17 | 2 | 4 | <1 | | | | Pseudocloeon | 1 | <1 | 4 | <1 | | | 6 | <1 | 2 | <1 | 1 | <1 | 19 | <1 | | Ephemerellidae | • | · <del>-</del> | - | | | | - | - <del>-</del> | _ | | _ | | | - | | Ephemerella | 3 | <1 | 6 | <1 | 4 | <1 | 16 | <1 | 10 | 1 | 3 | <1 | 140 | 6 | | Heptageniidae | Ü | | v | | • | | -0 | | -0 | • | Ū | | - 10 | v | | Stenonema | 1 <b>70</b> | 8 | 190 | 8 | 13 | 1 | 110 | 5 | 21 | 2 | 2 | <1 | 54 | 2 | | Isonychiidae | 110 | 0 | 100 | 0 | 13 | 1 | 110 | J | £1 | L | L | ~1 | J7 | Ĺ | | Isonychia | ^ | -1 | 24 | -1 | • | -1 | 15 | _1 | 7 | -1 | | -1 | 24 | 1 | | ISONYCNIA | 9 | <1 | 24 | <1 | 2 | <1 | 1 <b>5</b> | <1 | 7 | <1 | 4 | <1 | 34 | 1 | | Nov. | 7, 1988 | Oct. 2 | 7, 1989 | Oct. 1 | 8, 1990 | Oct. 2 | 4, 1991 | Nov. 9 | 9, 1992 | Oct. 1 | 9, 1993 | Nov. 2 | 3, 1994 | Date | |-------|---------|--------|---------|-------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------------------------------------------------------------------------------------| | 1 2 | ,916 | 3, | 051 | 1, | 262 | 3, | 201 | 1, | 788 | 8 | 25 | 2, | 936 | Total count | | Count | Percent | Count | Percen | t Organism | | | | | | | | | | | | | | | | Platyhelminthes (flatworms)<br>Turbellaria<br>Tricladida | | 13 | <1 | 36 | 1 | 9 | <1 | 66 | 2 | 23 | 1 | 1 | <1 | 4 | <1 | Planariidae | | _ | | _ | | | | _ | | | | _ | | _ | | Nematoda (nematodes) Nemertea (proboscis worms) Enopla Hoplonemertea Tetrastemmatidae | | _ | | 10 | <1 | 2 | <1 | | | | | | | | | Prostoma Mollusca (molluscs) Gastropoda Basommatophora Ancylidae | | _ | | 4 | <1 | 2 | <1 | 4 | <1 | _ | | 2 | <1 | 1 | <1 | Ferrissia Physidae | | _ | | _ | | 1 | <1 | | | 1 | <1 | _ | | _ | | <i>Physa</i><br>Planorbidae | | | | 3 | <1 | | | | | | | _ | | | | Gyraulus | | | | | | | | | | | | | | | | Bivalvia<br>Veneroida | | _ | | _ | | _ | | 1 | <1 | | | | | _ | | Sphaeriidae<br>Annelida (segmented worms)<br>Oligochaeta<br>Lumbriculida | | _ | | _ | | _ | | | | | | - | | | | Lumbriculidae<br>Tubificida | | 88 | 3 | 210 | 7 | 19 | 1 | 110 | 3 | | | _ | | 4 | <1 | Naididae | | | | | | | | - | | | | | | | | Tubificidae Hirudinea Pharyngobdellida | | | | | | <del></del> | | | | | | _ | | _ | | Erpobdellidae<br>Arthropoda (arthropods)<br>Acariformes | | | | 97 | 3 | 4 | <1 | 47 | 1 | 22 | 1 | 4 | <1 | 180 | 6 | Hydrachnidia<br>Crustacea<br>Amphipoda | | | | 1 | <1 | - | | 1 | <1 | 4 | <1 | 1 | <1 | 27 | <1 | Gammaridae<br><i>Gammarus</i><br>Isopoda<br>Asellidae | | _ | | 2 | <1 | _ | | | | 1 | <1 | | | | | Caecidotea | | | | 6 | <1 | 3 | <1 | _ | | | | _ | | _ | | Podocopa<br>Insecta<br>Ephemeroptera | | 16 | <1 | 22 | <1 | 18 | 1 | 19 | <1 | | | 1 | <1 | _ | | Baetidae<br>Baetis | | | | 4 | <1 | | | - | | 5 | <1 | _ | | _ | | <i>Pseudocloeon</i><br>Ephemerellidae | | 160 | 6 | 310 | 10 | 63 | 5 | 220 | 7 | 7 | <1 | _ | | 2 | <1 | <i>Ephemerella</i><br>Heptageniidae | | 110 | 4 | 120 | 4 | 23 | 2 | 11 | <1 | 4 | <1 | | | | | Stenonema<br>Isonychiidae | | 21 | <1 | 10 | <1 | 4 | <1 | 3 | <1 | 2 | <1 | | | _ | | Isonychia | Table 5. Benthic-macroinvertebrate data—Continued 01578343 - Valley Creek at Atglen, Pa. (Site 34)—Continued | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | Oct. 2 | 8, 1983 | Oct. 2 | 6, 1984 | Oct. 2 | 4, 1985 | Nov. 2 | 0, 1986 | Nov. 1 | 8, 1987 | |--------------------|--------|-----------|--------|---------|--------|---------|--------|-----------|--------|---------|--------|---------|--------|---------| | Total count | 2, | 173 | 2, | 478 | 9 | 30 | 2, | 239 | 9 | 62 | 7 | 83 | 2, | 316 | | Organism | Count | Percent | Count | Percen | | Ephemeroptera | | | | | | | | | | | | | | | | Leptohyphidae | | | | | | | | | | | | | | | | Tricorythodes | _ | | | | _ | | _ | | | | | | 4 | <1 | | Leptophlebiidae | | | | | | | _ | | | | | | | | | Paraleptophlebia | | | | | | | _ | | 1 | <1 | | | _ | | | Potamanthidae | | | | | | | | | | | | | | | | Anthopotamus | _ | | 4 | <1 | | | _ | | _ | | | | _ | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | | | | | | | Allocapnia | | | | | 2 | <1 | 3 | <1 | _ | | | | 1 | <1 | | Taeniopterygidae | | | | | | | | | | | | | | | | Taeniopteryx | _ | | _ | | 1 | <1 | 3 | <1 | 2 | <1 | | | _ | | | Megaloptera | | | | | • | | Ū | •• | _ | | | | | | | Corydalidae | | | | | | | | | | | | | | | | Corydalus | 2 | <1 | | | | | _ | | | | | | | | | Sialidae | L | <b>\1</b> | | | | | _ | | | | | | | | | Sialidae<br>Sialis | | | 1 | <1 | | | 1 | <b>-1</b> | | | | | | | | | _ | | 1 | <1 | _ | | 1 | <1 | _ | | _ | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | _ | _ | | Apatania | | | | | _ | | _ | | | | | | 2 | <1 | | Glossosomatidae | | | | | | | | | | | | | | | | Glossosoma | | | 1 | <1 | _ | | _ | | 5 | <1 | 9 | 1 | 1 | <1 | | Hydropsychidae | | | | | | | | | | | | | | | | Ceratopsyche | 310 | 14 | 370 | 15 | 87 | 9 | 240 | 11 | 180 | 19 | 71 | 9 | 79 | 3 | | Cheumatopsyche | 460 | 21 | 450 | 18 | 100 | 11 | 210 | 10 | 100 | 10 | 16 | 2 | 140 | 6 | | Hydropsyche | 300 | 14 | 300 | 12 | 130 | 14 | 96 | 4 | 40 | 4 | 120 | 15 | 200 | 9 | | Potamyia | | | _ | | 7 | <1 | 1 | <1 | | | | | _ | | | Hydroptilidae | | | | | | | | | | | | | | | | Hydroptila | | | 7 | <1 | | | | | 1 | <1 | 1 | <1 | 4 | <1 | | Leucotrichia | 90 | 4 | 100 | 4 | 300 | 32 | 170 | 8 | 250 | 26 | 73 | 9 | 230 | 10 | | Leptoceridae | - | - | | - | | | | - | | | | • | | | | Mystacides | | | | | | | _ | | | | | | | | | Philopotamidae | | | | | | | | | | | | | | | | Chimarra | 1 | <1 | 4 | <1 | 4 | <1 | 6 | <1 | 32 | 3 | 53 | 7 | 55 | 2 | | | 1 | <1 | 4 | <1 | 4 | <1 | 3 | <1 | 32 | 3 | 33 | 1 | 33 | L | | Dolophilodes | _ | | | | _ | | 3 | <1 | | | | | | | | Polycentropodidae | | | 5 | -1 | 2 | .4 | | | | | | | | | | Polycentropus | | | 3 | <1 | 2 | <1 | | | | | | | | | | Psychomylidae | • | | 40 | • | | 2 | • | | 21 | • | 10 | • | 110 | - | | Psychomyia | 2 | <1 | 46 | 2 | 17 | 2 | 2 | <1 | 21 | 2 | 12 | 2 | 110 | 5 | | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | | | | | | | | | | | | | Ancyronyx | | | 1 | <1 | 1 | <1 | _ | | | | | | | | | Dubiraphia | _ | | 1 | <1 | | | 1 | <1 | | | _ | | | | | Microcylloepus | | | | | - | | _ | | | | | | | | | <b>Optioservus</b> | | | | | 1 | <1 | 4 | <1 | 1 | <1 | 1 | <1 | 1 | <1 | | Oulimnius | | | | | _ | | | | 2 | <1 | | | _ | | | Stenelmis | 44 | 2 | 130 | 5 | 10 | 1 | 16 | <1 | 16 | 2 | 18 | 2 | 20 | <1 | | Hydrophilidae | | | | | | | | | | | | | | | | Helophorus | | | | | _ | | 1 | <1 | _ | | | | | | | Psephenidae | | | | | | | | | | | | | | | | Psephenus | | | | <1 | 2 | <1 | | | | <1 | 2 | <1 | 1 | <1 | | | 7, 1988 | Oct. 2 | 7, 1989 | Oct. 1 | 8, 1990 | Oct. 2 | 4, 1991 | Nov. | 9, 1992 | Oct. 1 | 9, 1993 | Nov. 2 | 3, 1994 | Date | |-------|----------|--------|----------|--------|---------|-------------|----------|----------|-----------------------------------------|--------|----------|--------|---------|---------------------------| | 1 2 | ,916 | 3, | 051 | 1, | 262 | 3, | 201 | 1, | 788 | 8 | 325 | 2, | 936 | Total count | | Count | Percent Organism | | | | | | | | | | | *************************************** | | | | | Ephemeroptera | | | | | | | | | | | | | | | | Leptohyphidae | | _ | | 4 | <1 | 3 | <1 | 4 | <1 | | | | | - | | Tricorythodes | | | | 3 | <1 | 5 | <1 | | | | | | | | | Leptophlebiidae | | 3 | <1 | _ | | | | 3 | <1 | | | _ | | | | Paraleptophlebia | | | | | | | | | | | | | | | | Potamanthidae | | | | | | | | | | | | _ | | | | Anthopotamus | | | | | | | | | | | | | | | | Plecoptera | | | | | | | | | | | | | | | | Capniidae | | | | | | | | | | _ | | | | | | Allocapnia | | | | | | | | | | | | | | | | Taeniopterygidae | | 3 | <1 | 2 | <1 | 1 | <1 | | | 1 | <1 | _ | | | | Taeniopteryx | | | | | | | | | | | | | | | | Megaloptera | | | | | | | | | | | | | | | | Corydalidae | | | | 1 | <1 | | | 1 | <1 | | | | | _ | | Corydalus | | | | | | | | | | | | | | | | Sialidae | | | | | | _ | | | | | | | | _ | | Sialis | | | | | | | | | | | | | | | | Trichoptera | | | | | | | | | | | | | | | | Apataniidae | | | | | | | | | | | | | | 1 | <1 | Apatania | | | | | | | | | | | | | | | | Glossosomatidae | | | | 4 | <1 | 7 | <1 | 5 | <1 | 1 | <1 | | | | | Glossosoma | | | | | | | | | | | | | | | | Hydropsychidae | | 230 | 8 | 240 | 8 | 70 | 5 | 43 | 1 | 9 | <1 | 1 | <1 | 47 | 2 | Ceratopsyche | | 620 | 21 | 340 | 11 | 76 | 6 | 190 | 6 | 89 | 5 | 21 | 3 | 250 | 9 | Cheumatopsyche | | 350 | 12 | 960 | 31 | 310 | 24 | 730 | 23 | 460 | 26 | 370 | 45 | 160 | 6 | Hydropsyche | | | | | | | | | | _ | | _ | | | | Potamyia | | | | | | | | | | | | | | | | Hydroptilidae | | 3 | <1 | 6 | <1 | | | 11 | <1 | | | | | 5 | <1 | Hydroptila | | 240 | 8 | 8 | <1 | 16 | 1 | 98 | 3 | 5 | <1 | 1 | <1 | 8 | <1 | Leucotrichia | | | _ | - | | | | | | | - | _ | | - | | Leptoceridae | | | | 2 | <1 | | | | | | | | | - | | Mystacides | | | | _ | | | | | | | | | | | | Philopotamidae | | 40 | 1 | 37 | 1 | 74 | 6 | 20 | <1 | 7 | <1 | | | _ | | Chimarra | | | • | 2 | <1 | | Ū | | | | ~1 | | | | | Dolophilodes | | | | - | ~- | | | | | | | | | | | Polycentropodidae | | | | 1 | <1 | | | | | | | | | | | Polycentropus | | | | • | ~1 | | | | | _ | | _ | | | | Psychomyiidae | | 13 | <1 | 14 | <1 | 15 | 1 | 45 | 1 | 9 | <1 | 18 | 2 | 27 | <1 | Psychomyla | | 10 | ~1 | 14 | ~1 | 10 | • | 40 | • | 3 | ~1 | 10 | L | 21 | ~1 | Coleoptera | | | | | | | | | | | | | | | | Elmidae | | | | 5 | <1 | | | 1 | <1 | | | | | 1 | <1 | | | 3 | <1 | 5 | ~1 | _ | | 1 | ~1 | 3 | <1 | | | 2 | <1 | Ancyronyx<br>Dubiraphia | | 3 | <1 | | | _ | | | | -<br>- | ~1 | _ | | _ | ~1 | Microcylloepus | | 3 | <1<br><1 | 8 | <1 | 4 | <1 | 14 | <1 | 22 | 1 | 10 | 1 | 7 | <1 | Optioservus | | J | ~1 | 4 | <1<br><1 | | ~1 | 2 | <1<br><1 | 3 | <1<br><1 | 2 | -1<br><1 | | ~1 | Optioservus<br>Oulimnius | | 45 | 2 | 160 | <1<br>5 | 73 | 6 | 1 <b>20</b> | <1<br>4 | 3<br>110 | <1<br>6 | 120 | <1<br>14 | 110 | 4 | Stenelmis | | 40 | ۷ | 100 | J | 13 | o | 120 | 4 | 110 | 0 | 120 | 14 | 110 | 4 | Steneums<br>Hydrophilidae | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | Helophorus<br>Bookserides | | | | 17 | .1 | 2 | _1 | 1.4 | -1 | c | .4 | | | • | -1 | Psephenidae | | | | 17 | <1 | 3 | <1 | 14 | <1 | 6 | <1 | 9 | 1 | 2 | <1 | Psephenus | Table 5. Benthic-macroinvertebrate data—Continued 01578343 - Valley Creek at Atglen, Pa. (Site 34)—Continued | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | Oct. 2 | 8, 1983 | Oct. 2 | 6, 1984 | Oct. 2 | 4, 1985 | Nov. 2 | 0, 1986 | Nov. 1 | 8, 1987 | |---------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------| | Total count | 2, | 173 | 2, | 478 | 9 | 30 | 2, | 239 | 9 | 62 | 7 | 83 | 2, | 316 | | Organism | Count | Percent | Diptera | **** | *** | | | | | | | - | | | | | | | Chironomidae | 370 | 17 | 450 | 18 | 130 | 14 | 640 | 29 | 170 | 18 | 210 | 27 | 440 | 19 | | Empididae | | | | | | | | | | | | | | | | Hemerodromia | 14 | <1 | 9 | <1 | | | 7 | <1 | 2 | <1 | 1 | <1 | 2 | <1 | | Simuliidae | | | | | | | | | | | | | | | | Simulium | 250 | 11 | 91 | 4 | 3 | <1 | 600 | 27 | 8 | <1 | 85 | 11 | 170 | 7 | | Stratiomyidae | _ | | _ | | _ | | 1 | <1 | | | _ | | _ | | | Tipulidae | | | | | | | | | | | | | | | | Antocha | 42 | 2 | 180 | 7 | 82 | 9 | 30 | 1 | 67 | 7 | 87 | 11 | 59 | 3 | | Dicranota | | | _ | | | | | | _ | | 4 | <1 | | | | Hexatoma | | | 1 | <1 | _ | | _ | | _ | | | | _ | | | Tipula | | | | | _ | | 1 | <1 | _ | | | | _ | | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. | Date | 94 | 23, | Nov. 2 | 9, 1993 | Oct. 19 | , 1992 | Nov. 9 | 4, 1991 | Oct. 24 | 3, 1990 | Oct. 18 | 7, 1989 | Oct. 27 | ', 1988 | Nov. 7 | |---------------|-----|------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------| | Total count | | ,936 | 2, | 825 | | 1,788 | | 201 | 3,2 | 262 | 1,2 | )51 | 3,0 | 916 | 1 2 | | Organism | ent | P | Count | Percent | Count | | iptera | | | - | | | | | | | | | | | | | | Chironomidae | 52 | | 1,500 | 18 | 150 | 11 | 190 | 38 | 1,200 | 25 | 330 | 7 | 210 | 18 | 520 | | Empididae | | | | | | | | | | | | | | | | | Hemerodromia | <1 | | 12 | <1 | 2 | <1 | 3 | <1 | 15 | | _ | 1 | 46 | <1 | 5 | | Simuliidae | | | | | | | | | | | | | | | | | Simulium | 9 | | 260 | <1 | 2 | 38 | 680 | <1 | 12 | 4 | 53 | 1 | 42 | 14 | 400 | | Stratiomyldae | | | | | | | | | _ | | | | | | | | Tipulidae | | | | | | | | | | | | | | | | | Antocha | 11 | | 320 | 13 | 110 | 7 | 120 | 6 | 180 | 6 | 73 | 3 | 99 | <1 | 24 | | Dicranota | <1 | | 6 | | | | | <1 | 10 | | _ | | _ | <1 | 3 | | Hexatoma | | | _ | | _ | <1 | 1 | <1 | 1 | <1 | 1 | <1 | 1 | | | | Tipula | | | _ | | _ | | | | _ | | _ | | | | _ | Table 5. Benthic-macroinvertebrate data—Continued [<, less than; —, not found] 01578345 - East Branch Octoraro Creek at Steelville, Pa. (Site 35) | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | |-------------------------------|--------|---------|--------|---------| | Total count | 1,0 | 041 | 1, | 791 | | Organism | Count | Percent | Count | Percent | | Platyhelminthes (flatworms) | 4 | <1 | 1 | <1 | | Turbellaria | | | | | | Tricladida | | | | | | Planariidae | 3 | <1 | 4 | <1 | | Mollusca (molluscs) | | | | | | Gastropoda | | | | | | Basommatophora | | | | | | Ancylidae | | | | | | Ferrissia | 5 | <1 | 24 | 1 | | Lymnaeidae | • | | | - | | Lymnaea | 1 | <1 | _ | | | Annelida (segmented worms) | • | ~~ | | | | Oligochaeta | | | 1 | <1 | | Tubificida | _ | | • | ~1 | | | 1 | <1 | | | | Tubificidae | 1 | <1 | _ | | | Arthropoda (arthropods) | | | | | | Acariformes | | | 00 | • | | Hydrachnidia | 58 | 6 | 32 | 2 | | Crustacea | | | | | | Isopoda | | | | | | Asellidae | | | | | | Caecidotea | 1 | <1 | 1 | <1 | | Insecta | | | | | | Ephemeroptera | | | | | | Baetidae | | | | | | Pseudocloeon | 1 | <1 | _ | | | Ephemerellidae | | | | | | Ephemerella | 55 | 6 | 78 | 4 | | Heptageniidae | | | | | | Stenonema | 160 | 16 | 110 | 6 | | Isonychiidae | | | | | | Isonychia | | | 10 | <1 | | Plecoptera | | | | | | Capniidae | | | | | | Allocapnia | _ | | 2 | <1 | | Chloroperlidae | | | 1 | <1 | | Taeniopterygidae | | | | | | Strophopteryx | 2 | <1 | _ | | | Megaloptera | | | | | | Corydalidae | | | | | | Nigronia | _ | | 2 | <1 | | Sialidae | | | _ | | | Sialis | 3 | <1 | | | | Trichoptera | ŭ | | | | | Hydropsychidae | | | | | | Ceratopsyche | 180 | 18 | 220 | 12 | | | 48 | 5 | 120 | 7 | | Cheumatopsyche<br>Hydropsyche | 21 | 2 | 35 | 2 | | J - J | 21 | L | J | L | | Hydroptilidae | 12 | 1 | 20 | 1 | | Hydroptila | 12 | 1 | 20 | 1 | | Leucotrichia | 51 | 5 | 400 | 22 | | Philopotamidae | • | .1 | 20 | 2 | | Chimarra | 6 | <1 | 30 | 2 | 01578345 - East Branch Octoraro Creek at Steelville, Pa. (Site 35)—Continued | Date | Nov. 3 | 3, 1981 | Oct. 2 | 7, 1982 | |---------------|--------|---------|--------|---------| | Total count | 1,0 | 041 | 1, | 791 | | Organism | Count | Percent | Count | Percent | | Coleoptera | | | | | | Chrysomelidae | 1 | <1 | _ | | | Elmidae | | | | | | Dubiraphia | 1 | <1 | | | | Optioservus | 2 | <1 | | | | Oulimnius | | | 1 | <1 | | Stenelmis | 14 | 1 | 3 | <1 | | Psephenidae | | | | | | Psephenus | 5 | <1 | 1 | <1 | | Diptera | | | | | | Chironomidae | 360 | 36 | 530 | 29 | | Empididae | | | | | | Hemerodromia | 2 | <1 | 3 | <1 | | Simuliidae | | | | | | Simulium | 14 | 1 | 2 | <1 | | Tipulidae | | | | | | Antocha | 30 | 3 | 160 | 9 | **Table 6.** Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site [—, no data] ## 01472054 PIGEON CREEK NEAR BUCKTOWN (SITE 8) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 822 | 28 | 3.11 | 4.77 | 0.32 | 0.63 | | 1982 | 975 | 31 | 3.57 | 4.93 | .30 | .70 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472065 PIGEON CREEK AT PORTERS MILL (SITE 9) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 482 | 23 | 3.03 | 4.57 | 0.41 | 0.63 | | 1982 | 918 | 24 | 3.30 | 5.50 | .25 | .72 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472080 PIGEON CREEK NEAR PARKER FORD (SITE 10) | Year | Total<br>number of<br>organisms | Total<br>nu <b>mbe</b> r<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|-------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 2,785 | 33 | 3.07 | 5.03 | 0.13 | 0.60 | | 1982 | 1,691 | 30 | 3.39 | 4.86 | .18 | .69 | | 1983 | 969 | 24 | 3.20 | 4.56 | .23 | .69 | | 1984 | 1,492 | 29 | 3.50 | 4.83 | .20 | .71 | | 1985 | 1,032 | 21 | 2.82 | 4.33 | .19 | .63 | | 1986 | 1,133 | 24 | 3.35 | 4.59 | .21 | .72 | | 1987 | 2,098 | 39 | 3,86 | 5.29 | .20 | .72 | | 1988 | <sup>1</sup> 2,397 | 31 | 3.57 | 4.93 | .14 | .71 | | 1989 | 2,270 | 40 | 3.81 | 5.32 | .19 | .71 | | 1990 | 1,947 | 32 | 3.68 | 4.95 | .17 | .73 | | 1991 | 1,705 | 34 | 3.34 | 5.06 | .21 | .65 | | 1992 | 440 | 30 | 3.08 | 4.90 | .57 | .58 | | 1993 | 1,161 | 35 | 3.42 | 5.03 | .30 | .66 | | 1994 | 1,599 | 41 | 3.33 | 5.28 | .26 | .61 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472109 STONY RUN NEAR SPRING CITY (SITE 6) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | <sup>1</sup> 2,760 | 32 | 3.08 | 4.95 | 0.13 | 0.61 | | 1982 | 1,265 | 27 | 3.53. | 4.76 | .21 | .73 | | 1983 | 2,082 | 37 | 3.33 | 5.16 | .19 | .63 | | 1984 | 998 | 26 | 3.49 | 4.66 | .25 | .74 | | 1985 | 550 | 26 | 2.22 | 4.54 | .41 | .44 | | 1986 | 651 | 38 | 3.60 | 5.08 | .53 | .67 | | 1987 | 1,467 | 34 | 3.57 | 5.03 | .24 | .70 | | 1988 | <sup>1</sup> 816 | 24 | 3.29 | 4.50 | .27 | .71 | | 1989 | 2,122 | 35 | 3.62 | 5.13 | .18 | .70 | | 1990 | 2,129 | 37 | 3.29 | 5.18 | .19 | .62 | | 1991 | 1,489 | 35 | 3.61 | 5.08 | .24 | .70 | | 1992 | 671 | 29 | 3.71 | 4.90 | .39 | .74 | | 1993 | 993 | 24 | 3.01 | 4.54 | .23 | .64 | | 1994 | 1,010 | 36 | 3.62 | 5.08 | .34 | .69 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472110 STONY RUN AT SPRING CITY (SITE 7) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity Index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,507 | 32 | 3.52 | 4.95 | 0.22 | 0.70 | | 1982 | 1,787 | 27 | 2,97 | 4.70 | .16 | .62 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472126 FRENCH CREEK AT TRYTHALL (SITE 41) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | <del>-</del> | <del>-</del> | | | _ | _ | | 1982 | 215 | 24 | 3.02 | 4.62 | 0.82 | 0.58 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472129 FRENCH CREEK NEAR KNAUERTOWN (SITE 11) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's diversity index (H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,078 | 36 | 3.83 | 5.20 | 0.33 | 0.72 | | 1982 | 2,186 | 40 | 3.59 | 5.27 | .20 | .67 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472138 FRENCH CREEK NEAR COVENTRYVILLE (SITE 13) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's diversity index (H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,542 | 43 | 3.88 | 5.44 | 0.29 | 0.70 | | 1982 | <sup>1</sup> 2,380 | 35 | 3.21 | 5.10 | .16 | .62 | | 1983 | <sup>1</sup> 1,615 | 38 | 3.82 | 5.19 | .24 | .72 | | 1984 | <sup>1</sup> 1,295 | 27 | 3,51 | 4.77 | .21 | .72 | | 1985 | 535 | 36 | 3.18 | 5.21 | .59 | .56 | | 1986 | 1,395 | 31 | 3.01 | 4.87 | .22 | .60 | | 1987 | 1,338 | 31 | 2.50 | 4.89 | .23 | .49 | | 1988 | 1,846 | 31 | 3.12 | 4.94 | .18 | .62 | | 1989 | 1,643 | 51 | 3.96 | 5.51 | .33 | .69 | | 1990 | 1,507 | 46 | 3.51 | 5.53 | .31 | .61 | | 1991 | 597 | 35 | 3.24 | 4.95 | .52 | .61 | | 1992 | 573 | 29 | 3.49 | 4.88 | .44 | .69 | | 1993 | 732 | 38 | 3.97 | 5.13 | .48 | .75 | | 1994 | 1,029 | 32 | 3.31 | 4.91 | .30 | .65 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472140 SOUTH BRANCH FRENCH CREEK AT COVENTRYVILLE (SITE 12) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | <sup>1</sup> 1,197 | 32 | 3.41 | 4.91 | 0.27 | 0.68 | | 1982 | <sup>1</sup> 2,649 | 33 | 3.18 | 5.01 | .14 | .63 | | 1983 | <sup>1</sup> 1,697 | 31 | 3.26 | 4.91 | .19 | .65 | | 1984 | <sup>1</sup> 1,563 | 26 | 3.28 | 4.63 | .17 | .70 | | 1985 | 785 | 34 | 3.75 | 5.13 | .40 | .71 | | 1986 | 1,312 | 39 | 3.85 | 5.24 | .30 | .72 | | 1987 | 2,014 | 40 | 3.20 | 5.29 | .21 | .59 | | 1988 | 3,070 | 40 | 3.73 | 5.31 | .15 | .69 | | 1989 | 2,447 | 41 | 3.78 | 5.34 | .18 | .70 | | 1990 | 643 | 36 | 3.86 | 5.20 | .50 | .72 | | 1991 | 1,737 | 43 | 3.85 | 5.38 | .26 | .70 | | 1992 | 1,336 | 48 | 3.94 | 5.60 | .36 | .68 | | 1993 | 1,432 | 42 | 4:03 | 5.29 | .30 | .75 | | 1994 | 565 | 29 | 3.36 | 4.76 | .45 | .67 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472154 FRENCH CREEK NEAR PUGHTOWN (SITE 14) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,760 | 35 | 3.42 | 5.09 | 0.21 | 0.66 | | 1982 | 1,543 | 29 | 2.88 | 4.81 | .19 | .58 | | 1983 | 1,432 | 40 | 3.63 | 5.31 | .29 | .66 | | 1984 | 1,716 | 31 | 3.20 | 4.93 | .19 | .64 | | 1985 | 421 | 24 | 3.33 | 4.53 | .47 | .70 | | 1986 | 1,416 | 32 | 3.32 | 4.96 | .23 | .65 | | 1987 | 1,331 | 31 | 2.03 | 4.97 | .23 | .38 | | 1988 | <sup>1</sup> 2,589 | 33 | 3.72 | 5.03 | .14 | .73 | | 1989 | 1,489 | 38 | 3.98 | 5.15 | .26 | .76 | | 1990 | 747 | 35 | 3.89 | 5.02 | .43 | .75 | | 1991 | 1,545 | 36 | 3.56 | 5.10 | .24 | .68 | | 1992 | 1,025 | 40 | 3.58 | 5.32 | .38 | .65 | | 1993 | 765 | 34 | 3.25 | 5.02 | .41 | .61 | | 1994 | 1,212 | 40 | 3.70 | 5.21 | .33 | .69 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472157 FRENCH CREEK NEAR PHOENIXVILLE (SITE 15) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | <b>M</b> inimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------| | 1981 | <sup>1</sup> 3,427 | 32 | 2.34 | 5.00 | 0.11 | 0.46 | | 1982 | <sup>1</sup> 548 | 22 | 3.06 | 4.48 | .35 | .66 | | 1983 | <sup>1</sup> 1,141 | 28 | 2.82 | 4.80 | .24 | .57 | | 1984 | <sup>1</sup> 821 | 29 | 3.32 | 4.78 | .33 | .67 | | 1985 | 226 | 30 | 3.92 | 4.77 | .99 | .77 | | 1986 | 712 | 36 | 3.77 | 5.21 | .46 | .70 | | 1987 | 600 | 35 | 2.76 | 4.99 | .52 | .50 | | 1988 | <sup>1</sup> 2,496 | 41 | 3.19 | 5.37 | .18 | .58 | | 1989 | 203 | 35 | 4.12 | 5.06 | 1.26 | .75 | | 1990 | 271 | 28 | 3.36 | 4.75 | .80 | .65 | | 1991 | 1,254 | 38 | 3.14 | 5.29 | .30 | .57 | | 1992 | 825 | 45 | 3.93 | 5.36 | .52 | .71 | | 1993 | 587 | 34 | 3.37 | 4.96 | .51 | .64 | | 1994 | 1,045 | 47 | 4.18 | 5.42 | .44 | .75 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 014721612 FRENCH CREEK AT RAILROAD BRIDGE AT PHOENIXVILLE (SITE 16) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | <b>M</b> inimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------| | 1981 | 240 | 8 | 0,53 | 2.96 | 0.23 | 0.11 | | 1982 | 619 | 20 | 1.43 | 4.21 | .28 | .29 | | 1983 | 343 | 24 | 2.82 | 4.44 | .56 | .58 | | 1984 | 2,247 | 18 | 1.13 | 4.18 | .08 | .26 | | 1985 | 72 | 21 | 3.11 | 4.03 | 1.66 | .61 | | 1986 | 605 | 21 | 2.25 | 4.36 | .31 | .48 | | 1987 | 489 | 25 | 2.75 | 4.61 | .44 | .55 | | 1988 | <sup>1</sup> 1,340 | 20 | 2.04 | 4.34 | .15 | .45 | | 1989 | 270 | 36 | 3.84 | 5.01 | 1.03 | .71 | | 1990 | 113 | 22 | 3.09 | 4.07 | 1.24 | .65 | | 1991 | 727 | 24 | 2.25 | 4.52 | .30 | .46 | | 1992 | 115 | 13 | 2.76 | 3.61 | .67 | .71 | | 1993 | 985 | 33 | 3.02 | 5.05 | .32 | .57 | | 1994 | 656 | 22 | 2.34 | 4.45 | .30 | .49 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472170 PICKERING CREEK NEAR EAGLE (SITE 1) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max)</sub> | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------|-----------------| | 1981 | <sup>1</sup> 1,301 | 23 | 2,80 | 4.54 | 0.17 | 0.60 | | 1982 | <sup>1</sup> 2,643 | 22 | 2.64 | 4.45 | .09 | .58 | | 1983 | 2,715 | 31 | 2.78 | 4.94 | .13 | .55 | | 1984 | <sup>1</sup> 1,537 | 23 | 2.78 | 4.55 | .15 | .60 | | 1985 | 765 | 31 | 3.35 | 4.91 | .38 | .66 | | 1986 | 1,102 | 32 | 3.43 | 4.93 | .29 | .68 | | 1987 | 1,431 | 25 | 2.87 | 4.63 | .17 | .61 | | 1988 | 2,728 | 29 | 3.14 | 4.82 | .12 | .64 | | 1989 | 1,088 | 32 | 3.70 | 5.02 | .29 | .72 | | 1990 | 1,000 | 23 | 3.22 | 4.46 | .22 | .71 | | 1991 | 725 | 29 | 3.41 | 4.87 | .37 | .68 | | 1992 | 328 | 21 | 3.06 | 4.29 | .51 | .67 | | 1993 | 872 | 26 | 3.33 | 4.68 | .28 | .69 | | 1994 | 560 | 27 | 3.61 | 4.70 | .43 | .74 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472174 PICKERING CREEK NEAR CHESTER SPRINGS (SITE 2) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | <sup>1</sup> 747 | 20 | 2.41 | 4.26 | 0.24 | 0.54 | | 1982 | <sup>1</sup> 1,084 | 26 | 3.06 | 4.72 | .23 | .63 | | 1983 | 526 | 24 | 3.80 | 4.62 | .39 | .80 | | 1984 | <sup>1</sup> 1,350 | 21 | 3.17 | 4.36 | .15 | .72 | | 1985 | 595 | 28 | 3.14 | 4.73 | .42 | .63 | | 1986 | 488 | 30 | 3.44 | 4.75 | .53 | .69 | | 1987 | 170 | 18 | 2.42 | 4.04 | .73 | .51 | | 1988 | <sup>1</sup> 1,340 | 24 | 3.29 | 4.60 | .18 | .70 | | 1989 | 1,076 | 35 | 3.67 | 5.13 | .32 | .70 | | 1990 | 502 | 32 | 3.41 | 4.94 | .55 | .65 | | 1991 | 766 | 39 | 3.78 | 5.27 | .47 | .69 | | 1992 | 295 | 35 | 3.90 | 4.97 | .94 | .74 | | 1993 | 219 | 21 | 2.99 | 4.27 | .70 | .64 | | 1994 | 871 | 39 | 3.82 | 5.17 | .43 | .72 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 014721854 PICKERING CREEK AT MERLIN (SITE 3) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | <sup>1</sup> 1,757 | 27 | 2.72 | 4.70 | 0.16 | 0.56 | | 1982 | 2,123 | 30 | 3.17 | 4.90 | .15 | .63 | | 1983 | <sup>1</sup> 935 | 25 | 3.68 | 4.58 | .25 | .79 | | 1984 | <sup>1</sup> 2,005 | 24 | 3.07 | 4.52 | .17 | .66 | | 1985 | 912 | 39 | 3.63 | 5.25 | .41 | .67 | | 1986 | 1,049 | 36 | 2.67 | 5.08 | .33 | .49 | | 1987 | 1,396 | 38 | 3.34 | 5.24 | .28 | .62 | | 1988 | <sup>1</sup> 1,047 | 24 | 3.35 | 4.56 | .22 | .72 | | 1989 | 1,015 | 45 | 3.62 | 5.42 | .43 | .68 | | 1990 | 430 | 29 | 3.52 | 4.89 | .56 | .68 | | 1991 | 956 | 33 | 2.98 | 5.08 | .33 | .56 | | 1992 | 1,522 | 44 | 3.97 | 5.44 | .30 | .72 | | 1993 | 939 | 30 | 3.72 | 4.80 | .31 | .76 | | 1994 | 780 | 31 | 3.00 | 4.85 | .37 | .59 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 014721884 PICKERING CREEK AT CHARLESTOWN ROAD AT CHARLESTOWN (SITE 4) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 3,611 | 32 | 2.68 | 4.96 | 0.10 | 0.53 | | 1982 | 1,887 | 31 | 3.23 | 4.97 | .17 | .64 | | 1983 | <sup>1</sup> 1,316 | 27 | 3.42 | 4.72 | .21 | .71 | | 1984 | 1,943 | 26 | 3.14 | 4.72 | .14 | .66 | | 1985 | 557 | 27 | 3.26 | 4.72 | .42 | .66 | | 1986 | 2,593 | 38 | 2.93 | 5.25 | .15 | .54 | | 1987 | 2,312 | 36 | 3.34 | 5.16 | .17 | .64 | | 1988 | <sup>1</sup> 4,090 | 36 | 2.99 | 5.17 | .10 | .57 | | 1989 | 1,147 | 39 | 3.85 | 5.23 | .34 | .72 | | 1990 | 1,684 | 37 | 3.14 | 5.19 | .23 | .59 | | 1991 | 1,514 | 34 | 3.21 | 5.05 | .23 | .62 | | 1992 | 2,247 | 46 | 3.98 | 5.53 | .22 | .71 | | 1993 | 2,535 | 48 | 3,96 | 5.59 | .21 | .70 | | 1994 | 1,325 | 40 | 3.50 | 5.32 | .31 | .64 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01472190 PICKERING CREEK NEAR PHOENIXVILLE (SITE 5) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 2,081 | 32 | 2.77 | 4.98 | 0.17 | 0.54 | | 1982 | 3,232 | 39 | 3.00 | 5.30 | .14 | .56 | | 1983 | 2,183 | 38 | 3.50 | 5.18 | .19 | .66 | | 1984 | 1,513 | 32 | 3.38 | 4.92 | .22 | .67 | | 1985 | 438 | 30 | 3.32 | 4.81 | .58 | .65 | | 1986 | 1,150 | 40 | 3.46 | 5.34 | .34 | .62 | | 1987 | 2,029 | 39 | 3.55 | 5.30 | .21 | .66 | | 1988 | <sup>1</sup> 2,651 | 28 | 2.83 | 4.81 | .12 | .58 | | 1989 | 373 | 34 | 3.64 | 5.13 | .75 | .66 | | 1990 | 948 | 30 | 2,53 | 4.88 | .49 | .49 | | 1991 | 3,066 | 42 | 3.28 | 5.37 | .16 | .60 | | 1992 | 1,775 | 47 | 3.78 | 5.78 | .28 | .66 | | 1993 | 1,259 | 36 | 2.95 | 5.18 | .29 | .55 | | 1994 | 1,177 | 29 | 2.72 | 4.87 | .24 | .54 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01473167 LITTLE VALLEY CREEK AT HOWELLVILLE (SITE 49) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min)</sub> | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------|-----------------| | 1981 | 2,871 | 20 | 2.70 | 4.31 | 0.08 | 0.62 | | 1982 | 2,454 | 21 | 2,76 | 4.37 | .09 | .62 | | 1983 | 1,231 | 18 | 2.66 | 4.13 | .14 | .63 | | 1984 | 1,218 | 17 | 2,65 | 4.05 | .14 | .64 | | 1985 | 551 | 20 | 2.82 | 4.27 | .31 | .63 | | 1986 | 1,102 | 17 | 3.10 | 4.05 | .15 | .75 | | 1987 | 1,357 | 15 | 3.06 | 3.89 | .11 | .78 | | 1988 | <sup>1</sup> 1,375 | 20 | 3,17 | 4.32 | .14 | .73 | | 1989 | 346 | 17 | 3,10 | 4.01 | .39 | .75 | | 1990 | 518 | 15 | 3.14 | 3.84 | .24 | .80 | | 1991 | 481 | 14 | 2.95 | 3.78 | .24 | .77 | | 1992 | 913 | 19 | 3.17 | 4.19 | .19 | .74 | | 1993 | 804 | 16 | 2.83 | 3.83 | .18 | .71 | | 1994 | 1,068 | 15 | 3.30 | 3.86 | .13 | .85 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01473168 VALLEY CREEK NEAR VALLEY FORGE (SITE 50) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 2,183 | 20 | 2.51 | 4.29 | 0.10 | 0.58 | | 1982 | 3,144 | 20 | 2.67 | 4.33 | .07 | .61 | | 1983 | 1,745 | 16 | 2.66 | 3.96 | .09 | .66 | | 1984 | 2,073 | 21 | 2.68 | 4.35 | .11 | .61 | | 1985 | 1,354 | 19 | 2.77 | 4.25 | .14 | .64 | | 1986 | 1,820 | 19 | 2.77 | 4.20 | .11 | .65 | | 1987 | 1,625 | 22 | 3.13 | 4.47 | .14 | .69 | | 1988 | <sup>1</sup> 2,278 | 15 | 2.78 | 3.92 | .07 | .71 | | 1989 | 1,046 | 22 | 3.37 | 4.43 | .20 | .75 | | 1990 | 1,557 | 19 | 2.90 | 4.27 | .12 | .67 | | 1991 | 1,020 | 21 | 3.02 | 4.38 | .20 | .68 | | 1992 | 1,848 | 23 | 3.20 | 4.50 | .13 | .70 | | 1993 | 1,307 | 22 | 2.71 | 4.46 | .17 | .59 | | 1994 | 1,561 | 23 | 3.15 | 4.55 | .15 | .68 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01475300 DARBY CREEK AT WATERLOO MILLS NEAR DEVON (SITE 17) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 524 | 23 | 3.35 | 4.57 | 0.38 | 0.71 | | 1982 | 215 | 20 | 3.44 | 4.30 | .68 | .76 | | 1983 | 403 | 28 | 3.26 | 4.71 | .58 | .65 | | 1984 | 1,208 | 28 | 3.68 | 4.73 | .23 | .77 | | 1985 | 968 | 26 | 3.42 | 4.62 | .26 | .73 | | 1986 | 706 | 26 | 3.57 | 4.62 | .33 | .76 | | 1987 | 1,115 | 27 | 3.70 | 4.70 | .24 | .78 | | 1988 | <sup>1</sup> 2,008 | 24 | 2.60 | 4.59 | .12 | .56 | | 1989 | 1,165 | 39 | 3.75 | 5.32 | .33 | .69 | | 1990 | 450 | 19 | 2.89 | 4.21 | .35 | .66 | | 1991 | 1,352 | 24 | 2.47 | 4.57 | .18 | .52 | | 1992 | 918 | 35 | 3,40 | 5.04 | .36 | .65 | | 1993 | 369 | 19 | 1.51 | 4.20 | .41 | .29 | | 1994 | 883 | 29 | 3.19 | 4.80 | .31 | .64 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01475830 CRUM CREEK NEAR PAOLI (SITE 18) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,133 | 29 | 3.53 | 4.78 | 0.25 | 0.73 | | 1982 | 581 | 27 | 3.62 | 4.68 | .41 | .75 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01475840 CRUM CREEK AT WHITEHORSE (SITE 19) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 992 | 38 | 3.61 | 5.14 | 0.37 | 0.68 | | 1982 | 1,636 | 35 | 3.38 | 5.11 | .22 | .65 | | 1983 | 525 | 30 | 3.12 | 4.85 | .50 | .60 | | 1984 | 1,222 | 26 | 3.07 | 4.73 | .21 | .63 | | 1985 | 568 | 28 | 2.85 | 4.73 | .43 | .56 | | 1986 | 907 | 28 | 2.85 | 4.78 | .29 | .57 | | 1987 | 1,285 | 33 | 3.91 | 5.08 | .26 | .76 | | 1988 | <sup>1</sup> 2,028 | 24 | 2.01 | 4.59 | .13 | .42 | | 1989 | 1,644 | 38 | 3.33 | 5.19 | .24 | .62 | | 1990 | 1,117 | 37 | 3.30 | 5.12 | .33 | .62 | | 1991 | 1,789 | 36 | 3.24 | 5.20 | .21 | .61 | | 1992 | 1,881 | 32 | 3.18 | 4.99 | .18 | .62 | | 1993 | 538 | 25 | 3,14 | 4.62 | .40 | .65 | | 1994 | 1,240 | 32 | 3.54 | 4.97 | .26 | .70 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01476430 RIDLEY CREEK AT GOSHENVILLE (SITE 20) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity Index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 241 | 27 | 3.14 | 4.78 | 0.85 | 0.58 | | 1982 | <sup>1</sup> 1,345 | 29 | 3.60 | 4.81 | .22 | .74 | | 1983 | <sup>1</sup> 855 | 22 | 3.31 | 4.45 | .24 | .73 | | 1984 | <sup>1</sup> 1,688 | 21 | 3.02 | 4.42 | .13 | .67 | | 1985 | 722 | 19 | 2.89 | 4.27 | .24 | .66 | | 1986 | 980 | 26 | 3,61 | 4.68 | .25 | .76 | | 1987 | 1,881 | 30 | 3.73 | 4.90 | .17 | .75 | | 1988 | <sup>1</sup> 1,660 | 26 | 3.39 | 4.65 | .16 | .72 | | 1989 | 767 | 26 | 3.16 | 4.66 | .31 | .65 | | 1990 | 757 | 30 | 2.88 | 4.81 | .37 | .56 | | 1991 | 547 | 20 | 2.65 | 4.27 | .31 | .59 | | 1992 | 1,297 | 31 | 3.06 | 4.87 | .24 | .61 | | 1993 | 511 | 24 | 3.40 | 4.50 | .40 | .73 | | 1994 | 572 | 26 | 3.64 | 4.56 | .40 | .78 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01476435 RIDLEY CREEK AT DUTTON MILL NEAR WEST CHESTER (SITE 21) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,407 | 33 | 3.52 | 5.02 | 0.24 | 0.69 | | 1982 | <sup>1</sup> 1,578 | 27 | 3.02 | 4.76 | .17 | .62 | | 1983 | <sup>1</sup> 1,697 | 32 | 3.34 | 5.02 | .20 | .65 | | 1984 | <sup>1</sup> 3,842 | 26 | 3.15 | 4.68 | .08 | .67 | | 1985 | 1,617 | 27 | 3.04 | 4.77 | .17 | .62 | | 1986 | 1,629 | 30 | 3.54 | 4.88 | .19 | .71 | | 1987 | 1,198 | 27 | 3.35 | 4.71 | .22 | .70 | | 1988 | <sup>1</sup> 2,446 | 25 | 3.07 | 4.66 | .11 | .65 | | 1989 | 1,347 | 29 | 2.77 | 4.84 | .22 | .55 | | 1990 | 2,813 | 39 | 2.94 | 5.30 | .16 | .54 | | 1991 | 1,509 | 21 | 2.45 | 4.37 | .14 | .55 | | 1992 | 1,391 | 32 | 3.20 | 4.96 | .23 | .63 | | 1993 | 1,467 | 36 | 3,45 | 5.17 | .25 | .65 | | 1994 | 1,322 | 28 | 3.32 | 4.73 | .21 | .69 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01476790 EAST BRANCH CHESTER CREEK AT GREEN HILL (SITE 22) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 323 | 25 | 3.44 | 4.68 | 0.62 | 0.70 | | 1982 | 464 | 20 | 3.32 | 4.23 | .36 | .77 | | 1983 | 319 | 22 | 3.20 | 4.39 | .54 | .69 | | 1984 | 519 | 21 | 3.21 | 4.36 | .35 | .71 | | 1985 | 247 | 13 | 3.21 | 3.54 | .38 | .89 | | 1986 | 338 | 21 | 3.17 | 4.25 | .49 | .71 | | 1987 | 1,304 | 32 | 3.46 | 5.01 | .25 | .67 | | 1988 | <sup>1</sup> 1,014 | 19 | 3.06 | 4.18 | .18 | .72 | | 1989 | 231 | 22 | 1.70 | 4.29 | .72 | .28 | | 1990 | 425 | 16 | 1.25 | 3.93 | .31 | .26 | | 1991 | 505 | 23 | 2.44 | 4.55 | .39 | .49 | | 1992 | 451 | 19 | 2.37 | 4.20 | .35 | .52 | | 1993 | 106 | 15 | 2.62 | 3.59 | .88 | .64 | | 1994 | 294 | 23 | 2.93 | 4.46 | .62 | .60 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01476830 EAST BRANCH CHESTER CREEK AT MILLTOWN (SITE 23) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,371 | 28 | 2.84 | 4.73 | 0.20 | 0.58 | | 1982 | 1,700 | 27 | 2.98 | 4.70 | .16 | .62 | | 1983 | 1,247 | 31 | 3.16 | 4.90 | .25 | .63 | | 1984 | 1,085 | 29 | 3.36 | 4.82 | .26 | .68 | | 1985 | 991 | 25 | 3.51 | 4.55 | .24 | .76 | | 1986 | 518 | 19 | 2.66 | 4.12 | .32 | .62 | | 1987 | 2,252 | 31 | 3,72 | 4.92 | .15 | .75 | | 1988 | <sup>1</sup> 2,477 | 24 | 3.06 | 4.60 | .10 | .66 | | 1989 | 4,174 | 33 | 3.10 | 5.06 | .09 | .60 | | 1990 | 2,625 | 33 | 2.80 | 5.05 | .14 | .54 | | 1991 | 1,731 | 26 | 2.48 | 4.68 | .16 | .51 | | 1992 | 2,926 | 38 | 3,16 | 5.21 | .14 | .60 | | 1993 | 693 | 20 | 1.91 | 4.28 | .26 | .41 | | 1994 | 2,643 | 30 | 2.54 | 4.92 | .13 | .50 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01476835 EAST BRANCH CHESTER CREEK AT WESTTOWN (SITE 24) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouiri's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,783 | 28 | 3.21 | 4.83 | 0.16 | 0.65 | | 1982 | 3,535 | 22 | 2.52 | 4.45 | .07 | .56 | | 1983 | 2,250 | 30 | 3.19 | 4.85 | .14 | .65 | | 1984 | 2,424 | 30 | 3.30 | 4.86 | .13 | .67 | | 1985 | 1,365 | 25 | 2.18 | 4.60 | .18 | .45 | | 1986 | 1,026 | 19 | 3.10 | 4.27 | .18 | .71 | | 1987 | 2,592 | 29 | 3.15 | 4.87 | .12 | .64 | | 1988 | <sup>1</sup> 1,677 | 22 | 3.01 | 4.47 | .13 | .66 | | 1989 | 1,518 | 27 | 3.12 | 4.71 | .18 | .65 | | 1990 | 3,087 | 33 | 3.16 | 5.01 | .12 | .62 | | 1991 | 1,808 | 27 | 3.07 | 4.76 | .16 | .63 | | 1992 | 2,471 | 24 | 2.62 | 4.59 | .10 | .56 | | 1993 | 643 | 24 | 3.65 | 4.60 | .33 | .78 | | 1994 | 767 | 24 | 2.84 | 4.51 | .28 | .60 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01476840 GOOSE CREEK TRIBUTARY TO EAST BRANCH CHESTER CREEK NEAR WEST CHESTER (SITE 25) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 356 | 9 | 1.50 | 3.13 | 0.19 | 0.45 | | 1982 | <sup>1</sup> 9,644 | 8 | 1.13 | 3.00 | .01 | .37 | | 1983 | <del></del> | <del></del> | 能之 <b>一</b> 类。 | | _ | _ | | 1984 | <del></del> | | e de la companya l | _ | | _ | | 1985 | <del></del> | _ | | | <del></del> | _ | | 1986 | | _ | | _ | | _ | | 1987 | | _ | 36 <del>-</del> 180 | | | _ | | 1988 | <sup>2</sup> 587 | 12 | 2,02 | 3.56 | .17 | .55 | | 1989 | 3,091 | 17 | 1.86 | 4.09 | .06 | .45 | | 1990 | 1,111 | 20 | 2.21 | 4.32 | .17 | .49 | | 1991 | 2,108 | 17 | 1.31 | 4.08 | .08 | .31 | | 1992 | 1,095 | 20 | 2.31 | 4.32 | .18 | .52 | | 1993 | 765 | 16 | 2.34 | 3.92 | .19 | .58 | | 1994 | 671 | 11 | 1.66 | 3.46 | .14 | .52 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 1/4 subsample. <sup>&</sup>lt;sup>2</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01476848 EAST BRANCH CHESTER CREEK BELOW GOOSE CREEK NEAR WEST CHESTER (SITE 51) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | | | | <del>-</del> | <del></del> | _ | | 1982 | | _ | | _ | <del></del> | _ | | 1983 | 2,869 | 22 | 2.41 | 4.44 | 0.08 | 0.53 | | 1984 | 2,874 | 22 | 2.81 | 4.47 | .08 | .62 | | 1985 | 4,236 | 19 | 2.18 | 4.24 | .05 | .51 | | 1986 | 1,514 | 23 | 2.39 | 4.47 | .15 | .52 | | 1987 | 12,174 | 20 | 1.75 | 4.33 | .02 | .40 | | 1988 | <sup>1</sup> 3,963 | 17 | 2.58 | 4.09 | .05 | .63 | | 1989 | 926 | 28 | 2.97 | 4.75 | .28 | .60 | | 1990 | 3,033 | 31 | 2.77 | 4.54 | .11 | .55 | | 1991 | 3,951 | 27 | 2.64 | 4.76 | .08 | .55 | | 1992 | 3,046 | 26 | 2.40 | 4.70 | .10 | .50 | | 1993 | 1,169 | 28 | 3.04 | 4.79 | .24 | .62 | | 1994 | 2,093 | 32 | 2.77 | 5.02 | .16 | .54 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01478120 EAST BRANCH WHITE CLAY CREEK NEAR AVONDALE (SITE 28) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 836 | 18 | 3,06 | 4.14 | 0.20 | 0.73 | | 1982 | 1,295 | 23 | 2.74 | 4.50 | .18 | .59 | | 1983 | 1,368 | 18 | 2.61 | 4.19 | .13 | .61 | | 1984 | 932 | 16 | 1.96 | 3.93 | .16 | .48 | | 1985 | 1,007 | 22 | 2.53 | 4.49 | .21 | .54 | | 1986 | 1,026 | 19 | 2.26 | 4.23 | .18 | .51 | | 1987 | 4,223 | 19 | 2.02 | 4.26 | .05 | .47 | | 1988 | <sup>1</sup> 2,624 | 19 | 2.31 | 4.26 | .08 | .53 | | 1989 | 1,797 | 29 | 3,16 | 4.79 | .17 | .65 | | 1990 | 1,492 | 20 | 2.60 | 4.29 | .13 | .59 | | 1991 | 2,007 | 19 | 2.70 | 4.25 | .10 | .63 | | 1992 | 2,514 | 29 | 3.43 | 4.83 | .13 | .70 | | 1993 | 2,090 | 27 | 2.83 | 4.72 | .12 | .61 | | 1994 | 1,779 | 28 | 2.74 | 4.79 | .16 | .56 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01478190 MIDDLE BRANCH WHITE CLAY CREEK NEAR WICKERTON (SITE 29) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 780 | 16 | 2,82 | 4.00 | 0.18 | 0.69 | | 1982 | 1,697 | 19 | 2.43 | 4.23 | .11 | .56 | | 1983 | 833 | 17 | 2.82 | 4.12 | .19 | .67 | | 1984 | 1,742 | 19 | 2.54 | 4.25 | .11 | .59 | | 1985 | 1,265 | 25 | 2.77 | 4.57 | .19 | .59 | | 1986 | 898 | 24 | 3.07 | 4.59 | .25 | .65 | | 1987 | 1,314 | 23 | 2.56 | 4.48 | .17 | .55 | | 1988 | <sup>1</sup> 3,440 | 21 | 2.74 | 4.37 | .07 | .62 | | 1989 | 1,438 | 26 | 3.23 | 4.66 | .18 | .68 | | 1990 | 2,008 | 29 | 2.74 | 4.83 | .15 | .55 | | 1991 | 2,464 | 24 | 2.68 | 4.57 | .11 | .58 | | 1992 | 1,458 | 32 | 3.30 | 4.98 | .22 | .65 | | 1993 | 829 | 19 | 2.98 | 4.19 | .21 | .67 | | 1994 | 1,912 | 24 | 3.41 | 4.58 | .13 | .74 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01478220 WEST BRANCH WHITE CLAY CREEK NEAR CHESTERVILLE (SITE 30) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | <b>M</b> inimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------| | 1981 | 1,216 | 22 | 2.70 | 4.42 | 0.18 | 0.59 | | 1982 | 2,270 | 23 | 2.08 | 4.50 | .11 | .45 | | 1983 | 794 | 23 | 2.82 | 4.50 | .27 | .60 | | 1984 | 1,232 | 23 | 2.94 | 4.45 | .18 | .65 | | 1985 | 836 | 29 | 2.65 | 4.84 | .33 | .52 | | 1986 | 1,079 | 24 | 3.22 | 4.56 | .21 | .69 | | 1987 | 1,665 | 24 | 3.27 | 4.58 | .15 | .71 | | 1988 | <sup>1</sup> 2,065 | 23 | 3.13 | 4.48 | .12 | .69 | | 1989 | 1,114 | 34 | 3.74 | 5.08 | .30 | .72 | | 1990 | 1,794 | 29 | 3.55 | 4.87 | .16 | .72 | | 1991 | 1,438 | 27 | 2.82 | 4.82 | .19 | .58 | | 1992 | 1,472 | 34 | 3.54 | 5.07 | .23 | .68 | | 1993 | 1,270 | 33 | 2.93 | 4.98 | .26 | .57 | | 1994 | 1,027 | 25 | 2.73 | 4.68 | .23 | .56 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01479680 WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE (SITE 27) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 211 | 11 | 1.61 | 3.32 | 0.37 | 0.39 | | 1982 | 777 | 13 | 2.62 | 3.71 | .15 | .64 | | 1983 | 84 | 11 | 2.45 | 3.39 | .75 | .64 | | 1984 | 468 | 10 | 1,98 | 3.35 | .17 | .54 | | 1985 | 326 | 18 | 2.31 | 4.04 | .43 | .52 | | 1986 | 107 | 10 | 1.90 | 3.31 | .56 | .49 | | 1987 | 267 | 15 | 2.61 | 3.92 | .42 | .63 | | 1988 | 546 | 17 | 2.75 | 4.13 | .27 | .64 | | 1989 | 758 | 33 | 3.63 | 4.90 | .40 | .72 | | 1990 | 1,843 | 26 | 2.01 | 4.64 | .15 | .41 | | 1991 | 424 | 14 | 1.94 | 3.69 | .27 | .49 | | 1992 | 410 | 14 | 2.42 | 3.78 | .27 | .61 | | 1993 | 834 | 28 | 2.78 | 4.84 | .31 | .55 | | 1994 | 922 | 24 | 2.15 | 4.52 | .25 | .44 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01479800 EAST BRANCH RED CLAY CREEK NEAR FIVE POINT (SITE 26) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity Index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | <b>M</b> inimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------| | 1981 | 1,055 | 14 | 2.21 | 3.82 | 0.12 | 0.56 | | 1982 | 285 | 16 | 2.90 | 3.96 | .43 | .70 | | 1983 | 577 | 17 | 1.73 | 3.98 | .25 | .39 | | 1984 | 2,375 | 12 | .85 | 3.59 | .05 | .23 | | 1985 | 627 | 16 | 2.03 | 3.92 | .22 | .49 | | 1986 | 34 | 10 | 1.92 | 3.00 | 1.30 | .37 | | 1987 | 577 | 17 | 2.08 | 4.11 | .25 | .47 | | 1988 | 920 | 11 | 1.77 | 3.45 | .11 | .50 | | 1989 | 545 | 17 | 2.34 | 3.99 | .27 | .56 | | 1990 | 2,652 | 19 | 1.86 | 4.23 | .08 | .43 | | 1991 | 700 | 15 | 1.82 | 3.88 | .19 | .44 | | 1992 | 1,054 | 26 | 2.58 | 4.67 | .24 | .53 | | 1993 | 761 | 23 | 3.05 | 4.44 | .28 | .67 | | 1994 | 998 | 21 | 2.19 | 4.37 | .20 | .48 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480434 WEST BRANCH BRANDYWINE CREEK AT ROCK RUN (SITE 37) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 551 | 29 | 3.36 | 4.75 | 0.46 | 0.68 | | 1982 | 1,086 | 31 | 3.28 | 4.94 | .28 | .64 | | 1983 | 1,241 | 31 | 2.36 | 4.87 | .25 | .46 | | 1984 | 1,052 | 30 | 2.95 | 4.81 | .28 | .59 | | 1985 | 1,711 | 32 | 3.20 | 4.95 | .20 | .63 | | 1986 | 646 | 34 | 3.66 | 4.92 | .47 | .72 | | 1987 | 1,278 | 36 | 2.95 | 5.14 | .28 | .55 | | 1988 | 1,182 | 28 | 2.68 | 4.78 | .23 | .54 | | 1989 | 1,399 | 36 | 3.25 | 5.07 | .26 | .62 | | 1990 | 1,020 | 29 | 2.93 | 4.78 | .27 | .59 | | 1991 | 1,793 | 38 | 2.55 | 5.20 | .22 | .47 | | 1992 | 1,376 | 38 | 3,61 | 5.15 | .28 | .68 | | 1993 | 665 | 31 | 3.27 | 4.87 | .42 | .64 | | 1994 | 1,471 | 32 | 3.10 | 5.03 | .22 | .60 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480629 BUCK RUN AT DOE RUN (SITE 46) | Year | Total<br>riumber of<br>organisms | Total<br>riumber<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Everiness<br>(E) | |------|----------------------------------|-----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|------------------| | 1981 | 1,026 | 19 | 2.68 | 4.26 | 0.18 | 0.61 | | 1982 | <sup>1</sup> 1,647 | 16 | 2.34 | 4.00 | .10 | .57 | | 1983 | <sup>1</sup> 1,846 | 17 | 1.80 | 4.05 | .09 | .43 | | 1984 | <sup>1</sup> 2,272 | 21 | 2,63 | 4.41 | .10 | .59 | | 1985 | 1,091 | 21 | 3.43 | 4.42 | .18 | .77 | | 1986 | 1,769 | 23 | 2.55 | 4.47 | .13 | .56 | | 1987 | 1,644 | 25 | 2,69 | 4.66 | .16 | .56 | | 1988 | <sup>1</sup> 2,070 | 24 | 3.20 | 5.54 | .12 | .70 | | 1989 | 1,353 | 32 | 2.68 | 4.98 | .24 | .51 | | 1990 | 1,804 | 39 | 3.53 | 5.24 | .23 | .66 | | 1991 | 1,756 | 26 | 2.46 | 4.67 | .15 | .51 | | 1992 | 1,432 | 34 | 3,24 | 5.01 | .24 | .63 | | 1993 | 1,403 | 31 | 3,15 | 4.87 | .22 | .63 | | 1994 | 2,602 | 24 | 2.80 | 4.59 | .10 | .60 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480632 DOE RUN AT SPRINGDELL (SITE 45) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | <sup>1</sup> 1,133 | 24 | 3,30 | 4.60 | 0.21 | 0.71 | | 1982 | <sup>1</sup> 1,620 | 25 | 2.93 | 4.58 | .16 | .63 | | 1983 | <sup>1</sup> 1,405 | 23 | 2.93 | 4.55 | .16 | .63 | | 1984 | <sup>1</sup> 1,608 | 22 | a.n | 4.46 | .14 | .69 | | 1985 | 974 | 20 | 2.67 | 4.24 | .19 | .61 | | 1986 | 774 | 19 | 2,92 | 4.25 | .22 | .67 | | 1987 | 1,617 | 26 | 3.00 | 4.66 | .16 | .63 | | 1988 | <sup>1</sup> 1,818 | 22 | 3.30 | 4.42 | .13 | .74 | | 1989 | 1,430 | 34 | 3.44 | 5.12 | .24 | .66 | | 1990 | 1,752 | 25 | 3.28 | 4.60 | .15 | .70 | | 1991 | 1,392 | 29 | 3.33 | 4.88 | .21 | .67 | | 1992 | 1,195 | 23 | 3.29 | 4.52 | .19 | .71 | | 1993 | 1,229 | 32 | 3.45 | 4.92 | .26 | .68 | | 1994 | 1,300 | 23 | 3.14 | 4.51 | .17 | .69 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480640 WEST BRANCH BRANDYWINE CREEK AT WAWASET (SITE 38) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 598 | 31 | 2.95 | 4.90 | 0.46 | 0.56 | | 1982 | 1,655 | 21 | 2.87 | 4.40 | .13 | .64 | | 1983 | 1,110 | 27 | 3.21 | 4.78 | .24 | .66 | | 1984 | 1,402 | 22 | 2.61 | 4.48 | .16 | .57 | | 1985 | 1,085 | 24 | 2.24 | 4.62 | .21 | .46 | | 1986 | 769 | 24 | 3.09 | 4.52 | .28 | .66 | | 1987 | 402 | 23 | 3.20 | 4.46 | .47 | .69 | | 1988 | <sup>1</sup> 1,939 | 22 | 2.84 | 4.43 | .12 | .63 | | 1989 | 1,631 | 31 | 3.02 | 4.95 | .20 | .59 | | 1990 | 1,532 | 39 | 3.30 | 5.23 | .26 | .61 | | 1991 | 1,418 | 31 | 3.19 | 4.94 | .22 | .63 | | 1992 | 1,041 | 34 | 3.46 | 5.07 | .32 | .66 | | 1993 | 764 | 39 | 3.79 | 5.28 | .47 | .69 | | 1994 | 1,005 | 37 | 3.88 | 5.11 | .36 | .74 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480647 EAST BRANCH BRANDYWINE CREEK NEAR STRUBLE DAM (SITE 43) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 303 | 22 | 2.50 | 4.39 | 0.58 | 0.50 | | 1982 | 566 | 25 | 3.24 | 4.67 | .38 | .67 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480648 EAST BRANCH BRANDYWINE CREEK NEAR CUPOLA (SITE 48) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,310 | 43 | 4.10 | 5.37 | 0.33 | 0.75 | | 1982 | 2,529 | 35 | 3.21 | 5.08 | .15 | .62 | | 1983 | 733 | 32 | 3.61 | 5.03 | .40 | .69 | | 1984 | 1,652 | 24 | 3.04 | 4.58 | .15 | .65 | | 1985 | 689 | 28 | 3.43 | 4.75 | .37 | .70 | | 1986 | 895 | 33 | 3.64 | 4.94 | .35 | .72 | | 1987 | 1,139 | 31 | 3.15 | 4.96 | .27 | .61 | | 1988 | <sup>1</sup> 1,984 | 32 | 3.43 | 4.94 | .17 | .68 | | 1989 | 3,846 | 46 | 3.61 | 5.51 | .14 | .65 | | 1990 | 538 | 25 | 3.20 | 4.59 | .40 | .67 | | 1991 | 926 | 37 | 3.43 | 5.09 | .38 | .65 | | 1992 | 610 | 25 | 3.31 | 4.58 | .36 | .70 | | 1993 | 2,016 | 49 | 3.49 | 5.55 | .26 | .61 | | 1994 | 973 | 31 | 3.59 | 4.87 | .31 | .72 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480653 EAST BRANCH BRANDYWINE CREEK AT GLENMOORE (SITE 42) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | <b>M</b> inimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------| | 1981 | 752 | 36 | 3.43 | 5.18 | 0.44 | 0.63 | | 1982 | 1,708 | 47 | 3.81 | 5.51 | .30 | .67 | | 1983 | 1,338 | 45 | 3.93 | 5.50 | .34 | .70 | | 1984 | 1,008 | 36 | 3.69 | 5.20 | .35 | .69 | | 1985 | 1,361 | 43 | 3.73 | 5.41 | .32 | .67 | | 1986 | 723 | 48 | 4.20 | 5.63 | .62 | .72 | | 1987 | 1,435 | 36 | 3.49 | 5.20 | .25 | .65 | | 1988 | <sup>1</sup> 1,671 | 33 | 3.45 | 5.01 | .21 | .68 | | 1989 | 2,617 | 46 | 3.70 | 5.55 | .19 | .66 | | 1990 | 973 | 41 | 3.73 | 5.31 | .41 | .68 | | 1991 | 1,825 | 42 | 3.56 | 5.36 | .24 | .65 | | 1992 | 1,330 | 50 | 3.99 | 5.60 | .38 | .69 | | 1993 | 1,554 | 48 | 3.91 | 5.52 | .32 | .69 | | 1994 | 1,378 | 47 | 3.99 | 5.47 | .35 | .71 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480656 INDIAN RUN NEAR SPRINGTON (SITE 47) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,050 | 37 | 3.51 | 5.16 | 0.34 | 0.66 | | 1982 | 1,883 | 40 | 3.35 | 5.24 | .23 | .62 | | 1983 | 1,165 | 38 | 3.57 | 2.25 | .32 | .66 | | 1984 | 1,027 | 33 | 3.74 | 4.95 | .31 | .74 | | 1985 | 729 | 29 | 3.26 | 4.73 | .37 | .66 | | 1986 | 688 | 34 | 3.28 | 4.95 | .45 | .63 | | 1987 | 640 | 35 | 3.42 | 5.02 | .49 | .65 | | 1988 | <sup>1</sup> 787 | 29 | 3.67 | 4.77 | .34 | .75 | | 1989 | 1,288 | 32 | 3.72 | 4.91 | .25 | .75 | | 1990 | 840 | 32 | 3.49 | 4.89 | .36 | .69 | | 1991 | 589 | 31 | 3.64 | 4.81 | .46 | .73 | | 1992 | 440 | 25 | 3.56 | 4.61 | .48 | .75 | | 1993 | 770 | 34 | 3.99 | 5.08 | .41 | .77 | | 1994 | 1,232 | 34 | 3.73 | 5.02 | .27 | .73 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480700 EAST BRANCH BRANDYWINE CREEK NEAR DOWNINGTOWN (SITE 36) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | <sup>1</sup> 2,450 | 28 | 2.65 | 4.81 | 0.12 | 0.54 | | 1982 | <sup>1</sup> 11,821 | 23 | .94 | 4.52 | .02 | .20 | | 1983 | <sup>1</sup> 2,848 | 31 | 2.84 | 4.95 | .12 | .56 | | 1984 | <sup>1</sup> 5,962 | 33 | 2.13 | 5.03 | .07 | .42 | | 1985 | 1,866 | 30 | 3.06 | 4.91 | .17 | .61 | | 1986 | 2,232 | 31 | 2.92 | 4.90 | .15 | .58 | | 1987 | 2,179 | 31 | 3.06 | 4.93 | .15 | .61 | | 1988 | <sup>1</sup> 1,499 | 24 | 2.65 | 4.56 | .16 | .57 | | 1989 | 2,207 | 41 | 3.17 | 5.36 | .20 | .58 | | 1990 | 2,488 | 46 | 3,51 | 5.46 | .20 | .63 | | 1991 | 1,398 | 41 | 3.26 | 5.27 | .30 | .60 | | 1992 | 2,426 | 46 | 3.55 | 5.50 | .21 | .63 | | 1993 | 1,896 | 49 | 3.70 | 5.61 | .28 | .64 | | 1994 | 1,022 | 38 | 3.54 | 5.27 | .36 | .65 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480903 VALLEY CREEK AT MULLSTEINS MEADOW NEAR DOWNINGTOWN (SITE 44) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 2,812 | 33 | 2.29 | 5.02 | 0.13 | 0.65 | | 1982 | 1,556 | 33 | 3.23 | 4.98 | .22 | .63 | | 1983 | 1,918 | 26 | 3.25 | 4.70 | .14 | .68 | | 1984 | 1,475 | 25 | 2.96 | 4.67 | .17 | .62 | | 1985 | 2,091 | 33 | 3.27 | 5.03 | .17 | .64 | | 1986 | 1,079 | 24 | 2.96 | 4.50 | .21 | .64 | | 1987 | 2,352 | 33 | 3.16 | 5.01 | .15 | .62 | | 1988 | <sup>1</sup> 2,626 | 22 | 2.65 | 4.46 | .09 | .59 | | 1989 | 1,105 | 30 | 3.10 | 4.93 | .26 | .61 | | 1990 | 1,100 | 28 | 2.68 | 4.84 | .25 | .53 | | 1991 | 1,499 | 21 | 2.40 | 4.34 | .14 | .54 | | 1992 | 1,380 | 28 | 3.28 | 4.76 | .20 | .67 | | 1993 | 1,179 | 36 | 3.27 | 5.14 | .30 | .61 | | 1994 | 1,163 | 27 | 3.49 | 4.68 | .23 | .73 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01480950 EAST BRANCH BRANDYWINE CREEK AT WAWASET (SITE 39) | Year | Total<br>riumber of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|----------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 641 | 31 | 3,63 | 4.93 | 0.44 | 0.71 | | 1982 | 2,825 | 36 | 3.49 | 5.13 | .14 | .67 | | 1983 | 771 | 36 | 3,49 | 5.07 | .44 | .66 | | 1984 | 2,999 | 42 | 3.06 | 5.37 | .16 | .56 | | 1985 | 699 | 27 | 3.00 | 4.80 | .35 | .60 | | 1986 | 2,583 | 44 | 3.22 | 5.46 | .19 | .57 | | 1987 | 1,115 | 40 | 3.64 | 5.32 | .35 | .66 | | 1988 | 1,357 | 28 | 3.29 | 4.77 | .21 | .68 | | 1989 | 2,698 | 40 | 3.62 | 5.28 | .17 | .67 | | 1990 | 3,793 | 44 | 3.09 | 5.46 | .14 | .55 | | 1991 | 11,771 | 50 | 1.28 | 5.63 | .06 | .22 | | 1992 | 1,354 | 19 | 2.83 | 4.23 | .14 | .66 | | 1993 | 1,701 | 33 | 3.47 | 5.00 | .20 | .68 | | 1994 | 792 | 41 | 3.63 | 5.23 | .49 | .66 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01481030 BRANDYWINE CREEK NEAR CHADDS FORD (SITE 40) | Year | Total<br>numberof<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|--------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 651 | 23 | 3.28 | 4.45 | 0.32 | 0.72 | | 1982 | 1,673 | 30 | 3.28 | 4.88 | .19 | .66 | | 1983 | 1,009 | 32 | 3.24 | 5.01 | .30 | .62 | | 1984 | 1,446 | 24 | 2.86 | 4.52 | .17 | .62 | | 1985 | 993 | 25 | 3.41 | 4.68 | .24 | .72 | | 1986 | 428 | 36 | 3.92 | 5.19 | .71 | .72 | | 1987 | 1,046 | 37 | 3.53 | 5.14 | .34 | .66 | | 1988 | <sup>1</sup> 1,824 | 25 | 3.64 | 4.65 | .14 | .78 | | 1989 | 2,155 | 37 | 3.43 | 5.16 | .18 | .65 | | 1990 | 1,702 | 31 | 3.45 | 4.96 | .19 | .68 | | 1991 | 2,380 | 31 | 2.88 | 4.91 | .14 | .57 | | 1992 | 1,835 | 29 | 3.08 | 4.83 | .16 | .62 | | 1993 | 1,142 | 36 | 4.02 | 5.16 | .31 | .76 | | 1994 | 1,424 | 32 | 3.63 | 4.93 | .23 | .72 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01494900 EAST BRANCH BIG ELK CREEK AT ELKVIEW (SITE 31) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>div <b>e</b> rsity<br>(H <sub>max</sub> ) | Minimum<br>div <b>e</b> rsity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------| | 1981 | 846 | 25 | 2.55 | 4.67 | 0.28 | 0.52 | | 1982 | 1,416 | 26 | 2.84 | 4.66 | .18 | .59 | | 1983 | 1,171 | 23 | 3.01 | 4.45 | .19 | .66 | | 1984 | 1,216 | 25 | 2.85 | 4.63 | .26 | .60 | | 1985 | 546 | 22 | 2.42 | 4.50 | .35 | .50 | | 1986 | 851 | 20 | 2.79 | 4.27 | .22 | .63 | | 1987 | 1,638 | 21 | 2.41 | 4.35 | .13 | .54 | | 1988 | 1,357 | 26 | 2.90 | 4.73 | .19 | .60 | | 1989 | 1,722 | 26 | 2.98 | 4.71 | .16 | .62 | | 1990 | 1,387 | 23 | 2.25 | 4.46 | .17 | .49 | | 1991 | 810 | 15 | 1.96 | 3.84 | .17 | .49 | | 1992 | 755 | 26 | 3:16 | 4.59 | .32 | .66 | | 1993 | 948 | 26 | 2.86 | 4.68 | .26 | .59 | | 1994 | 553 | 17 | 2.61 | 4.12 | .26 | .61 | Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01494950 WEST BRANCH BIG ELK CREEK NEAR OXFORD (SITE 32) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,517 | 30 | 3.16 | 4.84 | 0.20 | 0.64 | | 1982 | 2,458 | 26 | 2.73 | 4.69 | .11 | .57 | | 1983 | 1,203 | 28 | 2.96 | 4.80 | .23 | .60 | | 1984 | 1,875 | 23 | 2.81 | 4.49 | .13 | .62 | | 1985 | 1,124 | 21 | 2.31 | 4.32 | .18 | .52 | | 1986 | 1,402 | 24 | 3.11 | 4.55 | .17 | .67 | | 1987 | 1,309 | 22 | 2:71 | 4.43 | .17 | .60 | | 1988 | <sup>1</sup> 2,245 | 20 | 2.90 | 4.29 | .09 | .67 | | 1989 | 1,533 | 25 | 3.13 | 4.61 | .17 | .67 | | 1990 | 1,536 | 27 | 2.95 | 4.75 | .18 | .61 | | 1991 | 2,733 | 32 | 3.09 | 4.98 | .13 | .61 | | 1992 | 752 | 27 | 3.30 | 4.64 | .33 | .69 | | 1993 | 424 | 18 | 2.61 | 4.14 | .35 | .60 | | 1994 | 1,587 | 29 | 3.03 | 4.85 | .19 | .61 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01578340 EAST BRANCH OCTORARO CREEK AT CHRISTIANA (SITE 33) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 978 | 18 | 3,09 | 4.12 | 0.17 | 0.74 | | 1982 | 1,670 | 24 | 3.36 | 4.58 | .15 | .72 | | 1983 | 856 | 25 | 2.86 | 4.54 | .27 | .61 | | 1984 | 1,518 | 21 | 2.97 | 4.41 | .14 | .66 | | 1985 | 593 | 25 | 3.17 | 4.64 | .37 | .65 | | 1986 | 1,110 | 27 | 2.88 | 4.78 | .24 | .58 | | 1987 | 1,421 | 27 | 3.31 | 4.70 | .19 | .69 | | 1988 | <sup>1</sup> 1,953 | 20 | 3.02 | 4.33 | .11 | .69 | | 1989 | 2,083 | 30 | 3.42 | 4.89 | .15 | .69 | | 1990 | 1,419 | 33 | 3.49 | 4.95 | .24 | .69 | | 1991 | 1,476 | 28 | 2.82 | 4.74 | .19 | .58 | | 1992 | 1,268 | 23 | 2.32 | 4.46 | .18 | .50 | | 1993 | 558 | 22 | 3.17 | 4.39 | .34 | .70 | | 1994 | 2,194 | 31 | 2.44 | 4.97 | .15 | .48 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01578343 VALLEY CREEK AT ATGLEN (SITE 34) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 2,173 | 21 | 3.12 | 4.35 | 0.10 | 0.71 | | 1982 | 2,478 | 32 | 3.37 | 5.02 | .14 | .66 | | 1983 | 930 | 23 | 2.97 | 4.53 | .23 | .64 | | 1984 | 2,239 | 30 | 2.90 | 4.85 | .14 | .59 | | 1985 | 962 | 28 | 3.12 | 4.77 | .28 | .63 | | 1986 | 783 | 23 | 3.16 | 4.53 | .27 | .68 | | 1987 | 2,316 | 31 | 3.54 | 4.94 | .15 | .71 | | 1988 | <sup>1</sup> 2,916 | 24 | 3.28 | 4.60 | .09 | .71 | | 1989 | 3,051 | 39 | 3.46 | 5.25 | .14 | .65 | | 1990 | 1,262 | 28 | 3.30 | 4.72 | .22 | .68 | | 1991 | 3,201 | 32 | 2.97 | 4.97 | .11 | .59 | | 1992 | 1,788 | 27 | 2.67 | 4.73 | .16 | .54 | | 1993 | 825 | 18 | 2,29 | 4.11 | .20 | .53 | | 1994 | 2,936 | 23 | 2.49 | 4.50 | .09 | .55 | <sup>&</sup>lt;sup>1</sup> Extrapolated from a 3/8 subsample. Table 6. Brillouin's diversity index, maximum diversity, minimum diversity, and relative evenness by site—Continued 01578345 EAST BRANCH OCTORARO CREEK AT STEELVILLE (SITE 35) | Year | Total<br>number of<br>organisms | Total<br>number<br>of taxa | Brillouin's<br>diversity index<br>(H) | Maximum<br>diversity<br>(H <sub>max</sub> ) | Minimum<br>diversity<br>(H <sub>min</sub> ) | Evenness<br>(E) | |------|---------------------------------|----------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------| | 1981 | 1,041 | 27 | 2.99 | 4.74 | 0.25 | 0.61 | | 1982 | 1,791 | 25 | 2.99 | 4.60 | .15 | .64 | **Table 7.** Median, mean, standard deviation, and standard error values of Brillouin's diversity index by site [—, no data] | Station<br>number | Site<br>number | Number of<br>samples | Median | Mean | Standard deviation | Standard<br>error | |-------------------|----------------|----------------------|--------|------|--------------------|-------------------| | 01472054 | 8 | 2 | 3.32 | 3.32 | 0.29 | 0.15 | | 01472065 | 9 | 2 | 3.17 | 3.17 | .19 | .10 | | 01472080 | 10 | 14 | 3.37 | 3.39 | .29 | .75 | | 01472109 | 6 | 14 | 3.51 | 3.36 | .39 | .10 | | 01472110 | 7 | 2 | 3.25 | 3.25 | .39 | .20 | | 01472126 | 41 | 1 | _ | _ | - | - | | 01472129 | 11 | 2 | 3.71 | 3.71 | .17 | .09 | | 01473138 | 13 | 14 | 3.40 | 3.41 | .42 | .11 | | 01472140 | 12 | 14 | 3.71 | 3.60 | .30 | .08 | | 01472154 | 14 | 14 | 3.49 | 3.39 | .49 | .13 | | 01472157 | 15 | 14 | 3.34 | 3.38 | .55 | .14 | | 014721612 | 16 | 14 | 2.55 | 2.38 | .88 | .23 | | 01472170 | 1 | 14 | 3.18 | 3.15 | .34 | .09 | | 01472174 | 2 | 14 | 3.35 | 3.31 | .48 | .13 | | 014721854 | 3 | 14 | 3.35 | 3.33 | .41 | .11 | | 014721884 | 4 | 14 | 3.25 | 3.33 | .39 | .10 | | 01472190 | 5 | 14 | 3.30 | 3.19 | .39 | .10 | | 01473167 | 49 | 14 | 3.00 | 2.96 | .22 | .06 | | 01473168 | 50 | 14 | 2.78 | 2.88 | .25 | .07 | | 01475300 | 17 | 14 | 3.38 | 3.15 | .61 | .16 | | 01475830 | 18 | 2 | 3.58 | 3.58 | .06 | .03 | | 01475840 | 19 | 14 | 3.21 | 3.18 | .44 | .11 | | 01476430 | 20 | 14 | 3.24 | 3.25 | .33 | .09 | | 01476435 | 21 | 14 | 3.18 | 3.15 | .30 | .08 | | 01476790 | 22 | 14 | 3.12 | 2.83 | .66 | .17 | | 01476830 | 23 | 14 | 3.02 | 2.95 | .46 | .12 | | 01476830 | 24 | 14 | 3.11 | 3.01 | .37 | .09 | | 01456840 | 25 | 9 | 1.86 | 1.84 | .45 | .14 | | 01476848 | 51 | 12 | 2.61 | 2.53 | .38 | .11 | | 01478120 | 28 | 14 | 2.65 | 2.64 | .41 | .11 | | 01478190 | 29 | 14 | 2.82 | 2.86 | .29 | .08 | | 01478220 | 30 | 14 | 2.94 | 3.01 | .44 | .11 | | 01479680 | 27 | 14 | 2.37 | 2.34 | .52 | .13 | | 01479800 | 26 | 14 | 2.06 | 2.10 | .54 | .14 | | 01480434 | 37 | 14 | 3.15 | 3.13 | .44 | .11 | | 01480629 | 46 | 14 | 2.69 | 2.80 | .47 | .12 | | 01480632 | 45 | 14 | 3.21 | 3.15 | .23 | .06 | | 01480640 | 38 | 14 | 3.14 | 3.12 | .43 | .11 | | 01480647 | 43 | 2 | 2.87 | 2.87 | .52 | .26 | | 01480648 | 48 | 14 | 3.43 | 3.44 | .27 | .07 | | 01480653 | 42 | 14 | 3.73 | 3.76 | .23 | .06 | **Table 7.** Median, mean, standard deviation, and standard error values of Brillouin's diversity index by site—Continued | Station<br>number | Site<br>number | Number of samples | Median | Mean | Standard deviation | Standard<br>error | |-------------------|----------------|-------------------|--------|------|--------------------|-------------------| | 01480656 | 47 | 14 | 3.57 | 3.57 | 0.20 | 0.05 | | 01480700 | 36 | 14 | 3.06 | 2.93 | .71 | .18 | | 01480903 | 44 | 14 | 3.13 | 3.00 | .36 | .09 | | 01480950 | 39 | 14 | 3.38 | 3.20 | .62 | .16 | | 01481030 | 40 | 14 | 3.42 | 3.41 | .35 | .09 | | 01494900 | 31 | 14 | 2.81 | 2.69 | .33 | .09 | | 01494950 | 32 | 14 | 2.96 | 2.91 | .26 | .07 | | 01578340 | 33 | 14 | 3.06 | 3.02 | .35 | .09 | | 01578343 | 34 | 14 | 3.12 | 3.05 | .36 | .09 | | 01578345 | 35 | 2 | 2.99 | 2.99 | .00 | .00 | Table 8. Alphabetic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94 Acroneuria sp. Aeshna sp. Agabus sp. Agnetina sp. Agraylea sp. Allocapnia sp. Amnicola sp. Amphiagrion sp. Anchytarsus bicolor Ancyronyx sp. Ancyronyx variegata Anthopotamus sp. Antocha sp. Apatania sp. Archanara sp. Argia sp Atherix sp. Baetis sp. Berosus sp. Blephariceridae Blepharicera sp. Boyeria sp. Brachycentrus sp. Branchiobdellida Caecidotea sp. Caenis sp Calopteryx sp. Cambaridae Cambarus sp. Ceraclea sp. Ceratopogonidae Ceratopsyche sp. Chaoborus sp. Chauliodes sp. Chelifera sp. Cheumatopsyche sp. Chimarra sp. Chironomidae Chloroperlidae Chrysomelidae Cladocera Climacia sp. Climacia areolaris Clinocera sp. Coenagrionidae Corixidae Corvdalus sp. Crangonyx sp. Culoptila sp. Curculionidae Cyclopidae **Table 8.** Alphabetic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued Dicranota sp. Dineutus sp. Diplectrona sp. Dixa sp. Dolophilodes sp. Dryopidae Dubiraphia sp. Dytiscidae Ectopria sp. Ectopria nervosa Empididae Enallagma sp. Epeorus sp. Ephemera sp. Ephemerella sp. Ephydridae Erpobdellidae # Ferrissia sp. Gammaridae Gammarus sp. Gerridae Gerris sp. Glossiphoniidae Glossosoma sp. Goera sp. Gomphidae Gomphus sp. Goniobasis sp. Gyraulus sp. Gyrinidae **Table 8.** Alphabetic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued Habrophlebia sp. Haploperla sp. Helichus sp. Helicopsyche sp. Helisoma sp. Helophorus sp. Hemerodromia sp. Hemiptera Heptagenia sp. Hetaerina sp. Hexagenia sp. Hexatoma sp. Hirudinea Hirudinidae Hyallela azteca Hydatophylax sp. Hydra sp. Hydrachnidia Hydrobius sp. Hydrochara sp. Hydrophilidae Hydropsyche sp. Hydroptila sp. Ichneumonidae <u>Ischnura</u> sp. Isonychia sp. Isoperla sp. Lepidostoma sp. Leptophlebiidae Leucotrichia sp. Limnophora sp. Lirceus sp. Lumbriculidae Lymnaea sp. Macromia sp. Macronychus sp. Macronychus glabratus Macrostemum sp. Manayunkia speciosa Mesovelia sp. Metrobates sp. Micrasema sp. Microcylloepus sp. Microvelia sp. Muscidae Musculium sp. Mystacides sp. **Table 8.** Alphabetic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued Naididae Nematoda Nematomorpha Nemouridae Neoperla sp. Neophylax sp. Neureclipsis sp. Nigronia sp. Noctuidae Nyctiophylax sp. Ochrotrichia sp. Oecetis sp. Oligochaeta Ophiogomphus sp. Optioservus sp. Orconectes sp. Oulimnius sp. Paragnetina sp. Paraleptophlebia sp. Peltoperla sp. Petrophila sp. Physa sp. Pisidium sp. Planariidae Planorbidae Planorbula sp. Podocopa Polycentropus sp. Polychaeta Potamyia sp. Procambarus sp. Promoresia sp. Prosimulium sp. Prostoma sp. Protoptila sp. Psephenus sp. Pseudocleon sp. Psilotreta sp. Psychomyia sp. Pyralidae Rhagovelia sp. Rheumatobates sp. Rhyacophila sp. Rhyacophila fuscula Table 8. Alphabetic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued | Sabellidae | |-------------------| | Saldidae | | Sialis sp. | | Sigara sp. | | Simulium sp. | | Sisyridae | | Sphaeriidae | | Sphaerium sp. | | Stenacron sp. | | Stenelmis sp. | | Stenonema sp. | | Stratiomyidae | | Stratiomys sp. | | Strophopteryx sp. | | Stylaria sp. | | Stylogomphyses | Stylogomphus sp. Synclita sp. Syrphidae Tabanus sp. Taeniopteryx sp. Telmatoscopus sp. Tipula sp. Trepobates sp. Triaenodes sp. Trichocorixa sp. <u>Tricorythodes sp.</u> Tubificidae Wormaldia sp. # **Table 9.** Systematic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94 1301-34 # Cinidaria (Hydroids) Hydra sp. #### Platyhelminthes (Flatworms) Planariidae # Nematoda (Round Worms) Nematomorpha (Horsehair Worms) ## Nemertea (Proboscis worms) Prostoma sp. # Gastropoda (Snails) Amnicola sp. Ferrissia sp. Goniobasis sp. Gyraulus sp. Helisoma sp. Lymnaea sp. Physa sp. Planorbidae Planorbula sp. # Bivalvia (Clams) Musculium sp. Pisidium sp. Sphaeriidae Sphaerium sp. ## Annelida (Segmented worms) Branchiobdellida Erpobdellidae Hirudinea Hirudinidae Glossiphoniidae Lumbriculidae Manayunkia speciosa Naididae Oligochaeta Polychaeta Sabellidae Stylaria sp. Tubificidae ## Acariformes (Water mites) Hydrachnidia ## Cladocera (Water fleas) **Table 9.** Systematic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued # Cyclopoida (Copepods) Cyclopidae # Amphipoda (Scuds) Crangonyx sp. Gammaridae Gammarus sp. Hyallela azteca # Isopoda (Sow bugs) Caecidotea sp. Lirceus sp. # Decapoda (Crayfish) Cambaridae Cambarus sp. Orconectes sp. Procambarus sp. # Podocopa (Seed shrimps) # Ephemeroptera (Mayflies) Anthopotamus sp. Baetis sp. Caenis sp. Epeorus sp. Ephemera sp. Ephemerella sp. Habrophlebia sp. Heptagenia sp. Hexagenia sp. Isonychia sp. Leptophlebiidae Paraleptophlebia sp. Pseudocloeon sp. Stenacron sp. Stenonema sp. Tricorythodes sp. # **Table 9.** Systematic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued Odonata (Dragonflies and Damselflies) Aeshna sp. Amphiagrion sp. Argia sp. Boyeria sp. Calopteryx sp. Coenagrionidae Enallagma sp. Gomphidae Gomphus sp. Hetaerina sp. Ischnura sp. Macromia sp. Ophiogomphus sp. Stylogomphus sp. # Plecoptera (Stoneflies) Acroneuria sp. Agnetina sp. Allocapnia sp. Chloroperlidae Haploperla sp. Isoperla sp. Nemouridae Neoperla sp. Paragnetina sp. Peltoperla sp. Strophopteryx sp. Taeniopteryx sp. # Hemiptera (True Bugs) Corixidae Gerridae Gerris sp. Mesovelia sp. Metrobates sp. Microvelia sp. Rhagovelia sp. Rheumatobates sp. Saldidae Sigara sp. Trepobates sp. Trichocorixa sp. Table 9. Systematic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94---Continued Megaloptera (Alderflies and Dobsonflies) Chauliodes sp. Corydalus sp. Nigronia sp. Sialis sp. ## Neuroptera (Spongillaflies) Climacia sp. C. areolaris Sisyridae ## Trichoptera (Caddisflies) Agraylea sp. Apatania sp. Brachycentrus sp. Ceraclea sp. Ceratopsyche sp. Cheumatopsyche sp. Chimarra sp. Culoptila sp. Diplectrona sp. Dolophilodes sp. Glossosoma sp. Goera sp. Helicopsyche sp. Hydatophylax sp. Hydropsyche sp. Hydroptila sp. Lepidostoma sp. Leucotrichia sp. Macrostemum sp. Micrasema sp. Mystacides sp. Neophylax sp. Neureclipsis sp. Nyctiophylax sp. Ochrotrichia sp. Oecetis sp. Polycentropus sp. Potamyia sp. Protoptila sp. Psilotreta sp. Psychomyia sp. Rhyacophila sp. Rhyacophila fuscula Triaenodes sp. Wormaldia sp. **Table 9.** Systematic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued Lepidoptera (Butterflies and Moths) Archanara sp. Noctuidae Petrophila sp. Pyralidae Synclita sp. # Coleoptera (Beetles) Agabus sp. Anchytarsus bicolor Ancyronyx sp. Ancyronyx variegata Berosus sp. Chrysomelidae Curculionidae Dineutus sp. Dryopidae Dubiraphia sp. Dytiscidae Ectopria sp. Ectopria nervosa Gyrinidae Helichus sp. Helophorus sp. Hydrobius sp. Hydrochara sp. Hydrophilidae Macronychus sp. Macronychus glabratus Microcylloepus sp. Optioservus sp. Oulimnius sp. Promoresia sp. Psephenus sp. Stenelmis sp. ## Hymenoptera (Wasps) Ichneumonidae **Table 9.** Systematic checklist of taxa reported from Chester County Biological Monitoring Network, 1981-94—Continued Diptera (Flies) Antocha sp. Atherix sp. Blephariceridae Blephariceria sp. Ceratopogonidae Chaoborus sp. Chelifera sp. Chironomidae Clinocera sp. Dicranota sp. Dixa sp. Empididae Ephydridae Hemerodromia sp. Hexatoma sp. Limnophora sp. Muscidae Prosimulium sp. Simulium sp. Stratiomyidae Stratiomys sp. Syrphidae Tabanus sp. Telmatoscopus sp. Tipula sp.